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We study the interplay between rotating-wave approximation and optimal control. In particular, we show
that for a wide class of optimal control problems one can choose the control field such that the Hamiltonian
becomes time independent under the rotating-wave approximation. Thus, we show how to recast the functional
minimization defined by the optimal control problem into a simpler multivariable function minimization. We
provide the analytic solution to the state-to-state transfer of the paradigmatic two-level system and to the more
general star configuration of an N -level system. We demonstrate numerically the usefulness of this approach in
the more general class of connected acyclic N -level systems with random spectra. Finally, we use it to design a
protocol to entangle Rydberg via constant laser pulse atoms in an experimentally relevant range of parameters.
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I. INTRODUCTION

The rotating-wave approximation (RWA) plays a major role
in simplifying the quantum-mechanical description of laser
driven systems: it takes into account only the co-rotating field
with the system and it neglects the counter-rotating part [1,2].
This approximation has been introduced for two-level quantum
systems, and then generalized for N -level systems [3]. The
deviations from this approximation for big intensities are
well known and commonly described as Bloch-Siegert shifts,
breaking the harmonicity of the system dynamics [4]. Finally,
a more general description is given by Floquet theory that
allows us to treat periodically driven systems [5].

Developing error-free protocols for the manipulation of
quantum systems—also along the development of quantum
technologies but not restricted to them—is one of the major
challenges in contemporary research in atom and molecular
physics [6]. During the last decades, an increasing contribution
in such effort has come from the exploitation of quantum
optimal control (QOC), the search for an optimal control
pulse to perform a given system manipulation [7]. Methods
to solve QOC problems have been developed [8–10] and
experiments have shown the great benefit from them; see,
e.g., [11–15]. We have now deep theoretical understanding of
QOC, in particular about the possibilities and hurdles to control
quantum systems [16–18], and we even start to understand the
complexity of QOC problems [19,20]. Graph theory concepts
have been exploited to attack a question that lies at the heart
of controllability studies: given a Hamiltonian depending on
some time-dependent tunable control field, is it possible to
dynamically connect every pair of arbitrary initial and final
state, i.e., is it possible to realize every possible state-to-state
transfer? A widely used criterion to answer to this question
is via dynamical Lie algebras [18], while here we make use
of a different criterion based on graph theory: Turinici and
Rabitz showed that if the graph corresponding to the control
Hamiltonian is connected and the spacings of the eigenvalues
of the uncontrolled part of the Hamiltonian are nondegenerate,
then wave function controllability is guaranteed [17].

In this paper, we identify a significant class of QOC
problems where the RWA is applicable and show that within
this class QOC problems can be easily solved: the functional

optimization can be recast into a multivariable function
minimization, thus simplifying the numerical efforts and
improving the theoretical understanding of the process. For this
purpose we employ concepts from graph theory to analyze the
system dynamics in an easier and more practical picture [21].
This allows us to straightforwardly identify the cases where it
is possible to map the time-dependent Hamiltonian onto a time-
independent one and to find the solution of the QOC problem.
As a result of this analysis, we can show that in this class of
QOC problems the lower bound for the number of independent
control parameters necessary for a successful control of the
system—introduced in a recent work—is saturated [19].

Finally, as an example of possible applications of this
approach we use it to design a protocol to entangle Rydberg
atoms [22]. Indeed, in the last years experiments with Rydberg
atoms have attracted increasing attention as a promising
platform for implementing quantum information processing
algorithms, such as CNOT gates [23,24] and two-body [25–27]
or many-body entanglement [28].

The paper is structured as follow: In Sec. II we present the
model studied and for the sake of completeness we review the
work of Einwohner et al. on the generalized N -level RWA [3],
and in Sec. III we review the algorithm based on graph theory
to recast systems in a time-independent form. Section IV
presents the analytic solutions of the state-to-state transfer in
the two-level system and a special case of the N -level system
while numerical results are presented in Sec. V. In Sec. VI
we demonstrate the methods presented here by designing a
protocol entangling Rydberg atoms. Finally, in Sec. VII we
discuss the results and present the conclusions of this work.

