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Three-electron atoms and ions in a magnetic field
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The energies and physical properties of three-electron systems are studied using an explicitly correlated
Gaussian basis optimized by the stochastic variational method. The stability of the system as a function of the
nuclear charge is analyzed. The role of the Coulomb and magnetic interactions in shaping the structure of these
systems is discussed. The accuracy of the energies is substantially improved for high magnetic fields.
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I. INTRODUCTION

The competition between the Coulomb (electron-electron
repulsion and electron-nuclear attraction) and the magnetic
field for different interaction strengths makes the atoms in the
magnetic field a perfect laboratory to test and develop compu-
tational approaches [1–12]. In this paper we study the energy
levels, wave functions, and structures of three-electron systems
as a function of strength of the magnetic and the Coulomb
interactions using an accurate variational description.

The study of the effect of magnetic fields on energy levels
and wave functions is strongly motivated by the discovery of
stars with strong magnetic fields [13–15]. These magnetic field
strengths range from the weaker fields of white dwarfs [16,17]
(≈107 G) through neutron stars [18] (≈1012 G) all the way up
to fields of 1014–1015 G observed in magnetars [19]. Under
normal laboratory conditions the highest achievable magnetic
field is around 105 G, but in condensed-matter systems the
low effective mass and high dielectric constant can lead to
magnetic fields [20] that are, in effect, much stronger than
that.

Many different approaches [21–29] have been used to study
the effects of strong magnetic fields on small atoms and ions,
such as H, H−, He, Li, and Be. The most popular approaches
include the Hartree-Fock method [1,10,30–39]; variational
calculations with Gaussian [2,3], Hylleraas [4,5], or Lagrange
basis functions [6]; quantum Monte Carlo (QMC) [7,8], finite-
element calculations [9]; and the pseudospectral Hartree-Fock
method [10]. Analytical calculations have also been proven
to be valuable tools. It has been analytically predicted, for
example, that under very strong magnetic fields neutral atoms
can bind with an additional electron [11,12]. In particular,
it was claimed that helium, despite being a noble gas, was
capable of forming a stable negative ion under such conditions.
Recent works based on computational methods have verified
this prediction of the He− ion [5,40].

While many papers in the literature deal with two-electron
atoms [2–4,6–9], accurate calculations for three or more
electrons are rare. Computational studies of Li, as well as He−

and Be+ ions, are mostly done by using methods based on some
simplifying approximations [5,35,36,41–46], for example, by
using the Hartree-Fock method [1,10,30–39] or methods that
restrict the core electrons [47,48]. For three-electron atoms the
configuration interaction method with anisotropic Gaussian
basis functions [1] and Hylleraas basis functions [4] seems to
give accurate results.

The effect of magnetic field on the energy levels of
molecules has also been extensively studied [49–58]. High

magnetic fields drastically change the binding energies and
bond lengths [58] and can lead to new bonding mecha-
nisms [52]. Calculations for molecules are very difficult
because the separation of center-of-mass motion [59] is not
trivial and the description of nuclear and electronic structure is
complicated. Recent works [49,50,53] using current density-
functional theory [60] established a nonperturbative frame-
work to calculate the molecular properties in magnetic fields.

Approaches based on explicitly correlated wave func-
tions [4,6,40] are likely to be restricted to smaller atoms, with
the only exception being the QMC method [7,8,61]. Beyond
few-electron systems, besides the QMC method [7,8], the
Hartree-Fock [1,10,30–39] and the density-functional-theory
(DFT) approaches [62,63] seem to be applicable. The DFT
approaches are particularly important because they can help
the development of better exchange-correlational functionals.
A recent thorough review of different approaches can be found
in Ref. [64].

In this work we extend out previous accurate variational
calculations [40] to study the three-electron isoelectronic
sequence, with Z = {1,2,3,4}, in a strong uniform magnetic
field. Besides calculating the energy levels, we also analyze
the change of the wave functions and make comparisons
between the different systems. All this is done within the
nonrelativistic framework, neglecting any QED effects and
assuming an infinitely massive nucleus, as is commonly done
in the literature. The calculations employ a deformed explicitly
correlated Gaussian (ECG), and the nonlinear parameters are
optimized with the stochastic variational method. Variational
calculations using explicitly correlated Gaussians proved to
be extremely accurate in predicting binding energies and
other properties in few-particle systems including the stability
domains [2,65,66]. The main advantage of the ECG basis is
that the matrix elements are analytically available, and by
increasing the number of basis states the accuracy can be
enhanced. In our previous paper [40] we have shown that
the deformed variant of this basis is flexible enough to give
accurate results for high magnetic fields.

II. FORMALISM

A. Hamiltonian and basis functions

The nonrelativistic Hamiltonian of a Coulombic few-
particle system in magnetic field B, oriented in the z direction,
is given by

H = T + Vho + VNe + Vee + B

2
(Lz + 2Sz) (1)
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Here T is the kinetic energy, Vho is the harmonic oscillator
potential, VNe is the attraction of the nucleus, and Vee is the
electron repulsion, with Lz and Sz being, respectively, the
angular momentum and total spin operators in the z direction,
which correspond to conserved quantities in the system.

We also define Vmag as the total contribution of the energy
due to the magnetic field:

Vmag =
N∑

i=1

B2

8
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) + B

2
(Lz + 2Sz). (3)

The variational method is used to calculate the energy of
the system. As a trial function we choose a deformed form of
the correlated Gaussians (DCG) [2,3]:

exp
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⎩−1

2

N∑
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where the nonlinear parameters are different and independent
in both the radial and vertical directions.

The Hamiltonian does not commute with L2, but it
has eigenfunctions in common with Lz, with corresponding
eigenvalue M . The above form of the DCG belongs to M = 0.
To allow for M �= 0 states we multiply the basis by

N∏
i=1

ξmi
(ρi), (5)

where

ξm(ρ) = (x + iy)m. (6)

Thus the spatial antisymmetric variational trial function reads
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where M = m1 + m2 + · · · + mN and mi are integers. This
function is coupled with the spin function χSMS

to form the
trial function. The nonlinear parameters are optimized with the
stochastic variational method [2,3].

