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Analysis of interference in attosecond transient absorption in adiabatic condition
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We simulate the transient absorption of attosecond pulses of infrared-laser-dressed atoms by considering a
three-level system in the adiabatic approximation. The delay-dependent interference features are investigated
from the perspective of the coherent interaction processes between the attosecond pulse and the quasiharmonics.
We find that many features of the interference fringes in the absorption spectra of the attosecond pulse can be
attributed to the coherence phase difference. However, the modulation signals of laser-induced sidebands of the
dark state are found to be related to the population dynamics of the dark state by the dressing field.
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I. INTRODUCTION

Attosecond pulses, the shortest bursts of light ever pro-
duced [1–3], allow for probing of the dynamics of bound
electrons on their natural time scales, using techniques such as
attosecond streaking [4,5] and electron interferometry [6,7].
With the generation of a single high-quality attosecond pulse,
such pulses have been utilized as a tool for investigating
the dynamic (transient) light-matter interactions on a few-
femtosecond or even sublaser-cycle time scale [8–28]. Based
on the pump-probe techniques, the attosecond pulses also have
potential application in the study of the interference of coher-
ent superposition states [29]. Recently, attosecond transient
absorption (ATA) was applied to probe the valence electrons
in atomic krypton ions generated by a controlled few-cycle
laser field [8]. In the follow-up experiments, a combination of
an attosecond pulse and a few-cycle laser field is used to study
different atomic systems, such as helium [27,28], neon [9],
argon [10], and krypton [8], identifying many interesting
features in the absorption spectra. For example, one observes
periodically shifted and broadened lines of low-lying states,
interference-fringe phenomena, and Autler-Townes splitting of
helium [27,28,30]; these phenomena are induced by pumping
via an attosecond extreme ultraviolet pulse (XUV) and then
probed by a delayed infrared (IR) laser pulse. Here, the
information of complicated interactions between the two fields
and the system is recorded in the ATA spectra.

In parallel to these experimental developments, several
theoretical investigations provide fundamental insights into
ATA. For the absorption of an isolated attosecond pulse in the
vicinity of the helium, perturbation theory has been used to
investigate the subcycle shifts and the broadened lines of 1s3p

and 1s4p [11] and to yield a qualitative guide of the line shape
evolution of resonant absorption lines and energy shifts of
1s2-1snp [31]. Although perturbation theory can demonstrate
the instantaneous responses of the bound electrons to the
perturbing laser field, it cannot describe well the interference
fringe features, the Autler-Townes splitting, and some other
phenomena in the ATA spectra arising from nonlinear pro-
cesses. ATA spectra are also studied via a few-level model
system in the rotating-wave approximation (RWA). Although

*Corresponding author: zhao.zengxiu@gmail.com

the RWA contains many effects of the interaction between
the fields and the level system, the partial features of the
delay-dependent interference fringes were not reproduced
within this approximation [16,32]. The interference fringes
in the ATA spectra of helium [27] result from the coherent
quantum paths that lead to the same dipole excitation: one
direct pathway is excited by the attosecond pulse and another
indirect pathway is the multiphoton transition driven by the IR
field. In Ref. [12], the time-dependent Schrödinger equation
(TDSE) in the single-active-electron (SAE) approximation
was used to analyze the effects of the coherent pathways on
the interference fringes; the phases of the interference fringes
are found to be dependent on the delay and the multiphoton
transition driven by the IR field. However, the mechanism
of the phase offset due to the multiphoton transition remains
unclear.

In this paper, we focus on the delay-dependent features of
the interference fringes in the ATA spectra to develop a simple
picture of the ATA processes modulated by the IR dressing
field. In the theoretical method, we explore the dependence
of the laser-dressed dipole response on the delay, based on a
three-level system that effectively models the delay-dependent
interference features contained in its ATA spectra. We also
take the adiabatic approximation into account, which is widely
used in the stimulated Raman adiabatic passage [33–43] and
here neglects the resonance-transition processes induced by
the IR dressing field, allowing us to obtain an analytical
solution of the dipole response. By simulating the laser-dressed
dipole response of the three-level system, we find that the
quasiharmonics [25,26] coherently interact with the attosecond
XUV pulse at the given pulse energy. The phase differences
between the quasiharmonics and the attosecond XUV pulse
as a function of delay determine the periodic absorption at
“1s2p ± 2ωIR” in the ATA spectra.

