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Tunneling ionization of vibrationally excited nitrogen molecules
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Ionization of molecular nitrogen plays an important role in the process of light-filament formation in air. In
the present paper we theoretically investigated tunneling ionization of the valence 3σg and 1πu shells in a N2

molecule using a strong near-infrared laser field. This research is based on our previously proposed theory of
anti-Stokes-enhanced tunneling ionization with quantum accounting for the vibrationally excited states of the
molecules [A. S. Kornev and B. A. Zon, Phys. Rev. A 86, 043401 (2012)]. We demonstrated that if the N2

molecule is ionized from the ground vibrational state, then the contribution of the 1πu orbital is 0.5%. In contrast,
for vibrationally excited states with a certain angle between the light polarization vector and the molecule axis,
both shells can compete and even reverse their contributions due to the anti-Stokes mechanism. The structure
constants of molecular orbitals are extracted from numerical solutions to the Hartree-Fock equations. This
approach correctly takes into account the exchange interaction. Quantum consideration of vibrational motion
results in the occurrence of the critical vibrational state, the tunneling ionization from which has the maximum
rate. The numbers of the critical vibrational states are different for different valence shells. In addition, quantum
description of vibrations changes the rate of ionization from the ground vibrational state by 20%–40% in
comparison with the quasiclassical results.
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I. INTRODUCTION

Propagation of an intense laser radiation in the atmosphere
accompanied by ionization of atmospheric gases was studied
experimentally for the first time in Ref. [1]. Extensive studies
in this area are currently being performed (see recent re-
views [2,3], papers [4–14], and references therein). To describe
theoretically the phenomena emerging in these processes,
various models of rovibronic molecular-state populations are
introduced [15–17]. Nitrogen is one of the main atmospheric
gases. In the present paper we intend to calculate the rate
of tunneling ionization of a nitrogen molecule by a laser
radiation within a many-body theory. The N2 molecule is
assumed to be in the ground electronic state and in one of its
vibrationally excited states. Molecular vibrational excitation
before ionization can be caused by the collisions between the
molecule and free electrons as well as collisions between the
molecule and other atoms and molecules. These collisions
occur in the process of filamentation.

The one-body theory of molecule tunneling ionization in
an ac field (MO-ADK) was developed in Ref. [18]. The same
authors proposed calculating the asymptotic constants of
the tunneling electron wave function by the model-potential
method [19]. However, the theory from Refs. [18,19] takes
into account the nucleus motion only quasiclassically and
does not allow for accurate representation of the asymptotic
form of the valence electron wave function. Nevertheless,
taking into account the vibrational degrees of freedom appears
to be rather important. In the tunneling departure of an
electron from a molecule, the molecular ion can occur in
the ground vibrational state as well as in excited states (see
Fig. 1). Since formation of an ion in an excited vibrational
state requires higher energy, it is clear that the probability of
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the ion formation in one of the excited vibrational states is
less than that in the ground vibrational state. The appropriate
calculations were performed in Ref. [20]. By analogy with the
Raman effect, such a decrease in tunneling rate can be called
Stokes attenuated. However, if a neutral molecule is initially in
an excited vibrational state, then after the tunneling removal
of an electron, a molecular ion can occur in the ground
vibrational state. Again, with regards to energy, it is clear
that the tunneling rate will be greater than that for a neutral
molecule in the ground vibrational state. Such an increase in
the tunnel-effect rate can be called anti-Stokes enhanced.

In Refs. [21,22], we developed the theory of anti-Stokes-
enhanced tunneling ionization of a molecule. Our current work
stems from our previous research of studying the many-body
effects in the tunneling ionization of atoms [23–29]. The im-
portance of taking into account nuclear motion is demonstrated
by the examples of the nonpolar H2 molecules [21] and the
polar hydrogen halide molecules HF and HCl [22] with various
isotopic proportions: H, D, 18F, 19F, 35Cl, 37Cl. Particularly,
it has been demonstrated that the vibrational excitation of a
molecule can significantly increase the tunneling ionization
probability (anti-Stokes-enhanced tunnel ionization). Anti-
Stokes-enhanced ionization can be used for laser separation
of isotopes in addition to the existing methods [30–32]. Our
results demonstrate the possibility of obtaining ions with the
specified isotopic proportion by selective prepumping of the
vibrational states of molecules.

The nitrogen molecule that is under consideration in this re-
search has specific properties which manifest in characteristics
of a photoelectron. These properties are caused by the close
values of energy of the highest occupied 3σg and 1πu orbitals in
the ground electronic X 1�+

g state of the neutral N2 molecule.
The simulations performed by the Hartree-Fock method with
the Slater orbitals [33] demonstrate that the energy of the
1πu shell lies higher than that of the 3σg shell by 0.5551 eV,
whereas the ground state of an N2

+ ion is X 2�+
g , and the

tabulated value of the energy of the first excited electronic state
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FIG. 1. (Color online) Stokes-attenuated and anti-Stokes-enhanced tunneling transitions in an AB molecule.

A 2�u lies higher by 1.1179 eV [34]. According to the earlier
data [35], the ionization potential of the nitrogen molecule
from the highest occupied 3σg orbital (HOMO) is equal to
15.6 eV, and that from the 1πu orbital (HOMO-1) is equal
to 17.2 eV. Thus, in the N2 molecule, it is necessary to take
into account both indicated HOMOs in the calculation of the
tunneling ionization rate.