II. MODEL

In the standard RWA setting one considers a system
described by a N -dimensional Hamiltonian (� ≡ 1),

Ĥ = ĤD +
F∑

f =1

Re(Af e−iωf t )ĤC, (1)

where ĤD is the time-independent drift Hamiltonian with
eigenvectors |n〉 and corresponding eigenvalues En (n =
0,1, . . . ,N − 1) and ĤC is the control Hamiltonian, which
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might correspond to different physical scenarios. Here, we
only assume that the diagonal elements of ĤC are all zero.
The coefficients Af ∈ C represent the independent control
parameters and ωf ∈ R the driving frequencies. A relevant
example is naturally encountered in molecular or atomic
physics when describing the interaction between matter and
light in the dipole approximation, where each control with
frequency ωf and strength Af is typically realized by a laser
and ĤC is the dipole operator. Note that while the treatment
here assumes time-independent coefficients Af the results are
not restricted to this case. Indeed, the presented results can
be straightforwardly generalized to slowly in time varying
envelope pulses A′

f (t) provided that
∫ T

0 A′
f (t) = Af T , where

T is the total pulse duration.
In the following we assume that no two driving frequencies

are in approximate resonance to the same transition frequency
Ekj ≡ Ek − Ej and on the other hand every driving frequency
is in approximate resonance to at least one transition frequency.
There is not much loss of generality in this when considering
a QOC problem since this only means that we do not have
off resonant controls nor two controls affecting the same
transition. Assuming that the transition frequencies are not
degenerate [Ekj �= Ek′j ′ ∀ (k,j ) �= (k′,j ′)] we can make use
of results presented in Ref. [17] that ensure wave function
controllability. The last assumption we make is that the RWA
is valid, i.e., we are in a setting of low intensities and resonant
driving frequencies. That is we assume for each set of transition
frequency Ekj , with driving frequency ωf in approximate
resonance to that transition, and the corresponding amplitude
Af , the inequalities

ωf � �kj ≡ |Ekj − ωf |,
ωf � Af

(2)

to hold. Note that the above conditions are naturally fulfilled
in practically all optically driven systems: indeed, even high
intensity lasers seldom have Rabi frequencies Af above few
GHz, while the transition frequencies are typically of the order
of hundreds of THz.

Expanding the wave function |ψ(t)〉 as

|ψ(t)〉 =
N−1∑
k=0

ck(t)e−iEkt |k〉, (3)

the Schrödinger equation

i
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 (4)

can be rewritten as a differential equation for the coefficients
	c = (c0,c1, . . . ,cN−1):

iċk(t) =
N−1∑
j=0

H
(I)
kj ck(t), (5)

where

H
(I)
kj = 1

2

F∑
f =1

[
Af ei(Ekj −ωf )t + A∗

f ei(Ekj +ωf )t
]
(HC)kj . (6)

Following [3], the multilevel rotating-wave approximation is
done by neglecting all nonresonant terms in Ĥ

(I)
kj . This includes

far more than just dropping the counter-rotating term [one of
the terms inside the sum of Eq. (6)], as in the more common
RWA for two-level systems, but also all terms of the sum of
frequencies that are nonresonant to the transition frequency
corresponding to that matrix element, reducing the whole sum
to only one element.

The resulting matrix elements are denoted by H
(II)
kj ≡

M
(II)
kj eit�kj , with

M
(II)
kj = 1

4 {[1 + sgn(Ekj )]Af + [1 − sgn(Ekj )]A∗
f }. (7)

A change of basis bk(t) = eiγkt ck(t), γk ∈ R which has no a
priori physical meaning but is merely a mathematical tool
transforms Eq. (5) into

iḃk(t) =
N−1∑
j=0

(
M

(II)
kj − γkδkj

)
ei(γk−γj +�kj )t bk(t). (8)

To end up with a time-independent operator one has to set all
phases equal to zero, that is all N

2 (N − 1) equations,

(γk − γj + �kj )(Hc)kj = 0 (k �= j ), (9)

have to be solved by choosing an appropriate 	γ =
(γ1,γ2, . . . ,γk). The resulting system has the solution

	b(t) = exp{−i[M (II) − diag( 	γ )]t}	b(t = 0). (10)

The term (Hc)kj is included in (9) since only for nonvan-
ishing matrix elements the corresponding equation has to be
considered. In general those equations (9) cannot be solved
consistently, but the zeros in (Hc)kj decrease the number of
equations to be solved. This transformation has the advantage
of possibly making the description of the system simpler. In
particular for acyclic graphs we will see that the system can
always be reduced to a time-independent one.