The explicitly correlated Gaussians are very popular in
atomic physics and quantum chemistry [2]. The main ad-
vantages of ECG bases are (1) their matrix elements are
analytically available for a general N -particle system, (2) they
are flexible enough to approximate rapidly changing functions,
(3) the permutation symmetry can be easily imposed, and (4)
one can make a simple transformation between single-particle
and relative coordinate systems. The basis parameters can be
efficiently chosen by the stochastic variational method [3]. The

present basis is restricted to a single center, and the calculations
are limited to a single nucleus. One can, in principle, generalize
the approach for molecular calculations using multicenter
Gaussians [2], but due care has to be taken in treating the
center-of-mass motion [59].

B. Threshold energy

In order to determine the stability of the system, one has
to calculate the accurate threshold energies. This is done by
calculating the energies of the two-electron isoelectronic series
in the appropriate configurations. For example, for He− the
threshold is given by the states of He that satisfy the following:

ET (M,Sz) = min
MHe,SHe

z

[
EHe

tot

(
MHe,SHe

z

) + Ee
(
Me,Se

z

)]
, (8)

where EHe
tot (MHe,SHe

z ) is the total energy of the He atom and

Ee
(
Me,Se

z

) = (
Me + |Me| + 2Se

z + 1
)B

2
(9)

is the energy of a single electron in a magnetic field. The
quantum numbers must satisfy

M = MHe + Me, Sz = SHe
z + Se

z . (10)

We consider only those states that satisfy conservation of
orbital angular momentum and spin, as given in (10), and
calculate the threshold energy using (8). Once the threshold is
found, the binding energy can be obtained from

Eion = Etot − ET . (11)

The procedure is analogous for H2−/H−, Li/Li+, and
Be+/Be2+. The states with orbital angular momentum and spin
considered in the present work are shown in Table I.

C. Physical quantities

The following physical quantities are used to describe the
properties of the system and characterize the quality of the
wave function: The virial ratio η is defined as

η = −2
〈�|T |�〉
〈�|V |�〉 (12)

= −2
〈�|T |�〉

〈�|Vee + VNe|�〉 − 2〈�|Vho|�〉 . (13)

TABLE I. Spin and angular momentum configurations considered
in the present work. ν is the degree of excitation, and π is the parity
of the state in the z direction. For all cases, only the lowest degree of
excitation with positive parity was considered.

Quantum numbers Single particle ν2S+1(M)π

M = 0, Sz = − 1
2 1s22s 2(0)+

M = −1, Sz = − 1
2 1s22p−1

2(−1)+

M = −1, Sz = − 3
2 1s2s2p−1

4(−1)+

M = −3, Sz = − 3
2 1s2p−13d−2

4(−3)+
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Checking how close η is to the ideal value of 1 gives a useful
measure of the quality of the wave function [40]. The pair
correlation function is defined as

Cee(r) = 2

N (N − 1)
〈�|

N∑
i<j

δ(ri − rj − r)|�〉. (14)

Using Cee(r), the radial part of the correlation function, the
powers of interparticle distances are given by

〈
rk
ee

〉 = 4π

∫ ∞

0
rkCee(r)r2dr, (15)

In a similar manner, the correlation function can also be defined
for single particles by taking the distance from the origin
instead:

CNe(r) = 1

N
〈�|

N∑
i=1

δ(ri − r)|�〉. (16)

Using this correlation function, the square distances between
the nucleus and electrons are defined as

ρ2
Ne = 2π

∫ ∞

0
ρ2CNe(ρ)ρdρ (17)

and

z2
Ne =

∫ ∞

−∞
z2CNe(z)dz. (18)

Distances between particles in a bound system are small, and
the particles are confined into distances of a few atomic units.
Loosely bound systems tend to be larger, up to a few tens of
atomic units, but still finite. In unbound systems the distances
diverge.

Another quantity of interest is the quadrupole moment,
which is defined, as in Ref. [30], as

Qzz = 〈�|
N∑

i=1

2z2
i − ρ2

i |�〉 = N (2zNe − ρNe). (19)

III. RESULTS AND DISCUSSION

We have calculated the energies of the three-electron
isoelectronic series with nuclear charge Z = 1–4 for different
values of strong magnetic fields for bound states with different
angular momentum and spin configurations. N = 400 basis
functions are used unless otherwise noted.

To test the accuracy of our results we compare our
calculation for the energies of low-lying states of the Li atom to
Ref. [1], the most accurate results found in the literature. The
calculations presented in Ref. [1] are based on Hylleraas-type
basis functions and are expected to be very accurate for weak
magnetic fields. For higher fields, the Hylleraas description
needs many high orbital momentum states and becomes
computationally very expensive.

Table II shows the present results and the energies predicted
by the Hylleraas approach. For low fields the two calculations
are in complete agreement. In the free-field case it is very hard
to compete with the accuracy of the Hylleraas approach. One
has to use N = 2000 basis functions to reach accuracy up to six
decimal places. For higher fields the Hylleraas basis seems to
be less accurate, and our results improve the previous energies
at the third decimal. There is one case, the 2(−2)+ state with
B = 0.009, where our energy is significantly different from
that of Ref. [4]. As other energies in this magnetic field region
agree perfectly, we suspect that there might be a typo in
Ref. [4].

Using our approach, we have studied the low-lying positive-
parity states shown in Table I. These states can be either ground
states or lowest excited states depending on the strength of
the magnetic field. The evolution of the ground state as a
function of the strength of the magnetic field as predicted

TABLE II. The energies (in a.u.) for Li in various configurations calculated in the present work and compared to the values in Ref. [4]. The
standard uncertainty is shown in parentheses where applicable. Our calculations are converged up to the six decimal places.