Thus, the motivation of the research can be formulated in
three points: (i) application of the previously developed theory
to the important practical case of laser filamentation in the air,
(ii) accounting for the contribution of two upper shells to the
ionization of the nitrogen molecule due to spectral features
of the molecule (close values of energies of 3σg and 1πu

HOMOs), and (iii) improvement of the existing theory [19],
particularly, more accurate accounting for structure constants
in the nitrogen molecule. In our calculations, the many-body
effects are taken into account (Refs. [21,22]), including the
possibility of anti-Stokes-enhanced ionization. Accounting
for many-body effects shows that the tunneling rate depends
not only on the ionization potential of the molecule but
also on the equilibrium internuclear separation (through the
Franck-Condon factors) and on the frequencies of vibrational
transitions (for Stokes-attenuated and anti-Stokes-enhanced
processes). Furthermore, a critical value of vibrational
quantum number vc occurs. The tunneling rate from this state
has the maximum value. The value of vc is formed by the
competition between the anti-Stokes-enhanced processes and
the Franck-Condon factors.

Finally, if not mentioned specifically, the atomic system of
units is used throughout.

II. ELECTRON MOTION

In the MO-ADK model [18], the asymptotic form of the va-
lence electron wave function is used at the large distances from
the molecular core. In the one-electron approximation for the
diatomic homonuclear molecule, this electronic wave function
can be written as the spherical harmonic expansion [18],

�m(r) ≈ Rm(r)
∞∑

l=|m|,|m|+2,...

ClYlm(r̂),

(1)
r̂ = r/r,

∑
l

|Cl|2 = 1,

where m is conserved projection of the electron angular
momentum onto the molecule axis which is assumed to be
the quantization axis. Rm(r) is the asymptotic form of the
radial wave function corresponding to the electron binding
energy, κ2/2,

Rm(r) ≈ Cκ3/2(κr)
1
κ
−1e−κr , r → ∞. (2)

The quantity κ2/2 is usually extracted from the experimen-
tal data. To calculate κ as well as dimensionless C and Cl

constants (so-called structure factors), an approach based on
the model-potential method and the density-functional theory
was proposed in Refs. [18,19]. The authors of Ref. [18]
used the simplest empirical model potential. The authors
of Refs. [19,36] obtained one-electron core wave functions
with the method of Gaussian orbitals (the GAUSSIAN [37] or
GAMESS [38] code). The authors of Ref. [19] constructed the
radial parts of the active electron wave function out of the B

splines. The motion of the active electrons was considered in
the field created by the nuclei and the core electron charge
density with the Gaussian asymptotic form. The nonlocal ex-
change interaction between the tunneling electron and the core
was modeled by an additional local term to the potential. The
authors of Ref. [36] used specifically improved Gaussian basis
functions and direct calculation of the asymptotic form con-
stants without using the model potentials. The significant dif-
ference of the Gaussian orbital asymptotic form from the Slater
one (2) is the drawback of this method. Therefore, in this re-
search we will use the two-dimensional Hartree-Fock method
(x2DHF) developed in Ref. [33] for two atomic molecules.
This method provides the correct asymptotic form (2).

First of all, it should be noted that the asymptotic form is
valid only at distances so large that the numerical evaluation of
the wave function is hard to achieve. To find these constants,
it is necessary to obtain such an asymptotic form of the radial
wave function that would be valid at moderate distances, where
the numerical solution of the Hartree-Fock equations is also
possible.

It is convenient to place the origin of coordinates in
the middle point between the equilibrium positions of the
nuclei. Let the distance between them be equal to R. We
expand the wave function of the valence orbital �m(R,r),
found numerically and normalized to unity, over the spherical
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TABLE I. Convergence of C values. The first set of values
corresponds to the simple comparison of numerical results and Eq. (2).
The second set is the result of using Eq. (7).

3σg 1πu

r (a.u.) Eq. (2) Eq. (7) Eq. (2) Eq. (7)

10 4.3918 4.2244 2.2882 2.0847
11 4.3973 4.2464 2.2743 2.0891
12 4.4009 4.2636 2.2627 2.0927
13 4.4031 4.2774 2.2527 2.0957
14 4.4045 4.2885 2.2441 2.0982
15 4.4052 4.2976 2.2366 2.1004
16 4.4056 4.3052 2.2299 2.1022
17 4.4056 4.3117 2.2241 2.1038
18 4.4055 4.3172 2.2188 2.1052
19 4.4052 4.3220 2.2141 2.1065
20 4.4049 4.3261 2.2098 2.1075
21 4.4045 4.3297 2.2059 2.1085
22 4.4041 4.3324 2.2024 2.1094
23 4.4037 4.3349 2.1992 2.1102
24 4.4033 4.3373 2.1962 2.1108
25 4.4029 4.3395 2.1934 2.1114
26 4.4025 4.3413 2.1908 2.1119
27 4.4022 4.3428 2.1884 2.1123
28 4.4018 4.3438 2.1862 2.1126
29 4.4016 4.3443 2.1842 2.1129
30 4.4013 4.3445 2.1822 2.1131

functions,

�m(R,r) =
∞∑

l=|m|,|m|+2,...

