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We describe optimized coherent control methods for two-photon transitions in atoms of a ladder-type
three-state energy configuration. Our approach is based on the spatial coherent control scheme, which uses
counterpropagating ultrashort laser pulses to produce complex excitation patterns in an extended space. Because
coherent control requires constructive interference of constituent transition pathways, applying it to an atomic
transition with a specific energy configuration requires specially designed laser pulses. We show in an experimental
demonstration that two-photon transition with an intermediate resonant energy state can be coherently controlled
and retrieved from the resonance-induced background, when phase flipping of the laser spectrum near the resonant
intermediate transition is used. A simple reason for this behavior is the fact that the transition amplitude function
(added to give an overall two-photon transition) changes its sign at the intermediate resonant frequency and,
thus, by proper spectral-phase programing, the excitation patterns (or the position-dependent interference of the
transition given as a consequence of the spatial coherent control) can be well isolated in space along the focal
region of the counterpropagating pulses.
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I. INTRODUCTION

Femtosecond laser optics have been widely used over the
last two decades as a time-resolving spectroscopic means of
studying the ultrafast time-scale dynamics of a variety of quan-
tum systems, including atoms, molecules, and quasiparticles
in solids [1–5]. The extreme peak intensity of femtosecond
laser pulses has also enabled high-order nonlinear optical
processes such as multiphoton excitations, high-harmonic
generations, and above-threshold ionizations, to list a few
[6–9]. Besides these uses, femtosecond lasers have gradually
become an important tool in the field of coherent control
[10–12], where shaped laser pulses steer quantum processes
towards certain desirable outcomes. The information of as-
obtained laser pulse shapes through coherent control often
plays a crucial role in understanding the quantum structure
of the materials under consideration [13–16]. In this regard,
researchers can furthermore analytically design the optimized
laser pulse shapes for more selective and efficient nonlinear
optical processes [17–23].

The recent demonstration [24] of a counterpropagating pair
of ultrafast laser pulses coherently inducing Doppler-free two-
photon transitions of atoms shows the intriguing possibility
for its use in ultraprecision spectroscopy [25], especially in
conjunction with a femtosecond frequency comb [26,27]. This
method, termed spatial coherent control, coherently arranges
in time the spectral components of the laser pulse in such a way
that all of the counterpropagating photon pairs, energy resonant
to the atomic transition (i.e., �ω1 + �ω2 = Ee − Eg), collide
only at specific locations along the beam direction. Because
the resonance condition varies from one atomic species to
another, the atom-specific spectroscopic information can be
retrieved by imaging the distinct spatial excitation profile if a
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proper coherent control scheme is used. So far, this powerful
method of spatial coherent control has been demonstrated
for nonresonant two-photon transitions (or for cases in which
intermediate states are not directly involved with the transition)
and not yet demonstrated for resonant two-photon transitions
(two-photon transitions with a resonant intermediate state or
states).

In this paper, we describe an experimental demonstration
of the spatial coherent control of the resonant two-photon
transition 5S1/2 → 5P2/3 → 5D of atomic rubidium (85Rb).
Ultrashort laser pulses are programed in such a way that
not only (1) counterpropagating photon pairs, and no photon
pairs in the same propagation direction, induce the given
transition, but also (2) the contributions from all possible
combinations of photon energies involving such transition are
coherently added for an optimal net transition probability. To
accomplish this, we first adopt spectral pulse-shaping methods:
V -shaped spectral phase programming for condition (1) and
a spectral step phase for condition (2) in the first and second
experiments. On the basis of the single-pulse-based pulse-
shaping method [17,23], we resolve the issue of the resonant
intermediate transition and extend the method in the context of
the spatial excitation pattern formation by counterpropagating
pulses. In the subsequent experiment, we use additionally a
spectral amplitude shaping method to further enhance the
net two-photon transition, in which the resonant interme-
diate transition is spectrally blocked so that the spatially
extended excitation caused by sequential two-photon transi-
tions through the intermediate resonant state is completely
avoided.