2(0)+ 2(−1)+ 2(−2)+

B Energy Ref. [4] Energy Ref. [4] Energy Ref. [4]

0 −7.478 060 320 −7.478 060 323 −7.410 156 508 −7.410 156 524 −7.335 523 535 −7.335 523 537
0.001 −7.478 558 8 −7.478 558 8(1) −7.411 153 7 −7.411 153 9(2) −7.336 509 7 −7.336 500 7(2)
0.0018 −7.478 955 4 −7.478 955 5(2) −7.411 947 5 −7.411 9475(1) −7.338 189 4 −7.338 189 4(1)
0.009 −7.482 436 5 −7.482 436 7(2) −7.418 932 0 −7.418 9321(2) −7.347 954 1 −7.348 185 6(1)
0.01 −7.482 907 5 −7.482 907 6(1) −7.419 879 5 −7.419 879 5(1) −7.349 208 9 −7.348 823 7(1)
0.018 −7.486 566 1 −7.486 566 8(3) −7.427 265 4 −7.427 2656(2) −7.349 501 5 −7.358 501 7(1)
0.02 −7.487 450 5 −7.487 451 9(2) −7.429 059 0 −7.429 059 0(1) −7.360 614 0 −7.360 448 1(2)
0.2 −7.529 806 2 −7.529 807 (1) −7.538 656 3 −7.538 654 8(4) −7.458 826 2 −7.458 823 8(1)
0.4 −7.531 275 5 −7.531 188 7(2) −7.610 167 0 −7.610 130 7(2) −7.510 686 6 −7.510 607 6(2)
0.5 −7.523 946 2 −7.523 918 (6) −7.637 0223 7 −7.636 927 4(3) −7.528 106 1 −7.528 018 7(1)
0.54 −7.520 090 0 −7.520 016 (1) −7.646 547 4 −7.646 491 6(1) −7.533 948 3 −7.533 850 (1)
0.6 −7.513 531 7 −7.513 400 (2) −7.659 690 7 −7.659 533 (3) −7.541 677 5 −7.541 506 (3)
0.7 −7.501 000 4 −7.500 958 (7) −7.678 861 1 −7.678 598 (3) −7.552 080 7 −7.551 717 (2)
0.9 −7.471 717 4 −7.471 460 (2) −7.708 359 3 −7.707 760 (1) −7.564 823 8
1 −7.455 437 7 −7.454 284 (1) −7.719 225 9 −7.718 357 (4) −7.567 629 82 −7.566 400 (1)
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FIG. 1. (Color online) Ground-state energies for different values
of magnetic field in He− (red squares), Li (green diamonds), and Be+

(blue triangles). The regions where the ground state of the system
makes a transition are marked.

by our calculations is shown in Fig. 1. For Li and Be+ the
ground state is the 2(0)+ configuration for low fields, 2(−1)+
for intermediate fields, and 4(−3)+ for very high fields. The
ground state of He− is the 2(−1)+ configuration for smaller
values of B [5,40], rather than the 2(0)+ configuration, which
is not bound. However, for higher values the ground state of
He− follows the same pattern as that of Li and Be+.

The ground-state transition points for three-electron sys-
tems have been studied in several papers [7,8,30,38]. The
calculation of the precise location of the ground-to-excited-
state transition points requires very high accuracy for both
states, and that is computationally expensive. For the case of Li,
the transition has been predicted to be at B = 2.153 a.u. [30]
and B = 2.19816 a.u. [7]. In the case of Be+, the crossover was
estimated to take place at around B = 4.501 a.u. in Ref. [36]
and B = 4.55328 a.u. [7].

Our calculation is in good agreement with these predictions
(see Fig. 1). To illustrate the capability of our approach
to predict accurate transition points, we have calculated the
energies of the 4(−3)+ state for magnetic-field strengths where

TABLE III. Energies at the transition points from 2(−1)+ to the
high-magnetic-field ground state 4(−3)+. Here the parameter βz =

B

2Z2 is used, just as defined in Ref. [7].

Energy (a.u.)

Z βz Present work Ref. [7]

3 0.12212 −7.69806 −7.6905(3)
4 0.14229 −15.07530 −15.067(6)
5 0.15510 −24.94961 −24.9386(9)
6 0.16404 −37.32606 −37.309(2)
7 0.17059 −52.20168 −52.184(2)
8 0.17556 −69.56932 −69.551(2)
9 0.17947 −89.44020 −89.418(4)
10 0.18266 −111.81031 −111.783(4)

the transition to the 2(−1)+ state takes place, according to
Ref. [7], and we have compared the calculations to their
predictions for different Z. As Table III shows, the calculated
energies using the present method are more negative than those
found in Ref. [7], but the general agreement is good.

At the transition points the total energies of the two
configurations become equal. However, the structure of the
two states can be very different. This is illustrated for He− in
Fig. 2.

In the following, we discuss the bound-state properties of
the three-electron systems. We have found bound states for
only the He, Li+, and Be++ nuclei. For H2− we have considered
the cases shown in Table I and carefully optimized the basis
functions to explore possible bound states. No bound state
was found, and it seems highly unlikely that a single positive
charge can support a bound three-electron state in a magnetic
field.

A. The 2(0)+ (M = 0, Sz = − 1
2 ) configuration

For Z � 4 only the Li atom and the Be+ ion are bound. The
threshold energy is defined by the energy of the Li+ and Be2+
ions with M = 0, Sz = 0 for all values of the magnetic field.
The calculated energies are presented in Table IV for Li and
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FIG. 2. (Color online) Density contour plots of He− at the transition point. Neighboring lines differ from each other by factor of e.
(a) M = −1, Sz = − 1

2 near the transition point for B = 0.70416 a.u. (b) M = −3, Sz = − 3
2 near the transition point for B = 0.70416 a.u. x

and z are given in a.u.
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TABLE IV. The energies (in a.u.) for Li for the present work and some previous ones from other works are shown. When applicable, the
standard uncertainty is shown in parenthesis. Our calculations are converged up to the six decimal places.

Li 2(0)+ 2(−1)+ 4(−3)+ 4(−1)+

B Present Previous Present Previous Present Previous Present Previous

0 −7.478060 −7.478060323 [4] −7.410157 −7.410 156 524 [4] −5.142788 −5.142319 [1] −5.368001 −5.358 88 [30]
−7.4777957 [67] −7.4097907 [67] −5.083 79 [30] −5.366705 [1]
−7477766 [1] −7.407126 [1]
−7.4763360 [48] −7.408803 [48]
−7.432 75 [30] −7.365 09 [30]

0.001 −7.478559 −7.478 558 8(1) [4] −7.411154 −7.411 153 9(2) [4] −5.145754 −5.145464 [1] −5.369998 −5.360 88 [30]
−7.478032 [1] −7.408174 [1] −5.086 79[30] −5.368015 [1]