R̃lm(r) Ylm(r̂), (3)

where the function

R̃lm(r) =
∫

Y ∗
lm(r̂) �m(R,r) d2r̂

is obtained by numerical integration.
At large distances, the radial function R̃lm(r) satisfies the

radial Schrödinger equation,

�rR̃lm +
[

2

r
− κ2

num

]
R̃lm − l(l + 1)

r2
R̃lm = 0, (4)

where �r is the radial part of the Laplacian and the value of
κnum in Eq. (4) is obtained by numerically solving the Hartree-
Fock equations.

The asymptotic form of the R̃lm(r) function follows from
Eq. (4),

R̃(asympt)
lm (r) ≈ κ3/2

num(κnumr)ν−1e−κnumr

×
[

1 + l(l + 1) − ν(ν − 1)

2κnumr
+ . . .

]
, (5)

r → ∞,

where ν = 1/κnum. Unlike Eq. (2), Eq. (5) contains the
long-range vanishing term ∼r−1. That is why Eq. (5) is more
suitable for numerical calculations of C and Cl constants than
Eq. (2) since it becomes valid at smaller distances, in contrast
to Eq. (2). For r → ∞, the function R̃lm(r) turns into ClRm(r)
with the substitution κnum → κ .

The calculation accuracy of R̃lm(r) functions can be
controlled by means of the quantity

cl = CCl = lim
r→∞

R̃lm(r)

R̃(asympt)
lm (r)

. (6)

Our calculations demonstrate that the stability of result (6) in
the third or fourth decimal is achieved at r > 15–20 a.u. In turn,
neglecting the term ∼r−1 in Eq. (5) shifts the stability region
up to r � 200 a.u. Such large distances are often beyond the
accuracy of the Hartree-Fock method. For the N2 molecule,
the stability of the constants is improved most noticeably
for the 1πu orbital (see Table I).

Quantities in Eq. (6) allow us to obtain the C constant:

C =
⎛
⎝ ∞∑

l=|m|
|cl|2

⎞
⎠

1/2

. (7)

The values of C and Cl for the 3σg and 1πu orbitals of the N2

molecule are given in Table II and are compared with the results
obtained with the model-potential methods (Refs. [18,19]).
One can see that our results differ from those obtained in
Ref. [19] mainly in the magnitude of the C constant. This can
originate from a more accurate accounting of the exchange
interaction, without the use of a model potential.

The method to calculate the structure constants presented
here is analogous to that proposed in Ref. [36], where an
improved Gaussian basis set was used. As a result, at moderate
distances, the form of the wave function is close to the
Slater one, whereas at large distances, it becomes Gaussian.
The method from Ref. [36] is convenient for investigating
polyatomic molecules, where directly solving the Hartree-
Fock equations is technically difficult.

TABLE II. Values of C and Cl constants obtained from Eqs. (6) and (7) for the valence 3σg and 1πu shells in the N2 molecule. Corresponding
results from Refs. [18,19] are scaled to dimensionless units and given here for comparison.

Shell C C|m| C|m|+2 C|m|+4 C|m|+6 Source

3σg (|m| = 0, 1.9159 0.9327 0.3602 0.0185 [18]
κnum = 1.1265 a.u.) 2.5634 0.9249 0.3796 0.0207 [19]

4.3445 0.9427 0.3333 0.0132 0.0002 this work
1πu (|m| = 1, 1.5788 0.9933 0.1156 0.0053 [19]
κnum = 1.1082 a.u.) 2.1130 0.9972 0.0750 0.0015 this work
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III. DYSON ORBITAL

The Born-Oppenheimer approximation (BOA) is com-
monly used in studies of interactions between molecules and
electromagnetic radiation. However, dissociative ionization
and Coulomb explosion are exceptional cases for which BOA
does not apply (e.g., [39–43]). This case is not considered in the
present work. In the process of tunnel ionization of molecules,
nonadiabatic retardation effects can arise, leading to breaking
the validity of the BOA. These effects were examined for a
hydrogen molecule in [44]. They become apparent in changing
the electron density at large distances from the molecule. In
accordance with [44], if the reduced mass of the nuclei of a
hypothetical hydrogen molecule is 125 times higher than the
electron mass, the electron density deviates from the BOA
predictions by more than 10% at distances greater than 10 a.u.
If the excess is more than 500 times, the BOA will be valid up to
distances of 15–20 a.u. The constants in Eq. (6) are calculated
at such distances. These quantities are necessary for obtaining
the asymptotic form (2). In ordinary molecules, the reduced
mass of nuclei exceeds the electron mass by more than ∼2000
times, making the BOA valid for distances exceeding 25 a.u.
Therefore, there is no need to go beyond the BOA.

For a complete description of the molecule’s stationary
states in the framework of the BOA, many-electron functions
must be multiplied by the nuclei vibrational motion wave
functions,

�μ,vμ
(R,{r}) = χμ,vμ

(R) �μ(R,{r}), μ = i,f, (8)

where {r} is the set of electron coordinates, �μ is the
many-electron wave function taken at the fixed equilibrium
internuclear separation R, the χμ,vμ

function describes the
vibrational stationary state with the quantum number vμ =
0,1, . . ., and the R vector specifies the molecule orientation.
The μ index marks the state of the molecule.