This paper is organized as follows. In Sec. II, a brief
overview of the theoretical methods involving the three-level
model and the calculation of the absorption spectra is given.
We present the details about describing the interference
fringes by the coherence phase difference in Sec. III A,
the modulation signal of the sideband of the dark state
in Sec. III B, and a comparison of the simple model with
the calculation of the full TDSE in the SAE approxima-
tion in Sec. III C. Finally, a short summary is given in
Sec. IV.
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FIG. 1. (Color online) Sketch of the transition processes in the
three-level system. At the delay time td , the attosecond pulse
populates a population �C from the ground state to state |ϕ2〉,
bringing the probability amplitude C2 of |ϕ2〉 with an instant-changed
�C.

II. METHOD

To mimic near-resonant 1s2-1s2p XUV absorption pro-
cesses in the IR-laser-dressed helium atom, we consider a
three-level system interacting with a time-delayed attosecond
XUV pulse and a few-cycle IR laser field. This system involves
the field-free states (see Fig. 1): the ground state |g〉 and the
two excited states |ϕ1〉 and |ϕ2〉. |ϕ2〉 is referred to as the 1s2p

state of helium. In addition, |ϕ1〉, whose the dipole transition
to |g〉 is prohibited, is the so-called dark state. Taking the
ground-state energy as a reference, the two excited states |ϕ1〉
and |ϕ2〉 have energies of ω1 and ω2 respectively.

We consider the situation in which the weak attosecond
XUV pulse has a central frequency resonant with the excitation
energy ω2, which is much larger than the frequency ωL of the
IR-dressing laser. Therefore, at each delay time td , the weak
attosecond XUV pulse serves as a pump pulse to induce a
resonant transition from the ground state to the excited state
|ϕ2〉 [16,31].

In addition we assume that |ϕ2〉 are more strongly dipole
coupled to |ϕ1〉 than to the ground state because the transition
matrix element d12 is larger than dg2. This assumption allows
us to take only the two excited states into account after the
initial XUV attosecond pulse excitation during the propagation
processes of the excited three-level system in the presence of
the IR-dressing laser. By expanding the wave packet excited
by the attosecond pulse in terms of the field-free states � =
e−iω1tC1|ϕ1〉 + e−iω1tC2|ϕ2〉, the time-dependent Schrödinger
equation for the two levels can be formulated as

i
d

dt

(
C1

C2

)
=

(
0 γ

γ ∗ �ω12

)(
C1

C2

)
, (1)

where γ (t) = E(t)d12, and E(t) is the IR-dressing field given
by E(t) = E0ε(t) cos(ωLt) with the dressing field envelope
ε(t) = cos2( tπ

τ
) for ton � t � toff , otherwise ε(t) = 0 with

ton = − τ
2 , toff = τ

2 , and τ is the pulse duration. �ω12 = ω2 −
ω1 is the resonance-transition energy between the two excited
states. Atomic units are used throughout unless indicated
otherwise. By diagonalizing the Hamiltonian at each instant,

we have the dressed states |ϕ+〉 and |ϕ−〉, with the probability
amplitudes of the dressed state given by

C± = b±C1 + a±C2, (2)

where the transform coefficients are given by
a± = ω±/

√
γ 2 + ω2

± and b± = γ /
√
γ 2 + ω2

±, with ω± =
1
2 (�ω12 ±

√
�ω2

12 + 4γ 2) being the energies of the dressed
states |ϕ±〉. The dressed energies ω± are dependent on
the instantaneous strengths of the dressing field. In this
adiabatic model, the wave packet is strongly dressed after td
in the presence of the IR-dressing field and maintains stable
populations in the dressed states. The adiabatic model is
tenable with the adiabatic condition of |�ω12| � ωL, and
the intensity of the dressing field is weak (�1014 W/cm2).
Assuming that at td , the attosecond pulse induces an
instant change of the probability amplitude �C of |ϕ2〉, the
probability amplitudes of the two dressed states are given by
C ′

± = �Ca±(td ). In the subsequent evolution, we have

C2(t) = C ′
−a−(t)e−i

∫ t

td
ω−dt + C ′

+a+(t)e−i
∫ t

td
ω+dt

, (3)

the details of which are given in Appendix A. Based on the
time evolution of the system, in particular, we focus on the
dipole response from |ϕ2〉 to the ground state with respect to
the pump-probe delay. The dipole response in the time domain
is given by d(t) ≈ 2Re[e−i(t−td )ω1C2(t)dg2], where we have
assumed the probability amplitude of the ground state changes
little and C2(t) varies as described by Eq. (3).

From the induced dipole moment, the absorption of the
attosecond pulse by the system can be described by a
frequency-dependent response function, following the ap-
proach in Refs. [12,13,31]:

S(ω,td ) = 2Im[E∗
atto(ω)d(ω)], (4)

where Eatto(ω) and dω are the Fourier transforms of the
attosecond pulse Eatto(t) and the dipole moment d(t) with
delay td , respectively. We use the Hanning window to eliminate
the noise signal resulting from the break of the dipole moment
at the ends. The response function S(ω,td ) indicates that when
the spectra phase Eatto(ω) of the attosecond pulse has a π

2
phase difference with the dipole response phase d(ω), the fields
apply positive work onto the electron and the energy transfers
from the pump-probe fields to the level system. When the
phase difference changes by π , the reverse process occurs.
The response function S(ω,td ) describes a process of the
coherent interaction between the pump-probe fields and the
dipole response of the level system depending on the phase
difference.