0.0018 −7.478955 −7.478 955 5(2) [4] −7.411948 −7.411 947 5(1) [4]
0.009 −7.482437 −7.482 436 7(2) [4] −7.418932 −7.418 932 1(2) [4]
0.01 −7.482907 −7.482 907 6(1) [4] −7.419787 −7.419 879 5(1) [4] −5.169195 −5.112 68 [30] −5.387821 −5.378 71 [30]

−7.482888 [1] −7.416994 [1] −5.169111 [1] −5.385841 [1]
0.018 −7.486566 −7.486 566 8(3) [4] −7.427265 −7.427 265 6(2) [4]
0.02 −7.487450 −7.4874519(2) [4] −7.429059 −7.429 059 0(1) [4] −5.191562 −5.139 60 [30] −5.407287 −5.398 17 [30]

−7.44214 [30] −7.4856398 [48]
−7.490983 [1]

0.1 −7.514011 −7.5140478(4) [4] −7.487304 −7.4873396(3) [4] −5.341001 −5.321 40 [30] −5.550708 −5.321 40 [30]
−7.5137817 [67] −7.4869343 [67] −5.341030 [1] −5.550268 [1]
−7.517154 [1] −7.484773 [1]
−7.5122102 [48] −7.4858382 [48]

0.16 −7.525201 −7.519899 −5.453736 −5.645657
0.2 −7.529806 −7.529807(1) [4] −7.538656 −7.5386548(4) [4] −5.525281 −5.511 51 [30] −5.704017 −5.694 51 [30]

−7.533495 [1] −7.536032 [1] 5.524939 [1] −5.703511 [1]
−7.5278376 [48] −7.5366925 [48]

0.24 −7.532503 −7.532562(2) [4] −7.555389 −7.5554917(1) [4] −5.593680 −5.759018
−7.5322949 [67] −7.5549851 [67]

0.4 −7.531276 −7.531 188 7(2) [4] −7.610167 −7.610 130 7(2) [4] −5.842165 −5.953098
0.5 −7.523946 −7.523918(6) [4] −7.637022 −7.6369274(3) [4] −5.982239 −5.970 52 [30] −6.058881 −6.047 87 [30]

−7.5235946 [67] −7.6362483 [67] −5.982253 [1] −6.058463 [1]
−7.528055 [1] −7.634547 [1]
−7.5216127 [48] −7.6341245 [48]
−7.477 41 [30] −7.587 90 [30]

0.54 −7.520090 −7.520 016 (1) [4] −7.646547 −7.646 491 6(1) [4]
0.6 −7.513532 −7.513 400 (2) [4] −7.659691 −7.659 533 (3) [4]
0.7 −7.501000 −7.500 958 (7) [4] −7.678861 −7.678 598 (3) [4]
0.8 −7.486909 −7.694877 −6.358064 −6.333199
0.9 −7.471717 −7.425 04 [30] −7.708359 −7.707760(1) [4] −6.472200 −6.460 61 [30] −6.415307 −6.401 75 [30]

−7.471460(2) [4] −7.707054 [67]
−7.4710527 [67]

1 −7.455438 −7.458550 [1] −7.719226 −7.718357(4) [4] −6.582402 −6.570 81 [30] −6.494473 −6.480 29 [30]
−7.454284(1) [4] −7.716679 [1] −6.582361 [1] −6.494196 [1]
−7.4529046 [48] −7.7151944 [48]
−7.408 79 [30] −7.66653 [30]

1.2 −7.419998 −7.734021 −6.792757 −6.646298
1.5 −7.360140 −7.741348 −7.086491 −6.863210
1.6 −7.338404 −7.740137 −7.179497 −6.933452
2 −7.242189 −7.19621 [30] −7.719430 −7.662 46 [30] −7.532720 −7.520 03 [30] −7.206104 −7.188 89 [30]

−7.244919 [1] −7.715709 [1] −7.530125 [1] −7.206026 [1]
4 −6.566910 −7.328330 −8.989213 −8.397667
5 −6.133931 −6.08811 [30] −7.005519 −7.002346 [1] −9.592108 −9.591769 [1] −8.905753 −8.905985 [1]

−6.136918 [1] −6.942 30 [30] −9.576 94 [30] −8.889 81 [30]
10 −3.404618 −3.35777 [30] −4.687628 −4.617 77 [30] −11.957598 −11.939 02 [30] −10.925795 −10.910 59 [30]

−3.406556 [1] −4.684076 [1] −11.957294 [1] −10.925976 [1]
20 3.441799 3.49120 [30] 1.625407 1.705 65 [30] −15.186392 −15.162 60 [30] −13.709466 −13.694 20 [30]
40 19.241172 16.740670 −19.457466 −17.405439
50 27.634711 27.6916 [30] 24.875829 24.979 42 [30] −21.086742 −21.0505[30] −18.818393 −18.8012 [30]
60 36.221250 33.236274 −22.519774 −20.061769
80 53.795996 50.424092 −24.979924 −22.196659
100 71.741025 71.807 [30] 68.041685 68.1735 [30] −27.065453 −27.0192 [30] −24.006455 −23.987 [30]
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TABLE V. The energies (in a.u.) for Be+. Our calculations are converged up to the five decimal places.