III. TIME-INDEPENDENT DESCRIPTION
FOR ACYCLIC GRAPHS

Every Hamiltonian consisting of a diagonal drift term ĤD

and a control term ĤC has a pictorial representation via its
energy-level scheme, which can easily be mapped onto an
undirected graph; see Fig. 1 for a descriptive example. Every
state {Ej } is portrayed by a vertex and edges of the graph
illustrate nonzero transition elements. There is a specific class
of graphs (and therefore control Hamiltonians), that deserve a
special treatment due to their convenient properties. Those are
the subset of connected, acyclic graphs (“trees”), where from
every vertex k to every other vertex j there exists a unique
path, so no cycles are present. In Fig. 1 removing the blue
dashed edge between E1 and E3 or the red dotted edge between
E0 and E3 from the complete graph results in an acyclic
graph. Having a connected structure is clearly the minimal
requirement for controllability, otherwise the system splits in
decoupled subsystems. An acyclic graph represents the mini-
mal configuration that satisfies the connectivity requirement,
so they represent the most efficient scenario. More complex
graphs, as said before, can be recast in acyclic graphs removing
some edges. Physically, as we explicitly show in Sec. V,
this can often be achieved resolving spectrum degeneracies
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FIG. 1. (Color online) Energy-level scheme of an example five-
level system (left-hand side) and the corresponding graph (right-hand
side). The graph is connected but has a cycle (E0,E1,E3). Removing
the red dotted edge between the vertices E0 and E3 makes the graph
acyclic while maintaining the connected property. Removing the blue
dashed edge between E1 and E3 also leaves the graph connected and
acyclic, but in addition that graph is a star, a type of graph which is
studied in Sec. IV B.

or simply avoiding to exploit some possible transitions (i.e.,
reducing the number of lasers driving the system).

As already mentioned in the Introduction, connected,
acyclic graphs form a very significant subset of QOC Hamil-
tonians: They connect the complete system dynamics with the
smallest number of control parameters: all complex amplitudes
Af and frequencies ωf are independent parameters to control.
As a consequence the number of controls is set to F = N − 1
and the number of equations to solve reduces to N − 1, so a
solution for Eqs. (9) always exists. In the following we briefly
explain a constructive approach to find a solution, referring
again to Ref. [3]:

(1) Every pendant vertex has a unique “successor” vertex,
connected to it by an edge.

(2) Delete recursively all pendant vertices until one ends up
with one vertex l; assign an arbitrary real value γl to it.

(3) Every vertex k is assigned a value γk = γj − �kj , where
j is the successor of k.

The algorithm will be implicitly used in Secs. IV A and IV B
and is directly implemented in the numerical calculations
presented in Sec. IV B.

To elucidate this algorithm we depicted an example based
on the graph from Fig. 1 without the red dotted edge (see
Fig. 2). The first three pictures illustrate the “pruning” of
the tree, that is finding the root of the tree. That is done
by finding all pendant vertices of the graph, i.e., those that
are only connected via one edge, which are in this case the
vertices E2, E3, and E4, and removing them. Repeating this

step, that is removing E1, leaves us with the root graph: E0.
In the last three pictures we show how the variables γk are
chosen. This is done by assigning an arbitrary real weight
γ0 to E0 and then re-adding the pendant vertices E1, E2, and
E4 with their corresponding weights γk = γ − �k0,k = 1,2,4.
The algorithm finishes with adding the last vertex E3 with its
weight γ3 = γ1 − �31.

IV. ANALYTICAL RESULTS

In the following we present two systems that have a simple
analytic solution: the paradigmatic two-level system and a
N -level system whose graph is a star. Those solutions provide
a general insight in the structure of dynamics and hence the
possibilities for QOC. The algorithm reviewed in Sec. III is
implicitly used in the following parts.