In the traditional ADK and MO-ADK models, the atomic
or ionic core is considered to be “frozen,” meaning its states
do not change after tunneling electron departure. However, the
electron wave functions of core electrons in a neutral molecule
and in a molecular ion generally differ. The Dyson orbital,
presenting integral overlap between the electron configurations
of a neutral molecule in the initial state (μ = i) and its ion in
the final state (μ = f ), should be used to take into account the
differences between the core electron functions. According to
Eq. (8),

�(Dyson)
vf vi

(r) =
∫ ∞

0
χ∗

f,vf
(R)χi,vi

(R) dR

×
∫

�∗
f (R,{r′}) �i(R; r,{r′}) {d3r ′}, (9)

where r is the coordinate of an active valence electron and
{r′} is the set of core electron coordinates. The significance of
using the Dyson orbital in studying molecule ionization was
demonstrated in Refs. [45–48].

Collisionless orientation of the molecule’s axes along the
direction of the light-wave electric vector occurs in strong laser
fields [49–53]. In Ref. [54], direct observation was carried out
for the influence of molecule orientation upon ionization. In
the present work, we do not take into account this effect,
considering ionizing laser pulses to be sufficiently short. For

long pulses, accounting for orientation is not difficult. Thus,
the notation R is used in Eq. (9) instead of R.

Equation (9) can be simplified by taking into account
the small amplitude of classical vibrations compared to the
equilibrium internuclear separation Rei,f and the Hartree-Fock
approximation (see details in Ref. [21]),

�(Dyson)
vf vi

(r) ≈ I
(v)
f i I

(e)
f i �m(Rei,r). (10)

Here, �m(Rei,r) corresponds to the one-body state of the
active electron with the momentum projection on the molecule
axis equal to m (for a σ orbital, m = 0 and for a π orbital,
m = ±1). The asymptotic form of �m is given by Eqs. (1)
and (2). The calculation algorithm for the structure factors
C and Cl is described in the previous section. I

(e)
f i is the

overlap integral between the core electronic states in the
neutral molecule and in its ion. It can be found analytically in
terms of the parameters produced by the GAUSSIAN code (see
the Appendix). To calculate I

(e)
f i in same molecules but with

different isotopic proportions, the origin of the coordinates is
placed in the center of mass of the nuclei. In our case using
the 14N2 molecule,

I
(e)
f i

[
N2

(
X 1�+

g

) → N+
2

(
X 2�+

g

)] = 0.9797,

I
(e)
f i

[
N2

(
X 1�+

g

) → N+
2

(
A 2�u

)] = 1.0102.

These data are obtained by using the augmented correlation-
consistent polarized valence five zeta (AUG-cc-pV5Z) basis
set.

I
(v)
f i =

∫ ∞

0
χ∗

f,vf
(R)χi,vi

(R) dR (11)

is the overlap integral between vibrational states. Its square
is the Franck-Condon factor. The next section deals with the
calculation of the I

(v)
f i integral. Each factor in Eq. (10) depends

on Rei,f parametrically.

IV. ACCOUNTING FOR VIBRATIONAL MOTION

The vibrational motion in molecules is conveniently mod-
eled by the Morse potential. The energy spectrum of this
motion has the form

Ev = ωe

(
v + 1

2

) − xeωe

(
v + 1

2

)2
, v = 0,1, . . . , (12)

where v is the vibrational quantum number, ωe is the vibration
frequency, and xe is the first anharmonicity constant. The
parameters of spectrum (12) for the 14N2 molecule and its
positive ion are taken from Ref. [34] and given in Table III.

TABLE III. Values of parameters of the N2 molecule and of its
positive ion. Here, � is the energy of the electron excitation, Re is
the equilibrium internuclear separation, ωe is the vibration frequency
for the molecule consisting of the 14N isotope, and xe is the first
anharmonicity constant. The data are taken from Ref. [34].

Molecule � (cm−1) Re (Å) ωe (cm−1) xeωe (cm−1)

N2(X 1�+
g ) 0 1.098 2359 14.3

N2
+(X 2�+

g ) 0 1.116 2207 16.1
N2

+(A 2�u) 9016.4 1.174 1903 14.9
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TABLE IV. Values of dynamic molecular polarizabilities and
of their derivatives (in atomic units) in the case of equilibrium
internuclear separation in the N2 molecule and in its ions (see
Table III). The Gaussian AUG-cc-pV5Z basis set was used in the
calculations. The radiation frequency corresponds to the wavelength
of the Ti:sapphire near-infrared laser radiation of 800 nm. Numerical
differentiation was performed within five points in steps of 0.005 Å.

Molecule α‖ α
(1)
‖ α

(2)
‖ α⊥ α

(1)
⊥ α

(2)
⊥

N2(X 1�+
g ) 15.8369 15.0926 10.0856 10.3834 5.6866 3.6514

N2
+(X 2�+

g ) 9.2132 17.7573 −3.0724 6.6153 3.1883 −0.5720

N2
+(A 2�u) 11.1186 18.0953 1.1358 6.9600 3.1395 0.0198

The value of integral (11) can be found numerically
with the vibrational functions for the Morse potential. The
value of (11) is determined by the equilibrium internuclear
separations Rei,f , by the vibrational frequencies ωei,f , by
the first anharmonicity constants xei,f , and by the vibrational
quantum numbers vi,f in the neutral molecule and its ion,
respectively (see also Ref. [22]).