Be+ M = 0, Sz = − 1
2 M = −1, Sz = − 1

2 M = −3, Sz = − 3
2 M = −1, Sz = − 3

2

B Present Previous Present Previous Present Previous Present Previous

0 −14.32472 −14.3247 [35] −14.17927 −14.17608 [41] −9.43565 −9.4156 [35] −10.06663 −10.0650 [35]
0.001 −14.32523 −14.3251[35] −14.18026 −14.1751 [35] −9.43864 −9.4185 [35] −10.06863 −10.0655 [35]
0.01 −14.32966 −14.3296 [35] −14.18920 −14.1841[35] −9.46508 −9.4452 [35] −10.08656 −10.0827 [35]
0.02 −14.33450 −14.19898 −9.49354 −10.10633
0.1 −14.36936 −14.3694 [35] −14.27232 −14.2672 [35] −9.70137 −9.6888 [35] −10.25911 −10.2575 [35]
0.16 −14.39120 −14.32195 −9.84398 −10.36754
0.2 −14.40387 −14.4038 [35] −14.35276 −14.34926 [41] −9.93417 −9.9243 [35] −10.43703 −10.4353 [35]
0.24 −14.41515 −14.38196 −10.02097 −10.50440
0.4 −14.44815 −14.44641 [41] −14.48546 −10.34197 −10.75466
0.5 −14.46058 −14.4606 [35] −14.54155 −14.5358 [35] −10.52597 −10.5188 [35] −10.89747 −10.8918 [35]
0.8 −14.47164 −14.68180 −11.02510 −11.27766
0.825 −14.47118 −14.69178 −11.06384 −11.30667
0.85 −14.47052 −14.70195 −11.10223 −11.33533
0.875 −14.46971 −14.71174 −11.14031 −11.36366
0.9 −14.46873 −14.72135 −11.17799 −11.39166
1 −14.46333 −14.4630 [35] −14.75795 −14.75295 [41] −11.32565 −11.3203 [35] −11.50059 −11.4967 [35]
1.2 −14.44657 −14.82352 −11.60733 −11.70565
1.5 −14.41037 −14.90558 −12.00218 −11.98811
1.6 −14.39610 −14.92917 −12.12764 −12.07702
2 −14.33123 −14.3300 [35] −15.00694 −15.0000 [35] −12.60455 −12.6002 [35] −12.41340 −12.4090 [35]
4 −13.88655 −13.88455 [41] −15.10915 −14.59956 −13.86701
5 −13.59866 −13.5971 [35] −15.02875 −15.0184 [35] −15.44204 −15.4367 [35] −14.51655 −14.5106 [35]
10 −11.62510 −11.6231 [35] −13.82293 −13.80892 [41] −18.83615 −18.8283 [35] −17.24524 −17.2291 [35]
20 −6.08322 −6.08121[41] −9.28941 −9.27043 [41] −23.63118 −21.20083
40 7.76380 3.23746 −30.13352 −26.60687
50 15.37269 15.4261 [36] 10.34234 10.42836 [36] −32.64727 −32.61959 [36] −28.70079
60 23.25698 17.78248 −34.86928 −30.55231
80 39.60523 33.36648 −38.70313 −33.74752
100 56.49203 56.5516 [36] 49.60389 49.7082 [36] −41.97236 −41.93414 [36] −36.47142

in Table V for Be+. The behavior of the energy as a function
of the magnetic field is shown in Fig. 3. The total energy of
Li in this configuration has a local minimum, as previously
reported in Ref. [30] at B = 0.304 a.u. A similar minimum
for Be+ is around B = 0.8 a.u., and the general behavior
of the two curves is rather similar. The binding energies of
these states are shown in Fig. 3. The binding energies first
start to increase with the magnetic field, but at a certain
maximum point this trend changes, leading to a local minima
after which the binding increases again. The minimum values
for binding energy are located around B = 2 a.u. for Li and
B = 4 a.u. for Be+. The shape of the binding energy curve is
determined by the difference between the total energy of the
three-electron and the total energy of the two-electron system;
therefore these curves have a more complicated structure than
the three-electron energy curve (see Fig. 3). The maximum
values of binding energies were found around B = 0.4 a.u. for
Li and B = 1.2 a.u. for Be+. It is important to point out that
the systems undergo significant structural changes near those
regions. In the interval 0.24 a.u. < B < 0.4 a.u. Li becomes
more elongated along the z direction and then changes back
to being a less prolate shape, as seen in Fig. 3 (see also the
quadrupole moments for Li and Be+ in Table VI). For the case
of Be+ a similar expansion is observed in Fig. 3 for Z2

Ne but
around the interval 0.8 a.u. < B < 4 a.u.

The energies become positive as B increases because 〈Vmag〉
becomes positive, and the kinetic energy gets substantially
larger, as illustrated in Tables VII and VIII. This is due to
the increase of the harmonic oscillator contribution 〈Vho〉. For
small fields the largest contribution to the total energy comes
from the electron-nuclear attraction. The kinetic energy 〈T 〉,
however, eventually becomes greater in magnitude than 〈VNe〉,
becoming the dominant term of the Hamiltonian for larger
fields.

B. The 2(−1)+ (M = −1, Sz = − 1
2 ) configuration

The total energies for He−, Li, and Be+ are plotted in Fig. 4
and presented in Tables IV, V, and IX. The corresponding
binding energies (see Fig. 4) are calculated by using the
threshold energy belonging to the 1(0)+ state of the He atom
and Li+ and Be2+ ions for all magnetic fields. The 2(−1)+
state was found to be bound for Li and Be+ for all values of B,
but the He− ion is bound only for certain B field intensities.

The 2(−1)+ configuration has a local minimum in total
energy for Li and Be+ (Fig. 4). However, there is no minimum
observed for He−; its total energy is monotonously increasing.
This shows that the minimum in the energy curves of Li and
Be+ is due to the competition between the attractive nuclear
Coulomb potential and the magnetic interaction. In the Li atom
and the Be+ ion the magnetic field forces the electron closer
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FIG. 3. (Color online) State with 2(0)+ (M = 0, Sz = − 1
2 ). (a) Total energies, (b) binding energies, (c) Qzz, and (d) average z2

Ne for Li and
Be+.
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TABLE VI. Quadrupole moments Qzz for the different systems and configurations.