III. RESULTS AND DISCUSSION

In this section, we calculate the ATA spectra using the
adiabatic model and compare them with the results from the
numerical solution of the three-level TDSE. After verifying the
reliability of the adiabatic model against the TDSE, we will
utilize the adiabatic model to study the coherent interactions
between the attosecond pulse and the delay-dependent dipole
response in detail, and analyze the modulated absorption
signals in ATA spectra calculated with the full TDSE in the
SAE approximation.
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FIG. 2. (Color online) (a), (b) The response function S(ω,td ) of the three-level system as a function of delay time. (a) Spectra from the
numerical calculation of the three-level TDSE with the attosecond pulse (240 as, centered at 21.4 eV) in the presence of the dressing field (blue
line, in absolute value). (b) Spectra from the calculation of the adiabatic model, shown in Eq. (3), (b1) and (b2) are the parts related to the
quasiharmonics from the laser-dressed dipole responses of |ϕ2〉 and |ϕ1〉 to the ground state, respectively. The values of the color bars are given
in atomic units. (c) Sketch of the coherence-phase difference. The interference fringes shown in (a) and (b) that are labeled as ω2 ± 2ωL result
from the coherent interaction between the attosecond pulse and the quasiharmonics. The coherent phase of the quasiharmonics is associated
with the effects of the attosecond pulse and the IR-dressing field. The system obtains an initial phase −ω′

2td excited by the attosecond pulse at
the delay time, and the quasiharmonics will have an additional phase offset in the dressed processes due to the IR-dressing field.

The parameters used in the three-level model are given
as follows. The ground state energy is taken as zero, and
the field-free energy ω2 of |ϕ2〉 is 21.4 eV, corresponding to
helium 1s2p. The energy of |ϕ1〉, ω1 = 15.7 eV, is chosen such
that the resonance-transition energy between |ϕ1〉 and |ϕ2〉 is
larger than the dressing field frequency ωL = 1.38 eV in the IR
region to fulfill the adiabatic conditions. The transition matrix
element from the ground state to |ϕ2〉 is dg2 = 0.3, while the
transition matrix element from |ϕ1〉 to |ϕ2〉 is d12 = 2.7, which
is much larger than dg2. To verify the validity of the adiabatic
approximation, the time-dependent Schrödinger equation for
the three-level system is numerically solved as well. The
pulse duration of the IR-dressing field is τ = 13.34 fs, with
a strength of E0 = 0.02 a.u. (≈1.4 × 1013 W/cm2), while the
duration of the attosecond XUV pulse with an intensity of
1 × 1010 W/cm2, centered at 21.4 eV, is 240 as. The instant-
changed �C that results from the attosecond pulse is set to be
0.05.

The delay-dependent response function S(ω,td ) calculated
from the numerical solution is shown in Fig. 2(a). In the
figure, positive delays correspond to the attosecond pulse
arriving after the center of the IR-dressing field. We observe
a strong absorption line at ω2 in the spectra, corresponding
to the resonance transition from the ground state to |ϕ2〉
induced by the attosecond pulse. The spectra also exhibit
interference features, which are distributed symmetrically
around ω1 ± ωL and ω2 ± 2ωL, respectively. The sideband
signals in the spectra around ω1 and ω2 are related to the
quasiharmonics from the dipole response of the laser-dressed
states. The spectrum of the quasiharmonics is introduced
in Refs. [25,42]; here the quasiharmonics can be attributed
to multiphoton-dressed processes of the IR-dressing field.
The values of the sideband signals depend on the coherent

interaction between the quasiharmonics and the attosecond
pulse. For analysis of the quasiharmonics, we calculated the
laser-dressed dipole response by the adiabatic model, as shown
in Fig. 2(b), where the adiabatic model was used to calculate
the dipole response for the same parameters as in Fig. 2(a).
We find that the adiabatic model is in good agreement with the
numerical solution of the three-level TDSE.