An external laser field modifies the parameters of the
molecule vibrations. This effect was taken into account in
Ref. [55] in the Born-Oppenheimer approximation in the
field of monochromatic linearly polarized laser radiation. The
response of the molecular vibrations to the external field is
determined by the tensor of dynamic molecular polarizability
αij (ω,R), depending on the internuclear separation R and on
the frequency of external field ω (Table IV). For a nonrotating
molecule, the change in energy in the external monochromatic
field (the quadratic dynamic Stark effect) is given by the
expression

�E(ω,R) = − 1
4 α(ω,R)F 2.

Hereinafter, F is laser field strength amplitude,

α(ω,R) = α‖(ω,R) cos2 θ + α⊥(ω,R) sin2 θ, (13)

α‖ and α⊥ are longitudinal and transversal components of the
tensor of dynamic polarizability with respect to the molecule
axis, respectively, and θ is the angle between the molecule axis
and the vector of radiation polarization.

In Ref. [55], it was demonstrated that the polarizing
influence of the laser field on the molecule leads to the
change in the molecule vibrational parameters. In the adiabatic
approximation, when the nuclei vibration cycle is significantly
shorter than the time required to change the laser radiation
intensity, the vibrational parameters are modified according to
the formulas

Re = R(0)
e

[
1 + α(1)F 2

4Mω2
eR

(0)
e

]
, (14)

ωe =
[
ω(0)2

e − α(2)F 2

4M

]1/2

. (15)

Here,

α(ν) = ∂να

∂Rν

∣∣∣∣
R=R

(0)
e

, ν = 1,2,

and M is the reduced mass of the nuclei. The superscript (0)
corresponds to the frequency ωe and the separation Re in the
absence of external fields. From Eqs. (14) and (15) one can
see that in the external field, the parameters of vibrations are
determined not only by intensity but by the isotopic proportion
in the molecules. As we demonstrated in Ref. [21] for the
example of a hydrogen molecule, accounting for the laser
field’s influence upon the molecule vibrations can lead to the
double change of the molecular ion yield.

The tensor components αij (ω,R) can be obtained, for
example, within the method of Gaussian orbitals. In this study,
calculations were performed with the DALTON code [56,57],
which allows us to implement the calculation algorithm in the
multiconfigurational approximation. The interaction between
all electron orbitals was taken into account (complete active
space). The AUG-cc-pV5Z Gaussian basis set was used.

V. TUNNELING RATE

In the linearly polarized monochromatic laser field
F0 cos ωt , the cycle-averaged tunneling rate is given by the
formula from Refs. [18,21,22],

Wf i(F0,Rei) = C2κ2
f iI

(e)2
f i I

(v)2
f i

∑
m′

B2
m′(Rei)

2|m′||m′|!

√
3F0

πκ3
f i

×
(

2κ3
f i

F0

)2νf i−|m′|−1

exp

[
−2κ3

f i

3F0

]
. (16)

Here,

Bm′ (Rei) = (−1)m
′∑

l

ClD
l
m′,m(Rei)

√
2l + 1

2

(l + |m′|)!
(l − |m′|)! .

The constants C and Cl determine the asymptotic form of the
valence one-electron orbitals (1) and (2), and m is the tunneling
electron orbital momentum projection onto the molecule axis.
The quantization axis (z) of the laboratory frame is directed
along F0. The standard notation for the Wigner D function is
introduced.

The parameter κf i in the inelastic tunnel effect the-
ory [20,23–29] is determined by the experimental ionization
potential of the molecule Iexp, by the excitation energies, and
by the quadratic Stark effect [29],

κf i =
√

2
[
Iexp + E(f )

vf
− E

(f )
0 + E

(i)
0 − E(i)

vi

+� + �Stark(ω; Ref ,Rei ; F0)
]1/2

, (17)

where E
(i,f )
vi,f

are the vibrational energy levels in the neutral
molecule (i) and its ion (f ), respectively, � is the electron
excitation energy in the ion (see Table III), and the quantity

�Stark(ω; Ref ,Rei ; F0) = 1
4 [αi(ω,Rei) − αf (ω,Ref )]F 2

0

is determined by the Stark shift of energies in the neutral
molecule and in its ion. As before, values of αi,f are determined
by Eq. (13).

Results from Ref. [21] demonstrate that κnum differs from
κf i not more than by 5%. Two causes can be proposed
to explain the given difference: (i) neglecting the residual
interaction within the Hartree-Fock method and (ii) neglecting
the nuclear vibrations when we simulate the one-electron wave
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functions. The quantity κ2
num/2 is also referred to as the vertical

ionization potential. Therefore, we use the experimental values
of κf i in Eq. (16), as required by the ADK model, while to
obtain the C and Cl coefficients, we use the calculated value of
κnum. Using κnum instead of κf i is required here only to ensure
self-consistency of the calculation algorithm. We introduced
the notation νf i = κ−1

f i in Eq. (16).
Our modification of the MO-ADK theory is in quantum,

not quasiclassical [18], consideration of molecular vibrations.
It manifests specifically not only in changing κ through the
ionization potential but also in the appearance of the Franck-
Condon factors as well as in accounting for Stokes-attenuated
and anti-Stokes-enhanced transitions.