In the remaining sections, we first theoretically sketch
the laser-pulse-shaping ideas relevant for the resonant and
nonresonant two-photon transitions, respectively, in Sec. II,
before the experimental procedure is described in Sec. III. We
then present the experimental results of the spatial coherent
control of the two-photon transition of 85Rb in Sec. IV and
our conclusions in Sec. V.
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II. THEORETICAL CONSIDERATIONS

We consider a pair of laser pulses, denoted by E1(z,t)
and E2(z,t), respectively propagating along the ±z directions
interacting with a three-state atom in a ladder-type energy
configuration. The dynamics of the three-state system is
governed by the Schrödinger equation, which reads

i�
dc(t)

dt
= H (t)c(t), (1)

where c = [cg(t),ci(t),ce(t)]T is the column vector with the
probability amplitudes cg(t), ci(t), and ce(t) of the three states:
|ψg〉 (the ground state), |ψi〉 (the intermediate state), and |ψe〉
(the final state). In the perturbative interaction regime, the
two-photon transition amplitude ce(t) is then obtained from
the second-order Dyson series as

ce(z,t) = −μeiμig

2π�2

∫ t

−∞
dt1e

iωei t1E(z,t1)

×
∫ t1

−∞
dt2e

iωig t2E(z,t2), (2)

where E(z,t) = E1(z,t) + E2(z,t) and μei and μig are the
corresponding dipole moments of the atom. The integration
provides the transition probability amplitude ce in terms of the
spectral amplitudes (including phase) E1(ω) = f [E1(0,t)] and
E2(ω) = f [E2(0,t)] by

ce(z) = i
μeiμig

�2

[
iπE(ωig)E(ωei)+

∫ ∞

−∞

E(ω)E(ωeg−ω)

ωig−ω

]
,

(3)

where E(ω) = E1(ω)e−iωz/c + E2(ω)eiωz/c and t → ∞ is
assumed. We denote the first term in the bracket of Eq. (3)
by cr (z), the resonant two-photon transition, and the second
term by cnr (z), the nonresonant two-photon transition, i.e.,

ce(z) = cr (z) + cnr (z), (4)

which can be respectively written in terms of E1(ω) and
E2(ω) as

cr (z) = −π
μeiμig

�2
[E1(ωig)E1(ωei) + E2(ωig)E2(ωei)e

2iωegz/c

+E1(ωig)E2(ωei)e
2iωei z/c + E2(ωig)E1(ωei)e

2iωigz/c],

(5)

cnr (z) = i
μeiμig

�2

∫ ∞

−∞

dω

ωig − ω

× [E1(ω)E1(ωeg − ω) + E2(ω)E2(ωeg − ω)e2iωegz/c

+E1(ω)E2(ωeg − ω)e2i(ωeg−ω)z/c

+E2(ω)E1(ωeg − ω)e2iωz/c], (6)

where the global phase factor exp(−iωegz/c) was omitted
in both equations and the two-photon resonance condition is
given by ωeg = ωei + ωig .

Note that the first two terms in each bracket in Eqs. (5)
and (6) are the single-pulse contributions from either direction
of the pulse propagations while the last two terms are caused
by the counterpropagation of the pulses. The phase factors of

the last two terms in cnr (z) have both ω and z dependence
and, thus, are involved in the integration over ω, generating
a nontrivial macroscopic spatial two-photon excitation profile
which can be programed via spectral phase modulation. The
other terms have only rapidly oscillating or constant phase
factors, making no contribution to the macroscopic spatial
profile. With the last two terms of cnr (z), the spatial excitation
probability is given by, proportionally,

S(z) ∝
∣∣∣∣
∫ ∞

−∞
dω

A(ω)A(ωeg − ω)

ωig − ω
ei[�(ω)+�(ωeg−ω)]

× [e2iωz/c + e2i(ωeg−ω)z/c]

∣∣∣∣
2

, (7)

where the spectral amplitude function A(ω) and the spectral
phase function �(ω) are defined the same for both pulses,
when they are split from a single laser pulse, as

E1(ω) = E2(ω) = A(ω)ei�(ω). (8)

A. Two-photon transition without a resonant intermediate state

First we consider the nonresonant two-photon transition
case, in which the one-photon transition to the intermediate
state |ψi〉 is out of the laser spectrum (i.e., ωig < ωmin). In
this case, we can ignore the sign change of the denominator
ωig − ω in Eq. (7) across the laser spectrum ωig in the context
of spatial coherent control, and the phase function �(ω) can
be programed in such a way that the two-photon transition
components in the integral calculation in Eq. (7) satisfy a
constructive interference condition only at specific positions.
For example, with a spectral phase such as