Because of the different energies of the quasiharmonics
from different dressed states, the spectra are classified into
two parts by energies ω2 ± 2ωL and ω1 ± ωL, as shown in
Figs. 2(b1) and 2(b2). The dipole responses of the two parts,
corresponding to the transitions from the dressed states |ϕ±〉
to the ground state with transition energies ω1 + ω±, are
calculated by the two respective terms of C2(t) in Eq. (3):
C ′

±a±e−i[(t−td )ω1+
∫

ω±dt], for d(t) ∝ Re[e−i(t−td )ω1C2(t)] (see
Appendix A). We find that the classification of the spectra
is helpful for analyzing the interference features in the spectra.
In Secs. III A and III B, we will discuss the two main delay-
dependent features in Fig. 2: the interference fringes from
two-photon-dressed processes and the modulation signals of
the laser-induced sidebands of the dark state |ϕ1〉 at ω1 ± ωL

in the spectra when the pump-probe fields overlap (ton � td �
toff).

A. Delay-dependent phase of the interference fringes
from two-photon-dressed processes

The interference fringes around ω2 ± 2ωL in delay-
dependent absorption spectra result from the interference be-
tween direct and indirect pathways, which has been discussed
previously [12,27]; we will further study the phase of the
interference fringes in more detail in this section. According
to the response function S(ω,td ), the absorption of the XUV
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FIG. 3. (Color online) The interference fringes at ω′
2 + 2ωL.

(a) The phase offset φ as a function of photon energy and delay. The
pixel value is measured in π . (b) The interference fringes calculated
by Eq. (7), where φ is given in (a), and ω′

2 is shown as the red line.
(c) The interference fringes are the same as in Fig. 2(a).

field pulse could be regarded as a coherent interaction process
depending on the phase difference between the XUV field
pulse and the laser-dressed dipole response of the atom. In
the following discussion, we extract the quasiharmonics from
the laser-dressed dipole response, which can contribute to the
coherent interaction processes around the energy ω2 ± 2ωL.
Therefore, the delay-dependent phase of the interference
fringes is discussed by the coherence-phase difference between
the attosecond XUV pulse and the quasiharmonics.

The coherence-phase difference between the attosecond
XUV pulse and the quasiharmonics from two-photon-dressed
processes is required for describing the response function
S(ω,td ) around ω2 + 2ωL in the ATA spectra. The sketch map
of generation processes of the coherence-phase difference is
shown in Fig. 2(c). The spectral phase of the attosecond XUV
pulse can be obtained by Fourier transform. To obtain the phase
of the dipole response, we assume there is a π

2 phase difference
between the attosecond pulse and the dipole response at the
resonance-transition energy ω2; this assumption is reasonable
for the resonance absorption by the system. However, a
modification is required on the resonance-transition energy
ω2 for the as-stark shift by the IR-dressing field [11,31].
We consider the effect of the time-averaged shift energy δω,
over the part of the duration of the IR-dressing field pulse
arriving after td . In this case, the resonance-transition energy
is approximated by

ω′
2 ≈ ω2 + δω(td ), (5)

where ton < td � toff , and the shift energy δω(td ) is given in
Eq. (B2) according to the adiabatic model (see Appendix B).
The modified energy ω′

2 as a function of delay is shown in the
red line of Fig. 3. The excited dipole response propagates in

the delay period, which causes a phase difference (ω − ω′
2)td

for the different frequencies. After the delay period, the
excited dipole is dressed by the dressing field and generates
quasiharmonics with energy ω′

2 ± 2ωL. The quasiharmonics,
corresponding to the effects of the two-photon of the IR-
dressing field, have a phase difference of φ − π

2 with the dipole
response at ω′

2, where the phase offset φ is given by (see details
in Appendix B)

φ(ω,td ) = arg

[∫ +∞

−∞
θ (t)e−iωtdt

]
. (6)

The phase offset φ arising from the coupling processes
between the IR-dressing field and the system is shown in
Fig. 3(a).

The coherence-phase difference is (ω − ω′
2)td + φ, and

then the response function S(ω,td ) can be given as a function
of the coherence-phase difference, approximately:

S(ω,td ) ∝ sin [(ω − ω′
2)td + φ(ω − ω′

2,td )]. (7)

With this function, we can describe the delay-dependent
interference fringes, as shown in Fig. 3. The phase offsets
φ(ω,td ) and ω′

2(td ) are unchanged when the attosecond pulse
arrives before the IR-dressing field td < ton, and the shapes
of the interference fringes follow the hyperbolic lines. When
ton < td � toff the pump and probe fields are overlapped,
the fringe shapes are changed dramatically, and the slope
of the fringes will saturate when delay time approaches the
end of the dressing field. The changes in the fringe shapes,
which are dependent on the coherence-phase difference as a
function of delay and energy, are obviously indicated by the
variation of the phase offset φ(ω,td ), especially before the
peak of the IR-dressing field. We also find that φ(2ωL) = π

2
is independent of the delay time, which indicates that the
two-photon-dressed processes of the dressing field vary little
with respect to delay. This result indicates that the strong
absorption of the attosecond pulse at ω′

2 + 2ωL occurs at the
peak times of the dressing field. This strong absorption can be
utilized to calibrate the position of the interference fringes in
the delay-dependent spectra.