In the case of the linear molecule, the ionization rate is
dependent on the azimuthal angle θe. Let us consider the
molecule preexcited to the vi th vibrational state. Then, with the
given ionization intensity, the ionization rate will be a function
of the angle θe between the molecule axis and the vector of
radiation polarization. Quantity (16) is to be summed up over
all possible vibrational states of the molecular ion,

Wvi
(F0,θe) =

∑
vf

Wf i(F0,Re). (18)

VI. NUMERICAL RESULTS AND DISCUSSION

We examined the 14N2 molecule ionization in two ways:
by removing an electron from the 3σg and 1πu orbitals.
The experimental value of its ionization potential, Iexp =
15.580 eV [34], is close to that of the HF molecule (15.77
eV). As it was calculated for the HF molecule placed in the
focal volume of the laser beam with the Gaussian envelope over
both time and the beam diameter and with a pulse FWHM of
100 fs [22], the ionization signal becomes saturated if the peak
intensity in the focus is higher than 1014 W/cm2.

As obtained previously in Refs. [21,22], in the saturation
region, the anti-Stokes-enhanced effects become weaker as the
intensity increases. Therefore, at first, we will perform an in-
vestigation for a fixed value of intensity of 3.5 × 1013 W/cm2.
Thus, for the N2 molecule, according to Eq. (18), we calculated
the tunneling ionization rate as a function of the angle θe with
the intensity value mentioned above and various values of vi .
The results for ionization of the 3σg and 1πu shells by the
monochromatic radiation are given in Figs. 2–4.

It is interesting to compare the different results obtained
with the different values of the structure factors. Particularly,
the first set of structure factors was obtained in Ref. [19], and
we calculated the second one in the present paper using the
x2DHF method [33] (see Table II). For comparison with the
results of the “pure” MO-ADK model, we restrict ourselves
to the tunneling transitions between the ground vibrational
states. The ionization rate for the 3σg shell of an N2 molecule
as a function of the angle θe between the molecule axis and
an electric field vector is given in Fig. 2. One can see that,
according to the data from Table II, correctly accounting for
the exchange interaction within the x2DHF method causes the
ionization rate of the 3σg orbital to triple and that of the 1πu

orbital to double. This disagreement is caused by the change
in the structure constant C. We also note the decrease in the
rate of tunneling ionization from the ground vibrational state
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FIG. 2. (Color online) Ionization rate for the 3σg and 1πu shells
of an N2 molecule as a function of an angle, θe, between the molecule
axis and an electric field vector. The intensity of the linearly polarized
monochromatic radiation is fixed and equal to 3.5 × 1013 W/cm2.
Solid lines: our results while accounting for molecular vibrations for
vi = 0. Dashed lines: results obtained with our values of molecular
parameters but neglecting molecular vibrations. Dotted lines: results
obtained with the parameters from Ref. [19] and with the ionization
potentials from Ref. [35] (the “pure” MO-ADK theory).
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FIG. 3. Ionization rate for the 3σg shell of an N2 molecule as a
function of an angle, θe, between the molecule axis and an electric
field vector. The intensity of the linearly polarized monochromatic
radiation is fixed and equal to 3.5 × 1013 W/cm2. The values of the
vibrational quantum number of neutral molecules vi are indicated.

033420-6



TUNNELING IONIZATION OF VIBRATIONALLY EXCITED . . . PHYSICAL REVIEW A 92, 033420 (2015)

0 10 20 30 40 50 60 70 80 90

1

2

3

4

5

11

Azimuthal angle (deg)

1Πu

4

5

6

7

8

a.
u.

)
(

FIG. 4. Same as in Fig. 3 but for the 1πu shell.

of a neutral molecule (vi = 0) by 20%–40% in the case of
quantum accounting for vibrations. This effect occurs due to
the Franck-Condon factors. Their absolute values are less than
unity.

Ionization suppression for the 1πu shell in the case when
the molecule is oriented along the polarization vector (see
Figs. 2 and 4) is easy to explain within the framework of
the tunneling theory. The process is most probable for states
with the zero projection of the electron orbital momentum m′
onto the direction of the electric vector of the laser radiation.
If m′ �= 0, then the process is suppressed. But in the states
with m′ �= 0, the contribution of projection m = 0 onto the
direction perpendicular to the molecule axis will be nonzero
according to the general theory of the angular momentum.
Therefore, ionization of π shells is most efficient at the
mutually orthogonal orientation of the molecule axis and
radiation polarization vector. Hence, the significant qualitative
difference between the ionizations of 3σg and 1πu shells
appears.

Figures 3 and 4 also demonstrate the anti-Stokes-enhanced
ionization of the excited vibrational states of a neutral
molecule. This effect is better seen for the 1πu shell. Possibly,
this effect can be attributed to the more significant difference
between the frequencies of N2 and N2

+(A 2�u) than between
those of N2 and N2

+(X 2�+
g ) (see Table III) since the κf i

parameter in (17) depends on these frequencies and the
tunneling exponential factor in Eq. (16) depends on κf i .