�V (ω) = α|ω − ωo|, (9)

called a V -shaped spectral phase, where ωo denotes the two-
photon center (ωo = ωeg/2), each of the position-dependent
oscillating phase terms in the integrand in Eq. (7) is canceled
out at the points z = ±zo, where zo = αc. Because ω < ω0

and ω > ω0 parts of the modulated phase term have opposite
slopes, the V -shaped phase in Eq. (9) divides a pulse in the
time domain into two subpulses, each of which has a group
delay of −α for the ω > ω0 part and of α for the ω < ω0 part,
from the group delay relation α = −|d�V /dω|. So, a pair
of counterpropagating pulses with these subpulses makes two
distinct local excitations at the points where a red subpulse and
a blue subpulse meet up to fulfill the two-photon transition
condition. The spatial excitation profile S(z) in Eq. (7) is,
therefore, conceptually given in this case by

S(z) ∝ δ(z − zo) + δ(z + zo), (10)

where δ(z) is a Dirac delta function. Figure 1 compares the
numerically calculated spatial excitation patterns for various
phase programing. As shown in Figs. 1(a) and 1(b), the V -
shaped spectral phase, �V (ω), causes local excitations to occur
at points z = ±zo in nonresonant two-photon transitions [25].

B. Two-photon transitions with a resonant intermediate state

However, in the resonant two-photon transition case, in
which the intermediate state is located within the laser
spectrum (i.e., ωmin < ωig < ωmax), we need alternative phase
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FIG. 1. (Color online) Spectral phase function �(ω) vs the ex-
citation probability |ce|2 calculated from Eq. (7) for (a, b) the
nonresonant two-photon transition case with �V (ω) and (c–h) the
resonant two-photon transition cases with (c, d) �(ω) = 0, (e, f)
�V (ω), and (g, h) �V (ω) + π�(ω − ωig). The spectral amplitude
A(ω) (orange dotted line) and the dispersion f (ω) = 1/(ω − ωig)
(green dash-dotted line) are plotted in comparison.

function programing to deal with the sign change of the
denominator ωig − ω in Eq. (7). When the position dependence
is ignored, it is known that, by flipping the phase of either
part of ω < ωig or ω > ωig , the integrand becomes in-phase
across ωig , resulting in an enhancement of the two-photon
transition [17,23]. This phase flipping can be achieved with
step-phase modulation such as π�(ω − ωig), where �(x)
denotes the Heaviside step function. If we combine this
step-phase modulation with the V -shaped spectral phase in
Eq. (9), the phase modulation is given by

�(ω) = �V (ω) + π�(ω − ωig), (11)

and with this expression, Eq. (7) becomes

S(z) ∝
∣∣∣∣
∫ ∞

−∞
dω

A(ω)A(ωeg − ω)

|ωig − ω| e2i�V (ω)

× [e2iωz/c + e2i(ωeg−ω)z/c]

∣∣∣∣
2

, (12)

when we ignore the small contribution from the spectral
tail part (ω > ωei) of the laser spectrum. This expression
has both a transition enhancement part, which is achieved
by the step phase π�(ω − ωig), and a spatial excitation
part, which contains �V (ω) = α|ω − ω0|, in its integrand.
Figure 1 shows the numerical calculation of Eq. (7) for three
cases: �(ω) = 0 [Figs. 1(c) and 1(d)], �V (ω) [Figs. 1(e) and
1(f)], and �V (ω) + π�(ω − ωig) [Figs. 1(g) and 1(h)]. As

Ti:sapphire laser
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L=1.75 m

spatial light modulator

Rb cell

Rb atom

77
6 

nm
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5S1/2

78
0 

nm 42
0 
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(420 nm)

grating

(b)

(a)

L
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FIG. 2. (Color online) (a) Schematic diagram of the experimental
setup. Ultrafast laser pulses were programed by a spatial light
modulator to interact with rubidium atoms in a colliding pulse
geometry. The cavity length L = 1.75 m of the laser was matched
with the extra travel of the reflected pulses. (b) The energy-level
diagram of atomic rubidium. Atoms are excited from 5S1/2 to 5D and
decayed to 6P . The fluorescence from 6P was monitored.

clearly shown in Fig. 1(h), the phase-modulation scheme of
Eq. (11) in a counterpropagating pulse excitation is expected to
induce a clear spatial excitation pattern of resonant two-photon
transitions.