We remark here that the adiabatic model captures much of
the three-level system dynamics with the resonance-transition
energy �ω12 larger than the photon energy ωL of the dressing
field; however, the dynamics of the adiabatic model cannot
include transition processes between the dressed states. In fact,
the transition processes cannot be ignored when |�ω12| � ωL,
which may affect the laser-dressed dipole response phase and
the interference fringes in the ATA spectra as well. Although
the adiabatic model is not adequate, it provides a quantitative
description of the interference features from the laser-dressed
system in ATA.

B. Modulation signals on the sidebands from
one-photon-dressed processes

Compared to the two-photon-dressed processes in
Sec. III A, the modulations of the sidebands with one-photon
coupled processes demonstrate different interference-fringe
features. In this section, we focus on the modulation of the
spectra of the laser-induced sidebands with energy ω1 ± ωL in
the spectra, corresponding to one-photon-dressed processes,
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FIG. 4. (Color online) Comparison of the modulation phase of
the sidebands of state |ϕ1〉 with |�ω12| � ωL [left, (a1)–(c1)] and
|�ω12| 
 ωL [right, (a2)–(c2)]. �ω12 is changed by setting the
energy value of |ϕ1〉 with ω1 = 15.7 and 21.0 eV. The delay time
is given in the cycle time of the dressing field for clarity. (a) The area
of the sideband signal [integrated over the range of 0.5 eV with the
center energy at the sideband peak intensity in Fig. 2(a)] as a function
of the delay time. (b) The average occupancy |C1|2 given in Eq. (8)
as a function of the delay time. Red lines with the label “Num” are
numerically solved using the TDSE, and black dash-dot line with the
label “Equ” are based on Eq. (9). (c) Absolute value of the dressing
field strength as a function of the delay time for reference.

as shown in Fig. 2(b2). Actually, the sidebands are strongly
affected by the pump probability of the dressed state |ϕ−〉
excited by the attosecond pulse.

In the adiabatic model, the resonance absorption of the
attosecond pulse at ω1 ± ωL is related to the occupation
probability of the |ϕ−〉. Considering the relations between the
dressed states and the field-free states from Eq. (2), the changes
in the occupancy of |ϕ1〉 reflect the occupation probabilities
of |ϕ−〉. Thus, the intensity of the sidebands can be indicated
by the average of |ϕ1〉 occupancy over the dressing field pulse
duration:

|C1|2 = 1

toff − ton

∫ toff

ton

|C1(t)|2dt, (8)

where |C1|2 is the average of occupation probability of |ϕ1〉
over the dressing field pulse duration. The modulation signals
of the sidebands of |ϕ1〉 can be indicated by the parameter
|C1|2, as shown in Fig. 4, where the lines of the dressing
field strength, average occupancy |C1|2, and the sidebands
signals demonstrate the identical modulations. Here, under
the adiabatic condition |�ω12| � ωL, the transition to |ϕ1〉
depends on the coupling between the field-free states by the
dressing field. The strength of the dressing field is strong at td
and then strongly couples the field-free states, which enables
the transition to |ϕ1〉 with “XUV+IR” processes to occur more
easily. As a result, the population of |ϕ1〉 varies periodically
with respect to the delay time as the changes of strengths of
the dressing field at the pump times of the attosecond pulse.

We also calculate the case with |�ω12| 
 ωL. Under
this condition, the strong Rabi flopping between the bound

states induced by the dressing field will contribute to the
dipole oscillation of the system. The Rabi flopping causes the
oscillation of the populations of the dressed states and results
in the nonadiabatic processes. The calculations of this case are
shown in Fig. 4. We find that there is a π phase difference
compared to the lines from the adiabatic case from Fig. 4.

The π phase shift of |C1|2 in nonadiabatic processes is
related to the effects of the dressing field after td , which
cause the strong Rabi flopping. For clarity, we calculate the
average occupancy |C1|2 by only considering the transition
from |ϕ2〉 to |ϕ1〉 with the effects of the dressing field.
Here, we assume that the dressing field causes little change
of the probability amplitude of |ϕ2〉 with the off-resonant
condition, such that C2(t) ≈ �C exp [−i(t − td )�ω12]. Then,
the average occupancy |C1|2 is (see Appendix C)

|C1|2 ≈ (toff − td )η2ε(td )2

toff − ton

[
ω2

L sin2 (ωLtd )

+�ω2
12 cos2 (ωLtd )

] + η2
∫ toff

td

ε(t)2 ω2
L + �ω2

12

2
dt,

(9)

where ton � td � toff . The results calculated using Eq. (9) fit
well with the numerical results in the off-resonant conditions,
as shown in Fig. 4. The π phase difference validates the
changes in the effects of the dressing field under the two
off-resonant conditions. Note that the signals of the sidebands
of |ϕ1〉 are sensitive to |C1|2 in Fig. 4, even though the
modulation changed with the different conditions. This result
demonstrates that the modulation phases of the sideband
signals with one-photon-dressed processes are also affected
by the following dressed processes after the system excited by
the attosecond pulse.