B He− Li Be+

2(−1)+ 4(−3)+ 4(−1)+ 2(0)+ 2(−1)+ 4(−3)+ 4(−1)+ 2(0)+ 2(−1)+ 4(−3)+ 4(−1)+

0 −48.16 0.00 −10.81 −217.96 −4.49 0.00 −2.67 −31.03 −1.72
0.001 −48.70 0.00 −10.79 −217.10 −4.49 0.00 −2.67 −31.05 −1.72
0.01 −36.38 0.02 −10.70 −170.37 −4.48 0.00 −2.67 −30.18 −1.72
0.02 108.31 −26.66 0.09 −10.41 −124.50 −4.45 0.00 −2.67 −28.00 −1.72
0.1 1,038.67 −22.19 −0.50 1.59 −6.49 −25.48 −3.73 0.08 −2.53 −13.69 −1.66
0.16 411.16 −9.76 8.82 2.94 −4.49 −15.59 −2.92 0.20 −2.35 −10.59 −1.57
0.2 248.97 −5.68 14.41 3.79 −3.61 −12.68 −2.36 0.30 −2.22 −9.32 −1.49
0.24 164.92 −3.09 20.38 4.58 −2.94 −10.74 −1.82 0.40 −2.08 −8.34 −1.41
0.4 53.34 1.70 65.25 7.47 −1.42 −6.47 0.10 0.86 −1.61 −5.89 −1.02
0.5 34.76 2.87 161.95 9.11 −0.94 −5.04 1.14 1.16 −1.38 −4.96 −0.77
0.8 15.41 4.06 13.59 −0.23 −2.72 3.91 2.00 −0.90 −3.29 −0.03
0.825 14.68 4.09 13.91 −0.19 −2.60 4.13 2.06 −0.87 −3.19 0.02
0.85 14.01 4.16 14.24 −0.16 −2.49 4.35 2.13 −0.84 −3.10 0.08
0.875 13.53 4.19 14.53 −0.13 −2.38 4.57 2.20 −0.82 −3.01 0.14
0.9 13.01 4.20 14.86 −0.10 −2.28 4.79 2.26 −0.79 −2.93 0.19
1 11.21 4.27 15.98 −0.01 −1.91 5.65 2.52 −0.70 −2.63 0.41
1.2 9.00 4.29 17.87 0.13 −1.37 7.34 3.03 −0.55 −2.16 0.83
1.5 7.07 4.26 19.84 0.26 −0.83 9.68 3.75 −0.39 −1.66 1.42
1.6 6.63 4.19 20.34 0.29 −0.70 10.39 3.98 −0.35 −1.53 1.61
2 5.46 4.07 21.63 0.37 −0.31 12.78 4.82 −0.23 −1.13 2.34
4 3.50 3.44 22.87 0.51 0.38 17.65 7.00 0.03 −0.30 4.99
5 3.12 3.21 22.71 0.53 0.49 18.33 7.34 0.09 −0.14 5.64
10 2.31 2.59 21.56 0.54 0.63 19.04 7.45 0.19 0.16 6.52
20 1.75 2.05 20.14 0.49 0.61 18.60 6.96 0.22 0.26 6.43
40 1.35 1.58 18.61 0.42 0.53 17.72 6.34 0.21 0.27 6.04
50 1.24 1.47 18.15 0.39 0.50 17.39 6.16 0.21 0.26 5.89
60 1.16 1.36 17.77 0.37 0.47 17.15 6.00 0.20 0.25 5.77
80 1.04 1.23 17.24 0.34 0.43 16.70 5.75 0.19 0.24 5.58
100 0.95 1.12 16.77 0.31 0.39 16.44 5.57 0.18 0.23 5.43
120 0.88 1.05 16.32 0.30 0.37 16.09 5.44 0.17 0.21 5.31
140 0.81 0.98 16.06 0.28 0.35 15.94 5.32 0.16 0.20 5.20
200 0.80 0.14 15.65 5.05 0.14 4.98
300 0.70 0.12 15.12 4.84 0.12 4.73
400 0.62 0.11 15.11 0.11 4.61
500 0.56 0.10 14.90 0.10 4.54
600 0.52 0.10 15.05 0.10 4.49
700 0.42 0.09 18.05 0.09 4.47
800 0.47 0.09 17.60 0.09 4.30
900 0.08 0.08 4.37

to the nucleus, and that decreases the energy up to a certain B

value. In the He− ion the Z = 2 charge is not strong enough
to produce the same effect.

The He− ion in this configuration is not bound without
a magnetic field, and according to the present calculation,
a minimal field strength B = 0.062(6) a.u. is needed for a
bound He− ion. This is a slight improvement over previous
works [5,40]. Determining a more accurate value is possible
but computationally expensive.

The boundedness of the He− ion can be explained by the
magnetic (〈Vmag〉) contribution to the energy, which is plotted
for He− and Li as a function of B in Fig. 5. This figure also
shows the curves for He and Li+ in 11(0)+, which define
the threshold energies. As Fig. 5 shows, the contribution of
the magnetic field 〈Vmag〉 is negative for the three-electron
case, and this supports bound systems. The system is naturally

bound for all values of magnetic field for Li (and Be+)
where the nuclear Coulomb contribution is enough to bind the
electron even without a magnetic field. For He−, this additional
〈Vmag〉 becomes strong enough to make the system bound for
larger B values.

The quadrupole moments of the systems in the 2(−1)+
configuration are compared in Fig. 4 and in Table VI. The
weakly bound He− ion has a prolate shape and becomes
gradually more spherical as the magnetic field increases. Li and
Be+ have oblate shapes at low magnetic fields and change to
prolate shapes after the magnetic field becomes strong enough.

C. The 4(−1)+ (M = −1, Sz = − 3
2 ) configuration

The total energies for this case are presented in Tables IV, V,
and IX and plotted in Fig. 6. Both Li and Be+ are stable in this
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TABLE VII. Energy contribution (in a.u.) of different terms of
the Hamiltonian for the 2(0)+ (M = 0, Sz = − 1

2 ) configuration of Li.

B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot

0 7.478 2.198 −17.154 −7.478
0.001 7.478 2.198 −17.154 0.002 −0.498 −7.479
0.01 7.478 2.199 −17.155 0.015 −0.485 −7.483
0.02 7.479 2.200 −17.156 0.030 −0.470 −7.487
0.1 7.503 2.225 −17.205 0.130 −0.370 −7.514
0.16 7.531 2.251 −17.257 0.180 −0.320 −7.525
0.2 7.552 2.268 −17.291 0.205 −0.295 −7.530
0.24 7.574 2.284 −17.325 0.225 −0.275 −7.533
0.4 7.663 2.334 −17.439 0.277 −0.223 −7.531
0.5 7.716 2.354 −17.492 0.295 −0.205 −7.524
0.8 7.863 2.378 −17.586 0.324 −0.176 −7.487
0.825 7.874 2.379 −17.591 0.325 −0.175 −7.483
0.85 7.885 2.379 −17.596 0.327 −0.173 −7.479
0.875 7.897 2.379 −17.601 0.328 −0.172 −7.476
0.9 7.909 2.380 −17.606 0.329 −0.171 −7.472
1 7.956 2.379 −17.624 0.334 −0.166 −7.455
1.2 8.053 2.379 −17.663 0.343 −0.157 −7.420
1.5 8.213 2.382 −17.739 0.356 −0.144 −7.360
1.6 8.270 2.384 −17.770 0.361 −0.139 −7.338
2 8.516 2.400 −17.917 0.379 −0.121 −7.242
4 10.001 2.543 −18.923 0.453 −0.047 −6.567
5 10.819 2.621 −19.469 0.479 −0.021 −6.134
10 15.088 2.971 −22.025 0.556 0.056 −3.405
20 23.664 3.491 −26.082 0.618 0.118 3.442
40 40.398 4.203 −31.907 0.664 0.164 19.241
50 48.615 4.477 −34.208 0.675 0.175 27.635
60 56.763 4.719 −36.258 0.683 0.183 36.221
80 72.910 5.134 −39.817 0.695 0.195 53.796
100 88.909 5.486 −42.872 0.702 0.202 71.741

configuration for all tested B fields. The He− ion is stable in
the B = [0,0.63] a.u. region, but it becomes unbound beyond
that value [40,45].