In Ref. [19], ionization of HOMO-2 was also considered.
This orbital has a one-electron configuration with 2σu sym-
metry and an ionization potential of 18.7 eV [35]. It lies
immediately below HOMO-1. As one can see from Fig. 3(a)
in Ref. [19], for a small orientation angle θe with respect to the
polarization vector, the contribution of the deeper 2σu shell
exceeds the contribution of the 1πu shell due to the above-
mentioned features of their symmetries. Both shells start to
compete as θe increases. For an intensity of 1.5 × 1014 W/cm2,
the contributions of the shells reverse if θe > 35◦. However,

TABLE V. Values of Wvi
(1πu)/Wvi

(3σg) for an N2 molecule
orientated perpendicular to the laser radiation polarization vector
(θe = 90◦). The radiation intensity is 3.5 × 1013 W/cm2.

vi Wvi
(1πu)/Wvi

(3σg) vi Wvi
(1πu)/Wvi

(3σg)

0 5.175 × 10−3 5 5.640 × 10−2

1 8.840 × 10−3 6 0.3170
2 1.337 × 10−2 7 4.265
3 1.961 × 10−2 8 104.1
4 2.984 × 10−2 9 3157

within the framework of the “pure” MO-ADK theory, the 3σg

(HOMO) and 1πu (HOMO-1) orbitals do not compete.
An interesting result of our research is the possible

competition between the 3σg and 1πu shells in the case of
ionization from highly excited vibrational states of the neutral
N2 molecule which is oriented perpendicular to the radiation
polarization vector. The ratio of the ionization rate from the
1πu shell to that from the 3σg shell is given in Table V as a
function of the vibrational quantum number vi in the neutral N2

molecule. For the ground vibrational state of N2, the ionization
rate for the 3σg shell is higher than that for the 1πu shell by
200 times. In contrast, for the excited state with vi = 6, the
contribution of the 1πu shell exceeds 30%, and in the excited
state with vi = 9, the ionization rate for the 1πu shell is higher
than that for the 3σg shell by ∼3000 times. The competition
occurs in spite of the double excess of the structure factor C in
the 3σg shell and electron excitation in the N2

+(A 2�u) ion.
Nevertheless, it should be noted that the possibility of

the anti-Stokes-enhanced tunneling ionization is limited to
the critical value of the vibrational quantum number vc.
Particularly, for the 3σg shell of N2, vc = 3, and for the 1πu

shell, vc = 8 (see also Table VII below). With higher values
of v (for the N2 molecule within the framework of the Morse
potential model v � 82) the anti-Stokes enhancement effect
does not occur due to the decrease of the Franck-Condon
factors (see Table VI).

Thus, due to the presence of the anti-Stokes channels, the
competition between the 3σg and 1πu shells of the N2 molecule
oriented perpendicular to the laser electric field vector is
possible.

TABLE VI. Values of the Franck-Condon factors,
f (1)

vi
= I

(v)2
f i [N2,vi → N+

2 (X 2�+
g ),vf = 0] and f (2)

vi
= I

(v)2
f i [N2,vi →

N+
2 (A 2�u),vf = 0], for ionization transitions in the N2 molecule.

vi f (1)
vi

f (2)
vi

0 9.269 × 10−1 2.764 × 10−1

1 7.102 × 10−2 3.812 × 10−1

2 2.055 × 10−3 2.340 × 10−1

3 3.557 × 10−5 8.459 × 10−2

4 3.438 × 10−7 2.009 × 10−2

5 2.099 × 10−9 3.309 × 10−3

6 8.314 × 10−12 3.893 × 10−4

7 5.922 × 10−16 3.319 × 10−5

8 1.099 × 10−15 2.060 × 10−6

9 1.418 × 10−15 9.270 × 10−8
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TABLE VII. Values of Eq. (19) (in atomic units) as functions of intensity and vi for ionization transitions in the N2 molecule.

0.5 × 1014 W/cm2 1.0 × 1014 W/cm2 1.5 × 1014 W/cm2

vi 3σg 1πu 3σg 1πu 3σg 1πu

0 4.190 × 10−8 1.878 × 10−10 2.009 × 10−5 2.106 × 10−7 2.992 × 10−4 4.641 × 10−6

1 4.496 × 10−8 3.033 × 10−10 2.099 × 10−5 2.732 × 10−7 3.095 × 10−4 5.484 × 10−6

2 4.827 × 10−8 4.499 × 10−10 2.194 × 10−5 3.385 × 10−7 3.200 × 10−4 6.244 × 10−6

3 5.124 × 10−8 6.650 × 10−10 2.254 × 10−5 4.483 × 10−7 3.240 × 10−4 7.897 × 10−6

4 4.684 × 10−8 8.940 × 10−10 1.918 × 10−5 5.302 × 10−7 2.665 × 10−4 8.792 × 10−6

5 3.476 × 10−8 1.229 × 10−9 1.307 × 10−5 6.684 × 10−7 1.754 × 10−4 1.068 × 10−5

6 7.446 × 10−9 1.500 × 10−9 2.396 × 10−6 7.263 × 10−7 2.999 × 10−5 1.097 × 10−5

7 6.922 × 10−10 1.975 × 10−9 1.877 × 10−7 8.852 × 10−7 2.164 × 10−6 1.293 × 10−5

8 3.145 × 10−11 2.291 × 10−9 7.204 × 10−9 9.402 × 10−7 7.663 × 10−8 1.324 × 10−5

9 7.555 × 10−13 1.746 × 10−9 1.440 × 10−10 6.346 × 10−7 1.392 × 10−9 8.508 × 10−6

For randomly oriented diatomic molecules, it is necessary
to average quantity (18) over the directions of the Re vector. In
the case of a symmetrical molecule (e.g., N2), this averaging
can be performed by the simple integration

W̃vi
(F0) =

∫ π/2

0
Wvi

(F0,θe) sin θe dθe. (19)

In Table VII, the values of W̃ are given for several values
of intensity and vi . One can see that the main regularities
from Table V are valid for higher intensities. However, in the
saturation region, the anti-Stokes-enhanced effects appear to
be weaker, in accordance with the results from Refs. [21,22].
For an intensity of 1.5 × 1014 W/cm2 and vi = 0, the relative
difference between our results and those in Ref. [19] agrees
with the data from Fig. 2. Indeed, for the ground vibrational
state of the neutral molecule (vi = 0), our theory differs from
Ref. [19] mainly in the preexponential factor.