C. Comparisons with the TDSE in the SAE approximation

In this section, the response function S(ω,td ) of helium
calculated with the TDSE in the SAE approximation is
described. We compare the calculations with the three-level
model, which demonstrates that the simple model qualitatively
agrees with the basic features of the spectra. We will analyze
the interference fringes and the laser-induced sidebands in
detail.

Figure 5 shows the response function S(ω,td ) calculated
via the full TDSE in the SAE approximation. The calculation
recovers many features observed in the ATA experiments [27],
such as interference fringes, Autler-Townes splitting of the
2p level, and laser-induced sidebands from 1sns and 1snd

dressed up or down one-photon energy. The IR-dressing field
is the same shape as the dressing field used in the calculation
before, with an intensity of 2 × 1012 W/cm2, which is not
strong enough to excite helium out of the ground state. The
240-as XUV has a central frequency of 22 eV and an intensity
of 1 × 1011 W/cm2, such that the bandwidth of the attosecond
pulse overlaps all of the singly excited and low-energy
continuum states of the helium atom. To describe the helium
atom within the SAE approximation, we employ a one-electron
model potential, which is given in [44]. The model potential
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FIG. 5. (Color online) The response function spectra calculated
with the TDSE in the SAE approximation as a function of delay time.
Parts of the singly excited states are shown on the right side, where
the dashed lines indicate the energy levels are up or down by one- or
two-photon energy.

reproduces the ionization potential Ip = 24.9 eV, and the
resonance-transition energy between 1s2 and 1s2p is 21.4 eV.

Figure 5 shows strong interference fringes at the energy
“2p + 2ωL,” where the energy is related to the quasiharmonics
from 1s2p dressed two-photon energy. The quasiharmonics
overlaps the 1snp states (n � 4), which suggests the indirect
pathway from 1s2p to 1snp. The indirect pathway interferes
with the direct pathway from 1s2 to 1snp by the attosecond
pulse, which induces the absorption lines of 1s2-1snp to
exhibit interference fringes. The spectra also show interfer-
ence fringes above the ionization threshold (24.9 eV) and
below the 1s2s state, with similar fringes being observed
experimentally [27], where there is no underlying bound
state. These interference fringes are discussed in Sec. III A.
Both types of the interference fringes are related to the same
coherent processes between the attosecond pulse and the
quasiharmonics, so we can describe the fringes using the
three-level model.

We focus on interference fringes around the energy “2p +
2ωL,” as shown in Fig. 6(a). For comparison with the results
from the full TDSE, the peak positions of the interference
fringes calculated with the three-level model are indicated by
the black dash-dot lines. The peak positions correspond to the
coherence-phase differences 2nπ + π

2 (n is integer) in Eq. (7),
which are related to the shift energy ω′

2 of the 1s2p level and
the phase offset φ from the two-photon-dressed processes. In
the calculation of the full TDSE, the 1s2p state is shifted
by coupling to nearby bound states, which was discussed in
Ref. [31]. We follow the calculation (detail in Appendix B)
and determine the average shift of 1s2p as a function of
delay [red line in Fig. 6(a)]. The energy shift of 1s2p is
negative, such that the 1s2p level will move together with its
quasiharmonics downwards. The phase offset φ is calculated
using the adiabatic model by Eq. (6). Figure 6(a) shows a good
agreement of the slopes of the fringes between the full TDSE
and the three-level model. The slopes of the fringes trend to
saturate for td > 0, reflecting the effects of the phase offset φ.
The adiabatic model predicts the variation in the phase offset

FIG. 6. (Color online) Comparison of the calculations from the
TDSE in the SAE approximation and the three-level model.
(a) The interference fringes appeared in the spectral region near
1s2p(21.4 eV) + 2ωL. The black dash-dot lines are from the three-
level model, where the energy shifts of 1s2p are shown by red line
under the spectra. The IR intensity oscillations are shown by the
blue dashed line. (b) The modulations of the laser-induced sidebands
signals as a function of the delay time. The area of the sideband
signal (integrated over the range of 0.5 eV with the center energy
at the sideband peak (22.1 eV) intensity in Fig. 5) is indicated by
the red line, which is attributed to the united effects of the sidebands
of 1s2s, 1s3s, and 1s3d . The average-occupancy lines from the full
TDSE (black line) and from three-level model (black dashed line).
The intensity of the IR field (blue line).

well, because the interference fringes are strongly affected by
the nearby bound states, such as 1s3s and 1s3d (shown in
Fig. 5). The dipole couplings between these bound states and
1s2p approximately satisfy the adiabatic condition.