A. State-to-state transfer for the two-level system

As a starting point of our analysis, we specialize our
investigation to the case where N = 2 and consequently
F = 1. In this case the system given by (1) takes the form

Ĥ = ĤD + Re(Aeiωt )ĤC, (11)

ĤC = |0〉〈1| + |1〉〈0|, (12)

where the indices of A ≡ A1, ω ≡ ω1 and � ≡ �01 were
dropped for clarity. Employing the RWA and assuming the
system initially to be in the ground state 	c (t = 0) = (1,0),
one recovers the known solution

c0(t) = ei�/2t

(
cos

Ã

2
t − i

�

Ã
sin

Ã

2
t

)
, (13)

c1(t) = e−i�/2t A

Ã
sin

Ã

2
t, (14)

where Ã ≡
√

�2 + |A|2. Using the Bloch sphere representa-
tion and 	cG(�,φ) = (cos �

2 , sin �
2 eiφ),φ ∈ [0,2π ],� ∈ [0,π ]

as the goal state for a state-to-state transfer, we find the
equations

ei�/2t

(
cos

Ã

2
t − i

�

Ã
sin

Ã

2
t

)
= cos

�

2
, (15)

e−i�/2t A

Ã
sin

Ã

2
t = sin

�

2
eiφ. (16)

FIG. 2. Graph corresponding to an energy scheme of a five-level system taken from Fig. 1 except for the red dotted edge. The first three
figures show the “pruning” of the tree, where all pendant vertices and the edges connecting to them are deleted recursively until one root
(E0) is left. The last three figures depict how the weights {γk} are recursively assigned to the edges: First the root E0 is assigned an arbitrary
value γ0, then the three neighboring vertices E1,E2,E4 are assigned their values γk = γ0 − �k0, k = 1,2,4 and at last one assigns E3 its value
γ3 = γ1 − �31.
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From Eq. (16) one can find that for a given goal state the
tunable parameters of the system have to satisfy the inequality

2 arcsin
|A|
Ã

� � (17)

and that the total time T is

T = 2

Ã
arcsin

(
Ã

|A| sin
�

2

)
. (18)

This time T is known in the literature as the quantum speed
limit, that is the smallest time necessary to evolve in Hilbert
space from the initial state to the goal state at a given fixed
energy [29]. Using Eq. (16) and comparing the complex phases
we see that the phase α of A ≡ |A|eiα has to be chosen as

α = φ + 1
2�T. (19)

In summary the three Eqs. (17)–(19) yield all information
necessary to control the system: Given a pair (|A|,�), (17)
defines the Bloch vector with the maximal distance on the
Bloch sphere from the initial state that can still be reached,
thus every state with an angle � smaller than this value can
also be reached. Those states define the set of reachable angles.
Note that for � = 0 we can reach all states on the Bloch sphere.
The time specified in Eq. (18) provides the time necessary to
perform such a process if the desired Bloch vector is exactly at
the boundary of the set of reachable states given by Eq. (17).
Finally, Eqs. (18) and (19) together provide conditions for the
amplitude and phase of the control.

B. State-to-state transfer for the star N-level system

For a generic N -level system, even with an acyclic
graph, analytic solutions are rare. However, if we restrict
the interaction furthermore such that only the transitions
|0〉 ↔ |k〉 (k �= 0) are allowed and increasing the symmetry
in the problem by setting all detunings to an equal value
(�0k ≡ � ∀ k �= 0), an analytic solution can be found. In the
example presented in Fig. 1 this scenario occurs if from the
complete graph the blue dashed edge between E1 and E4 is
erased.

For a clearer display of the underlying dynamics we again
assume the system initially to be in the ground state 	c (t = 0) =
(1,0,0, . . . ,0) of the drift Hamiltonian and define analogously
to Sec. IV A

A ≡
√√√√�2 +

N−1∑
f =1

|Af |2. (20)

After some straightforward algebra, one finds

c0(t) = ei�/2t

(
cos

Ã

2
t − i

�

Ã
sin

Ã

2
t

)
, (21)

ck(t) = e−i�/2t Ak

Ã
sin

Ã

2
t (k = 1,2, . . . ,N − 1). (22)

To solve the state-to-state transfer problem we introduce the
normalized goal state 	ξ = (ξ0,ξ1e

iβ1 ,ξ2e
iβ2 . . . ,ξN−1e

iβN−1 ),
where ξk and βk are real numbers and the global phase is
chosen such that β0 = 0. The procedure from here on and the

structure of the resulting equations follow that of the two-level
system: for a goal state to be reachable, the inequalities

|Ak|
Ã

� ξk (23)

have to hold for all k �= 0. The total time T is then fixed by

T = max
k

2

Ã
arcsin

(
ξk

|Ak|
Ã

)
. (24)