The results given in Table VII are important for the
research of filamentation because they are the rate constants
for elementary processes in a plasma. They are necessary for
the description of filamentation kinetics (spark evolution).

VII. CONCLUSION

Calculations of the tunneling ionization rate performed for
the nitrogen molecule demonstrate that the structure constant
of molecular orbitals is very sensitive to the method of
the wave-function simulation. Correctly accounting for the
exchange interaction in the course of solving the Hartree-Fock
equations results in a significant change in the structure con-
stants in molecular orbitals compared to the model-potential
methods. As a result, the rate of tunneling ionization of the
molecule can be increased by 2 to 3 times.

Quantum accounting for vibrational motion results in a
change in the ionization rate by 20%–40% for the transition
between the ground vibrational states of the neutral nitrogen
molecule and its ion. Such a difference is caused by the values
of the Franck-Condon factors for these states. Combined
accounting for the anti-Stokes-enhanced transitions and the
quantum effects in the molecular vibrations leads to the
occurrence of the critical vibrational quantum number of a
neutral molecule vc. The tunneling rate has the maximum value
in the state with this value of the vibrational quantum number.

Excitation of vibrational states of a nitrogen molecule
significantly changes the rate of its tunneling ionization.
Ionization of the 3σg orbital from the ground vibrational state
of a nitrogen molecule will occur with a higher probability
than that of the 1πu orbital due to the specifics of the electron
structure, despite the close values of energy of both orbitals.
However, the preexcitation of vibrations in a neutral 14N2

molecule leads to the increase in the contribution of the 1πu

orbital in the anti-Stokes ionization channel. If the value of the
vibrational quantum number exceeds 6, the contribution of the
1πu orbital becomes dominant.
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APPENDIX

To calculate the overlap electron integrals I
(e)
f i in Eq. (10),

it is convenient to expand an electron orbital of the core ψe

over the linear combinations of the primitive Gaussians,

ψe(r) =
∑
ij

cij gij (r − Ri). (A1)

Here, Ri is the equilibrium position of the ith nucleus in the
center-of-mass system, cij are coefficients calculated with the
GAUSSIAN code, and

gij (r) = xnxij ynyij znzij exp[−ξij (x2 + y2 + z2)] (A2)

is the primitive Gaussian in Cartesian coordinates. Its param-
eters, nxij , nyij , nzij , and ξij , are determined by the basis set.

The orbitals in a neutral molecule, ψei(r), and in its
ion in the ground electronic state, ψef (r), differ only in
the coefficients cij and in the positions of the nuclei Ri .
Therefore, it is sufficient to obtain the expression for the
overlap integral between two primitive Gaussians which are
centered on different nuclei of the neutral molecule and its ion.

The primitive Gaussian (A2) has an important property:
the product of two given primitive Gaussians is the finite
linear combination of other Gaussians. They have the same
exponents ξ and coordinates of the common center R but
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different power exponents of coordinates, nxij , nyij , and nzij . This statement follows from the properties of the Gaussian exponent
and binomial expansion. Particularly,

exp[−ξ1(r − R1)2] exp[−ξ2(r − R2)2] = exp[−ξ (R1 − R2)2] exp[−�(r − R)2], (A3)

where

� = ξ1 + ξ2, ξ = ξ1ξ2/�, R = (ξ1R1 + ξ2R2)/�.

In view of the above, we obtain the following analytical expression for the overlap integral between two primitive Gaussians:∫
gi ′j ′ (r − Ri ′ )gij (r − Ri) d3r

=
(

π

�

)3/2

exp(−�R2)S(�; X1,nxi ′j ′ ; X2,nxij )S(�; Y1,nyi ′j ′ ; Y2,nyij )S(�; Z1,nzi ′j ′ ; Z2,nzij ). (A4)

Here,

� = ξi ′j ′ + ξij , ξ = ξi ′j ′ξij /�, R = (ξi ′j ′Ri ′ + ξij Ri)/�,

{X1,Y1,Z1} = Rξij /�, {X2,Y2,Z2} = −Rξi ′j ′/�, (A5)

S(�; V1,l1; V2,l2) =
∑

n1,n2=0,1,...

(q − 1)!!

(
l1
n1

)(
l2
n2

)
V

n1
1 V

n2
2

(2�)q/2
.

In Eq. (A5), the summation involves only even non-negative values of

q = l1 + l2 − n1 − n2.

The standard notation for the binomial coefficient is introduced in Eq. (A5). Formula (A4) was derived by using the Poisson
integral, ∫ +∞

−∞
x2ke−x2

dx = (2k − 1)!!
√

π/2k, k = 0,1, . . .

The analytical form of the overlap integral I
(e)
f i is a finite linear combination of integrals (A4) with the coefficients ci ′j ′cij . It

is not given here.
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