The modulation of the laser-induced sidebands are observed
around the energy of 22.1 eV in the spectra (Fig. 5),
where the sidebands of 2s + ωL, 3s − ωL, and 3d − ωL are
approximately that energy. The three laser-induced sidebands
join into a single sideband because the short dressing field
broadens the bandwidths of the sidebands and they overlap
each other. We analyze the modulation of the integral signal
over the range of 0.5 eV with the center energy at 22.1 eV
in the spectra in Fig. 5, with the results indicated by the
red line [shown in Fig. 6(b)]. We also calculate the average
occupancies of the 1s2s, 1s3s, and 1s3d states within the full
TDSE at one delay time and add the values of the three states,
and then obtain a line as a function of delay [black line shown
in Fig. 6(b)]. In Fig. 6(b), the average-occupancy line shows
the same modulations with the sideband signals (red line),
which demonstrates the laser-induced sidebands at 22.1 eV
are mainly attributed to the 1s2s, 1s3s, and 1s3d states. We
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compare the average occupancy line with the oscillations
of the field intensity and find that the modulations of the
average occupancy are in accord with the case of |�ω12| 
 ωL

discussed in Sec. III B [black dashed line in Fig. 6(b)]. This
agreement is because the 1s2s, 1s3s, and 1s3d states are
strongly coupled to the closest np or nf states by the dressing
field. The transition energy between the coupled states is much
less than the photon energy ωL, so the modulations are in
agreement with the calculation in the off-resonant condition.

Note that the response function can hardly provide an exact
description to what is observed in the ATA experiments for the
effect of propagation in the medium, although, when the gas
medium is of low density, the calculation is a good guide [31].
However, according to the comparisons between the full TDSE
and the three-level model, the simple model could be helpful
as a guide to the delay-dependent phenomena in ATA spectra.

IV. SUMMARY

In conclusion, we have investigated the interference fea-
tures of the ATA spectra using the three-level system in
the presence of both the IR-dressing field and a delayed
attosecond pulse. We analysed the interference fringes using
the adiabatic model and compared the model results with
the numerical solution of the three-level TDSE. The model
revealed the qualitative relationship between the interference
fringes and the dressing field. Our results demonstrated that
the coherent interaction processes between the attosecond
pulse and the quasiharmonics from the two-photon-dressed
processes could produce the interference fringes observed in
the ATA spectra. The interference fringes are determined by
the coherence phase difference, which is dependent on the
pump-probe delay time and the energy-shift processes driven
by the dressing field. We also demonstrated that the signals
of the laser-induced sidebands around the dark level in the
ATA spectra is associated with the average occupancies of
the dark state over the duration of the dressing field, which
are modulated periodically with respect to the delay time.
Moreover, we found that if the photon energy of the dressing
field strides across the resonance-transition energy between
the bound states, then the laser-induced sideband signals as a
function of delay will have a π phase jump. This result showed
the modulations of the sideband signals in the ATA spectra are
also affected by the following processes dressed by the IR laser
field after the attosecond pulse. Through a comparison with
the calculation using the full TDSE in the SAE approximation,
the three-level model with suitable conditions was found to
provide good insight into the ATA processes, such as the
two-photon-dressed processes and the oscillated occupancies
of the dark states induced by the dressing field.
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APPENDIX A: SOLUTIONS OF ADIABATIC MODEL

With the transform relationship between the dressed states
and the dark states |ϕ1〉 from Eq. (2), Eq. (1) can be expressed
in the dressed states representation:

i
dC−
dt

= ω−C− − iβ+C+,

i
dC+
dt

= ω+C+ − iβ−C−. (A1)

When the adiabatic condition is satisfied, i.e., |�ω12| � ωL,
and the intensity of the dressing field is weak (�1014 W/cm2),
such that |β±| = | γ ′�ω12

4γ 2+�ω2
12

| 
 1, then the system is evolving
adiabatically [40,41]. In the adiabatic approximation, we take
|β±| = 0.