Here, T is again what is referred in the literature as the quantum
speed limit. Furthermore the phases αk of Ak ≡ |Ak|eiαk have
to be chosen as

αk = βk + 1
2�T. (25)

As before, Eqs. (23)–(25) determine if and how a goal state can
be reached. While Eq. (23) refers to the reachability, Eqs. (24)
and (25) state how the amplitudes and phases of the different
Ak have to be chosen to solve the problem provided that the
goal state is at the boundary of the reachable set. Note that
again for � = 0 we can reach all states.

V. NUMERICAL RESULTS

To bolster the analytic results obtained so far and show
the frontier up to which the RWA is an excellent tool for
QOC we simulate systems discusses in Sec. III. We create
random nondegenerate energy spectra {E0,E1, . . . ,EN−1},
connected and acyclic control Hamiltonians ĤC , and use the
algorithm mentioned in Sec. III to set up a time-independent
Hamiltonian. As a figure of merit for state-to-state transfer we
use the infidelity I = 1 − |〈ψG|ψ(T )〉|2. The parameters for
the optimization are the amplitudes |Af |, the phases αf , and
the final time T . We fix the detuning � (which is assumed
to be equal for all frequencies to study the effects of the
detuning via changing one parameter instead of an increasing
number) and optimize for many different random goal states.
The optimization is performed via the direct search method
Nelder-Mead [30].

To check if the results obtained in the RWA are valid in the
complete description or if the RWA breaks down, we perform
an exact time evolution with the results of the optimization and
compared the results. Again, the infidelity is used as a figure
of merit.

In Fig. 3 the percentage of randomly generated states
reached  within an infidelity of less than ε = 10−3 is shown
as a function of the detuning. We see that it increases with
decreasing detuning and that for every detuning smaller than
10−4 we are able to reach all states, that is the percentage of
reached states is equal to  = 100%. Moreover, for bigger
dimensions the percentage of reached states decreases if the
detuning is bigger than 10−4. The inset shows the result of the
numeric double check, where we computed the time evolution
of the exact system (without the RWA) and then calculated the
infidelity of the exact time evolved state with respect to the
goal state. We define a successful double check again as an
infidelity below ε = 10−3 and plotted it again as a function of
the detuning � (see inset of Fig. 3). This allows us to see if
the approximated model is still good enough for optimization.
Remember that the double check can only be lower than or
equal to the results from RWA, since a failed optimization
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FIG. 3. (Color online) Percentage  of successfully optimized
states as a function of detuning � (in units of ω) for different
dimension N : 2 (red squares, solid line), 3 (orange circles, dashed
line), 4 (green triangles, solid line), 5 (blue pentagons, dashed line),
and 6 (purple squares, solid line). Inset: Percentage � of positive
double check as a function of detuning � for N = 2, 3, 4, 5, and 6
with the same color scheme as the main figure.

within the RWA is very unlikely to produce a successful
optimal pulse without the RWA. Accordingly a drop in the
double check success rate indicates the break down of the
RWA. The behavior is similar: For small detunings, that is less
than 10−5, we have a 100% quota of positive double checks;
the bigger the detuning the smaller the number of positive
double checks. Moreover we see that for bigger dimensions
the success rate decreases, so for bigger dimensions the RWA
needs smaller detunings to still be valid.

In Fig. 4 we show all optimized states and different systems
for different detunings (indicated by different colors; different

10−9

10−5

10−1

D

I

10−9

10−5

10−1

0 0.5 1
D

I

D

I

0 0.5 1
D

I

FIG. 4. (Color online) Reached infidelity I as a function of the
distance D = ‖|ψG〉 − |ψ(0)〉‖ for different detunings �: 10−1 (red
squares), 10−2 (orange circles), 10−3 (black triangles, downwards),
10−4 (turquoise diamonds), 10−5 (blue pentagons), 10−6 (purple
triangles, upwards), 10−7 (green empty circles). Different pictures
correspond to different dimensions N : N = 3 (top left), N = 4
(bottom left), N = 5 (top right), N = 6 (bottom right).

plots correspond to different dimensions). On the x axis we
plot the distance between the initial state and the final state
D = ‖|ψG〉 − |ψ(0)〉‖ in Hilbert space, on the y axis the
infidelity I is shown. We see that the reached infidelity for
small detunings is far below the threshold of ε = 10−3 used
for Fig. 3. Additionally we see the rapid drop in infidelity for
smaller detunings and a bunching of data points around 10−10

or below for small detunings. In conclusion, we see that within
the regime of the RWA a QOC task with very high fidelity in
this important subset of possible problems can be performed
without difficulties following the procedure laid out in this
work.