The threshold energies are the energies of the He atom and
the Li+ and Be++ ions in state 2(0)+ or 2(−1)+, depending
on the intensity of the B field. In the case of the He atom,
the 2(0)+ configuration has more negative energy for B �
0.02 a.u. At some point within the interval (0.02,0.10] the
energy of 2(−1)+ becomes more negative than that of 2(0)+.
Therefore it becomes the threshold for larger B fields. For Li+
the situation is similar, but the interval is (0.16,0.20], while
for Be++ it is (0.24,0.40]. From the calculation it can be seen
that a higher nuclear charge implies that the threshold changes
at a higher B field. Note that, unlike in the previous cases, the
11(0)+ configuration is not a threshold because conservation
of angular momentum forbids the transition to that state within
the nonrelativistic framework [see Eq. (10)].

The binding energy for He−, Li, and Be+ is shown in
Fig. 6. For all three systems a maximum and a minimum
can be observed. In the case of Li and Be+ the binding
energy keeps increasing at high fields. Further details can be
seen by comparison of the electron-nucleus distance z2

Ne. The
maximum binding energy seems to take place near the point
where the elongation in z starts increasing, as shown in Fig. 6.
This is similar to the cases described in the previous section.

TABLE VIII. Energy contribution (in a.u.) of different terms of
the Hamiltonian for the 2(0)+ (M = 0, Sz = − 1

2 ) configuration of
Be+.

B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot

0 14.325 3.246 −31.895 −14.325
0.001 14.324 3.246 −31.894 0.001 −0.499 −14.325
0.01 14.324 3.246 −31.895 0.005 −0.495 −14.330
0.02 14.324 3.246 −31.895 0.011 −0.489 −14.334
0.1 14.335 3.252 −31.911 0.053 −0.447 −14.369
0.16 14.350 3.260 −31.934 0.082 −0.418 −14.391
0.2 14.363 3.267 −31.954 0.101 −0.399 −14.404
0.24 14.379 3.275 −31.977 0.117 −0.383 −14.415
0.4 14.455 3.311 −32.084 0.173 −0.327 −14.448
0.5 14.511 3.335 −32.157 0.201 −0.299 −14.461
0.8 14.690 3.399 −32.367 0.258 −0.242 −14.472
0.825 14.702 3.403 −32.379 0.261 −0.239 −14.471
0.85 14.717 3.408 −32.394 0.265 −0.235 −14.471
0.875 14.733 3.412 −32.411 0.268 −0.232 −14.470
0.9 14.748 3.417 −32.427 0.271 −0.229 −14.469
1 14.807 3.433 −32.485 0.283 −0.217 −14.463
1.2 14.925 3.460 −32.591 0.301 −0.199 −14.447
1.5 15.092 3.488 −32.718 0.319 −0.181 −14.410
1.6 15.146 3.495 −32.754 0.324 −0.176 −14.396
2 15.354 3.512 −32.871 0.338 −0.162 −14.331
4 16.485 3.561 −33.465 0.383 −0.117 −13.887
5 17.163 3.607 −33.890 0.404 −0.096 −13.599
10 21.116 3.901 −36.472 0.483 −0.017 −11.625
20 29.700 4.435 −41.425 0.560 0.060 −6.083
40 46.872 5.217 −49.204 0.622 0.122 7.764
50 55.330 5.526 −52.386 0.638 0.138 15.373
60 63.717 5.799 −55.251 0.650 0.150 23.257
80 80.309 6.271 −60.281 0.666 0.166 39.605
100 96.722 6.674 −64.642 0.677 0.177 56.492

For Li and Be+ the minimum binding energy happens to be
near the point where z2

Ne is maximum and the systems become
less tightly bound. At the same time, the He− ion becomes
unbound as this region is approached.

For low fields He−, Li, and Be+ have oblate shapes,
although the magnitude of the quadrupole moment of Li and
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FIG. 5. (Color online) Matrix elements for the magnetic contri-
bution in He− and Li in the 2(−1)+ state.
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FIG. 6. (Color online) State with 4(−1)+ (M = −1, Sz = − 3
2 ) for different nuclear charges Z. (a) Total energies, (b) binding energies, (c)

Qzz, and (d) average distance z2
Ne for different values of magnetic field.

Be+ is much smaller than that of He−. By increasing the
magnetic field the shape of these systems becomes prolate,
forming needlelike structures in high magnetic field.

D. The 4(−3)+ (M = −3, Sz = − 3
2 ) configuration

The energies for this configuration are shown in Fig. 7 and
presented in Tables IV, V, and IX. This state is fully spin
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FIG. 7. (Color online) State with 4(−3)+ (M = −3, Sz = − 3
2 ). (a) Total energies, (b) binding energy, (c) Qzz, and (d) average z2

Ne.
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FIG. 8. (Color online) Density 3D contour plots for He−: (a) 2(−1)+ with B = 0.1 and (b) state 2(−1)+ and (c) state 4(−3)+, both with
B = 0.70416, which is near the transition point.

polarized and eventually becomes the ground state at higher B

fields for He−, Li, and Be+, as shown in Fig. 1.
The threshold for this state is similar to that of the

4(−1)+ configuration, corresponding to configurations 2(0)+
and 2(−1)+ of the two-electron systems, as explained before.
He− 4(−3)+ is not stable below B = 0.02 a.u., but for stronger
fields it does becomes stable, and it is the ground state at higher
fields.

TABLE IX. The energies (in a.u.) for the bound states of He−.
Our calculations are converged up to the five decimal places.