Assuming at td , the attosecond pulse induces an instanta-
neous change in the probability amplitude �C of |ϕ2〉, the
probability amplitudes of the two dressed states are given by
C ′

± = �Ca±(td ). In the subsequent evolution, this equation
has the following solutions:

C2(t) = C ′
−a−(t) exp

(
−i

∫ t

td

ω−dt

)

+C ′
+a+(t) exp

(
−i

∫ t

td

ω+dt

)
,

C1(t) = C ′
−b−(t) exp

(
−i

∫ t

td

ω−dt

)

+C ′
+b+(t) exp

(
−i

∫ t

td

ω+dt

)
. (A2)

In particular, this paper focuses on the dipole response from
|ϕ2〉 to the ground state with respect to the pump-probe delay.
The dipole response in the time domain is given by d(t) ≈
2Re[e−i(t−td )ω1C2(t)dg2], where the following assumptions are
made: the probability amplitude of the ground state changes
little, and C2(t) involves no transition from the ground state
before td and then varies as described by Eq. (A2) after td .

APPENDIX B: PHASE OF THE QUASIHARMONICS
WITH TWO-PHOTON-DRESSED PROCESSES

With the adiabatic model, C ′
+a+e−i[(t−td )ω1+

∫
ω+dt] in Eq. (3)

contributes to the dipole response with two-photon-dressed
processes. Under the adiabatic condition, ω+ ≈ �ω12, this
allows for an approximation of this term in Eq. (3):

C ′
+a+(t)e−i[(t−td )ω1+

∫ t

td
ω+dt ′]

≈ C ′
+e

−i[(t−td )ω2+
∫ t

td

γ 2(t ′ )
�ω12

dt ′]

≈ C ′
+e−i[(t−td )ω2+δθ(t)]e−iθ(t), (B1)

where the δω and θ (t) are defined as

δθ (t) =
∫ t

td

[E0d12ε(t ′)]2

2�ω12
dt ′,

θ (t) =
∫ t

td

γ 2(t ′)
�ω12

dt ′ − δθ (t).

033412-7



DONG, LI, WANG, YUAN, AND ZHAO PHYSICAL REVIEW A 92, 033412 (2015)

The average of the shift energy over [td ,toff] is given by

δω(td ) = δθ (toff)

toff − td
, (B2)

For extracting the phase of the quasiharmonics with two-
photon-dressed processes from the dipole response, the factor
e−iθ(t) is expanded in a Taylor series with the condition
|θ (t)| < 1:

e−iθ(t) ≈ 1 − iθ (t), (B3)

where only the first two terms are retained and the high-order
terms, including high-order effects of the IR-dressing field, are
neglected. The two terms of Eq. (B3) are related to the dipole
response from |ϕ2〉 to the ground, and the quasiharmonics with
two-photon-dressed processes of |ϕ2〉. The quasiharmonics
have a phase difference (φ − π

2 ) with the dipole response of
the level |ϕ2〉, where π

2 comes from the factor i in Eq. (B3).
According to Eq. (B3), the phase offset φ is given by

φ(ω,td ) = arg

[∫ +∞

−∞
θ (t)e−iωtdt

]
, (B4)

where “arg” is the function that extracts the argument of the
value.

In the calculation of the ac stark shifts of the 1s2p level,
we use the second-order perturbation theory introduced by
Ref. [31]. These shifts in 1s2p are given by

δε′
1s2p(t) =

{
E(t)2 ∑ ωn|μn|2

ω2
n−ω2

L

; ||ωn| − ωL| � �ωL,

E(t)2 ∑ ωn|μn|2
(ωn∓ωL)�ωL

; ||ωn| − ωL| < �ωL,

(B5)

where ωn = εn − ε1s2p and μn are the energy difference
and the dipole transition matrix element, respectively, of
all intermediate states n that are dipole coupled to 1s2p.
�ωL is the IR-dressing field bandwidth: in our calculation
�ωL = 0.5 eV. Thus, according to Eq. (B2), the average shift
of 1s2p is given by

δω′
1s2p(td ) = 1

toff − td

∫ toff

td

δε′
1s2p(t ′)dt ′. (B6)

APPENDIX C: OCCUPANCY OF |ϕ1〉 WITH THE
OFF-RESONANT CONDITION

Considering the transition from |ϕ2〉 to |ϕ1〉, assuming
that the dressing field causes little change in the probability
amplitude of |ϕ2〉 with the off-resonant condition, such that
C2(t) ≈ �C exp [−i(t − td )�ω12], the probability amplitude
of the field-free state |ϕ1〉 is

C1(t) = −i�C

∫ t

td

E(t ′)d12e
−i(t ′−td )�ω12dt ′. (C1)

Then according to Eq. (8), the integral average |C1|2 is

|C1|2 ≈ (toff − td )η2ε(td )2

toff − ton

[
ω2

L sin2 (ωLtd )

+�ω2
12 cos2 (ωLtd )

] + η2
∫ toff

td

ε(t)2 ω2
L + �ω2

12

2
dt,

(C2)
where η = E0d12�C

�ω2
12−ω2

L

, ton � td � toff .
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