VI. EXAMPLE APPLICATION:
ENTANGLING RYDBERG ATOMS

To demonstrate the presented approach in a real physical
scenario we study the example of two trapped Rubidium
atoms [22–27]. For each atom we consider the qubit states
|0〉 = |5S1/2,F = 1〉, |1〉 = |5S1/2,F = 2〉, and a Rydberg
state |r〉 = |97D5/2〉 as in the experiments of Ref. [24]. The
atoms are trapped by spatially separated far off resonance
optical traps and thus can be addressed individually by lasers.
Both qubit states can be coupled to the Rydberg state via
two-photon transitions, e.g., via |5P1/2〉 and |5P3/2〉. These
intermediate states can be excluded from the model by
appropriate laser detunings via adiabatic elimination [31].
The atoms interact only if both atoms are in the Rydberg
state and the interaction is Ĥint = U |rr〉〈rr| with U = 2πh ×
20 MHz, while the effective Rabi frequencies that couple
the qubit states to the Rydberg state can be chosen to be
a few MHz [24]. The system was used to experimentally
implement protocols for CNOT gates [23,24,26,27]. A similar
setup has been used to propose a protocol for multiparticle
entanglement [28] of the type (|0 . . . 0〉 + |1 . . . 1〉)/√N . Here
we use the methods developed above to provide a solution for
how to transfer |00〉 to the Bell state (|00〉 + |11〉)/√2 with a
single (polychromatic) pulse, so in contrast to most schemes
we do not make use of pulsed lasers used sequentially.

If we perform the RWA and individually address the atoms,
where we drive near resonantly the transitions to the four
states with a single Rydberg excitation as well as to the doubly
excited Rydberg state (we double check the Rydberg blockade
assumption numerically), the Hamiltonian reads

Ĥ =�1

2
(|00〉〈0r| + |1r〉〈10|) + �2

2
(|00〉〈r0|

+ |01〉〈r1|) + �3

2
(|0r〉〈01| + |1r〉〈11|)

+ �4

2
(|r0〉〈10| + |r1〉〈11|) + �5

2
|0r〉〈rr|

+ �6

2
|1r〉〈rr| + �7

2
|r0〉〈rr| + �8

2
|r1〉〈rr| + H.c.

+ δ1|0r〉〈0r| + (δ1 + δ3)|01〉〈01| + δ2|r0〉〈r0|
+ (δ1 + δ5 + U )|rr〉〈rr| + (δ1 + δ2 + δ3)|r1〉〈r1|
+ (δ2 + δ4)|10〉〈10| + (δ1 + δ2 + δ4)|1r〉〈1r|
+ (δ1 + δ2 + δ3 + δ4)|11〉〈11|. (26)
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FIG. 5. (Color online) Left panel: The lasers couple the levels
according to Eq. (26); different colors indicate different transitions
or lasers, dashed lines indicate detuned transitions due to the Hint.
Some lasers couple multiple transitions and the system is not fully
controllable. Right panel: Using only four of the possible eight lasers,
we are left with two controllable subsystems, one of them containing
the initial state |00〉 as well as the state |11〉. On this subsystem we
can apply the methods developed in this paper to control the desired
state-to-state transfer to the Bell state (|00〉 + |11〉)/√2.