III. EXPERIMENTAL PROCEDURES

The experimental setup is schematically shown in Fig. 2(a).
Femtosecond optical pulses were generated from a con-
ventional Ti:sapphire laser oscillator (with a cavity length
L = 1.75 m) mode locked around the center frequency set
to the two-photon transition frequency (i.e., ωo = ωeg/2). The
laser bandwidth (full width at half maximum) was 25 nm in
wavelength scale. The pulses were then spectrally resolved
in a 4f -geometry Fourier plane and phase-modulated by
a 128-pixel spatial-light modulator (SLM) [28] to program
�(ω). The focal length of the 4f geometry was 200 mm and
the groove density of both gratings was 1200 mm−1 [29].
The width of each pixel in the SLM was 100 μm and the
pulse bandwidth incident into each pixel was 0.37 nm in
wavelength scale. After pulse shaping, the pulses were focused
in a rubidium vapor cell (85Rb) located at z = 0, defocused,
collimated, and then reflected back by a mirror located at
z = L, so that each counterpropagating laser pulse collided
with the next pulse in the vapor cell. The focal length of both
focusing lenses was 200 mm. The beam diameter and the
Rayleigh range of the focus were approximately 50 μm and
2.5 mm, respectively.

The 85Rb atoms were two-photon excited from the ground
state |g〉 = 5S1/2 to the final state |e〉 = 5D via the inter-
mediate state |i〉 = 5P3/2 [see Fig. 2(b)]. The corresponding
frequencies (wavelengths) were ωig/2π = 384.6 THz (λig =
780 nm), ωei/2π = 386.6 THz (λei = 776 nm), and ωo/2π =
385.6 THz (λo = 778 nm), respectively [30]. Note that the D1

033415-3



WOOJUN LEE, HYOSUB KIM, KYUNGTAE KIM, AND JAEWOOK AHN PHYSICAL REVIEW A 92, 033415 (2015)

FIG. 3. Photo images of the fluorescence signals: (a, b) V -shaped
spectral phase functions �V (ω) are used respectively with (a) α =
−1.4 ps and (b) α = +1.4 ps. (c) The spectral phase function with a
phase step, �(ω) with α = −1.4 ps. [�V (ω) and �(ω) are defined in
Eqs. (9) and (11), respectively, and zo = 420 μm in (c).]

transition to the 5P1/2 state was out of the laser spectral range.
The excited atoms in the 5D first decayed to 6P , and then the
spatial profile of the fluorescence at 420 nm (6P → 5S1/2)
was imaged by a charge-coupled device (CCD) camera through
one-to-one telescope imaging by a pair of f = 25 mm lenses.
The image resolution of the camera was 4.54 μm.

IV. RESULTS AND DISCUSSION

The fluorescence images of position-independent back-
ground excitation in the resonant two-photon transition case
described in Sec. II, with a dark or bright region in the
center, were captured by a CCD camera and are shown in
Figs. 3(a) and 3(b). In the resonant two-photon transition case,
there occurs a position-independent background excitation in
most of the region, which is caused by the excitation from
the population remaining in the intermediate state |i〉 and
which does not require the two different colors of subpulses
simultaneously. Note that a dark region appears in z < |zo| for
α < 0 in Fig. 3(a) because the |g〉 → |i〉 excitation occurs later
in time than |i〉 → |e〉. When α > 0 in Fig. 3(b), however, a
brighter region appears in z < |zo| for the same reason but with
opposite causality. In spite of this aspect, we show that spatial
excitation appears in the resonant two-photon transition case,
with the phase-flipping step function modulation described
earlier. The retrieval of spatial excitation achieved by phase-
flipping modulation in Eq. (11) is shown in Fig. 3(c).

Figure 4 shows the result of the experiment performed with
the spectral phase function described in Eq. (11), with varying
step height, as

�(ω) = α|ω − ω0| + β�(ω − ωig), (13)

in comparison with a corresponding numerical calculation of
the spatial excitation probability, from Eqs. (5) and (6). By
maintaining the phase-slope value fixed at α = −1.0 ps, the
phase-step value was changed from β = 0 to 2π , and the fluo-
rescence signals (measured on the line profile along the z

direction where the position is shown in the horizontal axis)
were plotted as a function of β (along the vertical axis) in

11

FIG. 4. (Color online) The phase-only modulation experiment:
(a, c) spatial fluorescence signals for �(ω) (V -shaped + phase
step) spectral functions with α = −1.0 ps and (b, d) the numerical
simulation. Signals at β = 0 (purple dash-dotted line) and 1.2π (red
solid line) are extracted from (a) and (b) and shown in (c) and (d),
respectively.