This Hamiltonian leads to the graph that is shown in
Fig. 5 (left). The single frequencies (same color and same
line style in Fig. 5) drive multiple transitions, e.g., the first
laser (�1, light blue solid line) drives the transition from
|00〉 to |0r〉 as well as the transition from |10〉 to |1r〉. As
a consequence the system is not fully controllable. However,
if we switch only some of the lasers, namely �1, �4, �5, and
�8, we get two controllable subgraphs (Fig. 5, right). One
of them contains our initial state |00〉 as well as our target
state (|00〉 + |11〉)/√2. If we solve the state-to-state transfer
problem using experimental feasible values [24] for the Rabi
frequencies as well as the assumption of a perfect blockade
with the Hamiltonian (26), we can achieve perfect state transfer
with �1 = 2πh × 1 MHz, �4 = 2πh × 1 MHz, �5 = 2πh ×
3.2 MHz, and �8 = 2πh × 1.3 MHz, final time T = 314 ns,
δ5 = −U and all other Rabi frequencies vanishing. If we
double check the assumption of perfect blockade and go
beyond Eq. (26), the infidelity increases from ε = 0 to ε =
0.002. Note that this value can be improved if single addressing
is possible for a smaller distance between the atoms, resulting
in a higher blockade interaction. The operation error is thus
just a technical limitation and not intrinsic to the method.

VII. DISCUSSION AND CONCLUSIONS

As we have seen in the previous sections QOC works very
well within the RWA and clearly shows that the number of
parameters for optimization has to scale linearly with the di-
mension N of the Hilbert space describing the system [19,32].
The intuitive argument for that is the following: Assume we
add an additional frequency ω̃ to those used to perform an
already optimal protocol found previously. If ω̃ is not in
approximate resonance to any transition frequency it can be
neglected and will not affect the description in the RWA. If
it is in approximate resonance to any transition frequency, we
just keep the new frequency ω̃ and drop the old one which was
on resonance with the same transition. In any case, there is
no need to increase the number of frequencies beyond N − 1.
This supports the findings of a recent work [19] where, by
means of an information theoretical analysis, it was shown
that for an effective optimization the bandwidth of the control

field (in this case given by the number of controls F ) has to
scale at least linearly with the dimension of the Hilbert space
associated with the optimized system.

Another connection to a recently developed and highly ef-
ficient optimization algorithm, namely the Chopped RAndom
Basis algorithm (CRAB) [8], can be made: In CRAB one
expands the control pulse u(t) into a truncated basis, often
using trigonometric polynomials with great effectiveness. In a
typically QOC problem, one has

ĤCRAB = ĤD + u(t)ĤC, (27)

where

u(t) =
Nc∑

n=1

An sin (ωnt) + Bn cos (ωnt). (28)

Analogously, one can rewrite the Hamiltonian (1) in the form

Ĥ = ĤD +
F∑

f =1

[Re Af cos(ωf t) + Im Af sin(ωf t)] ĤC,

(29)

which shows a clear one-to-one relationship between the two
methods. This once again backs the observations made with
CRAB that the number of frequencies necessary for good
optimization results is not exceedingly high, in particular it
does not grow superpolynomially [19,20].

In conclusion, we investigated the performance of QOC
within the generalized RWA applied to a N -dimensional quan-
tum system. By introducing proper unitary transformations,
we identified an important subset of QOC problems that
can be described by a time-independent formalism, namely
systems that can be described by acyclic, connected graphs. We
solved the state-to-state transfer problem for the paradigmatic
two-level system, and the dynamics of the N -dimensional
system whose graph is a star. We demonstrated numerically
that a system representable by a connected, acyclic graph can
be controlled to perform arbitrary state-to-state transfers and
we showed that this approach allows us to develop an optimal
protocol to entangle Rydberg atoms with constant laser pulses,
that is without the need of schemes for pulse shaping. Let us
mention that the subset of connected, acyclic graphs is of
natural high interest for QOC since they represent the class
of Hamiltonians that connect the complete N -dimensional
system dynamics with the fewest possible controls, namely
only N − 1. Reducing the number of controls further either
leaves the graph unconnected or introduces a near degeneracy,
both impeding optimal control.

To give an outlook, we stress that the class of QOC problems
identified here, despite being quite general, does not include
all scenarios where the presented approach can be applied
successfully. In particular, even if the graph is not acyclic,
there are cases in which the system can still be recast as a
time-independent one. This is the case if the sum over all
detunings along this cycle is zero: graphically this means that
the phase accumulated is the same no matter which path of the
cycle goes [3]. In Ref. [1] a step further has been developed to
encompass more of the complete system dynamics in a time-
independent description by incorporating part of the counter-
rotating terms, offering possibilities to enlarge the amount of
applications even further.
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