Fig. 4(a). As expected, sharp fluorescence peaks appear at
z = ±zo, when β is around π . The spatial excitation profiles
measured at β = 0 (purple dash-dotted line) and 1.2π (red
solid line) are respectively shown in Fig. 4(c). This experimen-
tal result agrees well with the numerical simulation as shown
in Figs. 4(b) and 4(d). Here, one-photon-resonant background
signals that were position insensitive were subtracted for
clarity by means of numerical fitting with the focal spot profiles
of counterpropagating Gaussian beams.

The behavior that the maximum peak signal in Fig. 4
exhibits at β = 1.2π , rather than at β = π , is due to the
presence of the resonant amplitude term cr (z) in Eq. (5). If
we divide the nonresonant term cnr (z) in Eq. (6) into c+

nr and
c−
nr , where c+

nr and c−
nr denote the positive and negative parts

of cnr (z) integrated for ω > ωig and ω < ωig , respectively,
the c+

nr term is 90◦ phase advanced and the c−
nr term is 90◦

phase delayed with respect to the cr term. Figure 5 graphically
depicts cr , c+

nr , and c−
nr on the complex plane, where Fig. 5(a)

corresponds to the case in which c+
nr rotates by the applied

step phase and the others remain unchanged. To ensure that
the amplitude of the vector sum of all of the vectors reaches

cr

cnr-

cnr+

cr

cnr-

cnr+

cr/2

cnr-

cnr+

cr/2

FIG. 5. Transition amplitude change graphically depicted on the
complex plane when (a) c+

nr , (b) c+
nr + cr , and (c) c+

nr + cr/2 are phase
rotated, respectively.
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11

FIG. 6. (Color online) The phase and amplitude modulation ex-
periment: (a, c) spatial fluorescence signals for �(ω) (V -shaped
+ phase step) spectral functions with α = −1.0 ps and (b, d) the
numerical simulation. Signals at β = 0 (light blue line) and π (red
line) are extracted from (a) and (b) and shown in (c) and (d),
respectively.

the maximum, the phase rotation angle has to be greater than π

and smaller than 1.5π . This explains the step phase of 1.2π for
the maximum peak. A similar explanation applies to the case in
Fig. 5(b) in which cr and c+

nr rotate together. Figure 5(c) gives
a more realistic description in which cr partially rotates along
with c+

nr due to the fact that the size of the focal spot passing
through the spatial light modulator is finite, and provides the
same conclusion.

In addition to the spectral phase modulation, we also tested
spectral amplitude modulation, where the spectral components
near the intermediate resonant transition ωig were removed. In
this case, we only have the nonresonant contribution cnr (z)
but not the resonant contribution cr (z). For this, the resonant
spectrum was blocked with a 120-μm-wide copper wire
placed in the Fourier plane, which corresponds to 0.44 nm in

wavelength. In this circumstance, the resonant transition from
the 5S1/2 state to the 5P3/2 state is suppressed, so excitations
only occur at the points where the two photons with frequencies
ωig and ωeg − ωig , respectively, collide with each other. The
phase modulation of Eq. (13) from the first experiment was
again applied, with α = −1.0 ps. As shown in Figs. 6(a) and
6(c), the phase modulation with β = π (red line) enhances
and more tightly localizes the peaks than the bare V -shaped
phase does (light blue line). This result again compares with
the theoretical prediction in Figs. 6(b) and 6(d). The maximal
peak appears at β = π because of the complete removal of the
resonant amplitude term.

V. CONCLUSION

In summary, we performed coherent control experiments
with counterpropagating phase-modulated ultrashort pulses
for the two-photon excitations in the ladder-type three-state
quantum system of atomic rubidium. The laser pulses, de-
signed on the basis of the spatial coherent control scheme to
phase-flip the laser spectrum near the resonant intermediate
transition, successfully produced spatially localized excitation
patterns from the resonance-induced background along the
focal region of the counterpropagating pulses. The resulting
constructive interference phenomena among the constituent
nonresonant two-photon transitions were theoretically con-
firmed and verified by numerical calculations. The presented
scheme of coherent control has possible applications in
Doppler-free frequency-comb spectroscopy of the resonant
two-photon transitions. Since the phase flipping across a
particular intermediate resonance provides a two-photon tran-
sition enhancement selectively through the given intermediate
state, it is hoped that this phase-programing method will be
useful for atom and resonance-specific laser spectroscopy.
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