B 2(−1)+ 4(−3)+ 4(−1)+

0 −2.17799
0.001 −2.17999
0.01 −2.19675
0.02 −2.19486 −2.21359
0.1 −2.90195 −2.28616 −2.31516
0.16 −2.89955 −2.35633 −2.37213
0.2 −2.89745 −2.39957 −2.40571
0.24 −2.89495 −2.44063 −2.43711
0.4 −2.88081 −2.58980 −2.55322
0.5 −2.86844 −2.67456 −2.62430
0.8 −2.81491 −2.90426
0.825 −2.80935 −2.92208
0.85 −2.80366 −2.93975
0.875 −2.79785 −2.95722
0.9 −2.79187 −2.97460
1 −2.76647 −3.04235
1.2 −2.70918 −3.17123
1.5 −2.60862 −3.35047
1.6 −2.57169 −3.40693
2 −2.40919 −3.61936
4 −1.35729 −4.46404
5 −0.73685 −4.80152
10 2.82088 −6.08238
20 10.92288 −7.76693
40 28.47898 −9.93814
50 37.55970 −10.75595
60 46.75611 −11.47044
80 65.38648 −12.69037
100 84.23329 −13.71707

Tables X and XI show the energy contributions for Li
and He−. Note that 〈VNe〉 is always more negative for the
2(−1)+ configuration than for the 4(−3)+ case (see Tables VII
and XI). On the other hand, 〈Vmag〉 is always more negative for
the 4(−3)+ case since it is fully spin polarized. The electron
repulsion tends to be less significant for 4(−3)+ than 2(−1)+
for all three-electron systems. This shows that having a higher
angular momentum allows a reduction of the electron repulsion
while simultaneously decreasing the Coulombic attraction due
to the larger distances. For large magnetic fields, having larger
angular momenta is energetically favored since it allows for
the alignment of the magnetic moments with the external
field, giving a more negative 〈Vmag〉. This eventually leads
to crossover, and the 4(−3)+ state becomes the ground state.
Comparing Tables X and XI, one sees that due to the difference
in nuclear charge the contribution of 〈VNe〉 is much larger for Li
than for He−, which also induces larger kinetic energy for Li.
At the same time the magnetic contribution is comparable in
the two systems, and the strong magnetic contribution supports
the bound state of the He− ion.

TABLE X. Energy contribution (in a.u.) of different terms of the
Hamiltonian for the 4(−3)+ (M = −3, Sz = − 3

2 ) configuration of
He−.

B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot

0.160 2.329 0.587 −4.943 0.943 −2.057 −2.356
0.200 2.384 0.632 −5.011 0.974 −2.026 −2.400
0.240 2.439 0.674 −5.074 0.999 −2.001 −2.441
0.400 2.664 0.811 −5.290 1.062 −1.938 −2.590
0.500 2.807 0.881 −5.406 1.088 −1.912 −2.675
0.800 3.244 1.051 −5.712 1.142 −1.858 −2.904
0.825 3.281 1.063 −5.736 1.145 −1.855 −2.922
0.850 3.318 1.075 −5.759 1.148 −1.852 −2.940
0.875 3.355 1.086 −5.782 1.152 −1.848 −2.957
0.900 3.393 1.098 −5.805 1.155 −1.845 −2.975
1.000 3.543 1.143 −5.895 1.167 −1.833 −3.042
1.200 3.848 1.224 −6.068 1.188 −1.812 −3.171
1.500 4.312 1.331 −6.314 1.214 −1.786 −3.350
1.600 4.468 1.364 −6.393 1.221 −1.779 −3.407
2.000 5.100 1.484 −6.697 1.247 −1.753 −3.619
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TABLE XI. Energy contribution (in a.u.) of different terms of the
Hamiltonian for the 4(−3)+ (M = −3, Sz = − 3

2 ) configuration of Li.

B 〈T 〉 〈Vee〉 〈VNe〉 〈Vho/B〉 〈Vmag/B〉 Etot

0 5.143 0.595 −10.880 0.000 0.000 −5.143
0.001 5.143 0.594 −10.880 0.036 −2.964 −5.146
0.01 5.148 0.605 −10.896 0.293 −2.707 −5.169
0.02 5.158 0.624 −10.922 0.449 −2.551 −5.192
0.1 5.205 0.800 −11.101 0.550 −2.450 −5.341
0.16 5.254 0.884 −11.205 0.585 −2.415 −5.454
0.2 5.300 0.923 −11.273 0.626 −2.374 −5.525
0.24 5.351 0.957 −11.341 0.664 −2.336 −5.594
0.4 5.571 1.077 −11.600 0.775 −2.225 −5.842
0.5 5.715 1.143 −11.751 0.822 −2.178 −5.982
0.8 6.157 1.313 −12.161 0.917 −2.083 −6.358
0.825 6.194 1.325 −12.192 0.922 −2.078 −6.387
0.85 6.232 1.338 −12.224 0.928 −2.072 −6.416
0.875 6.269 1.350 −12.255 0.934 −2.066 −6.444
0.9 6.306 1.362 −12.286 0.939 −2.061 −6.472
1 6.456 1.409 −12.406 0.958 −2.042 −6.582
1.2 6.758 1.497 −12.635 0.991 −2.009 −6.793
1.5 7.214 1.614 −12.957 1.029 −1.971 −7.086
1.6 7.368 1.650 −13.060 1.039 −1.961 −7.179
2 7.987 1.782 −13.453 1.076 −1.924 −7.533
4 11.172 2.282 −15.172 1.182 −1.818 −8.989
5 12.795 2.477 −15.932 1.214 −1.786 −9.592
10 20.961 3.218 −19.138 1.300 −1.700 −11.958
20 37.143 4.216 −23.864 1.366 −1.634 −15.186
40 68.938 5.547 −30.438 1.412 −1.588 −19.457
50 84.667 6.060 −33.011 1.424 −1.576 −21.087
60 100.328 6.516 −35.299 1.432 −1.568 −22.520
80 131.487 7.302 −39.266 1.444 −1.556 −24.980
100 162.489 7.972 −42.661 1.451 −1.549 −27.065

Figure 7 shows the quadrupole moment and z2 for this
configuration. The behavior of the quadrupole moment for Li
and Be+ is similar to the results shown in Ref. [30]. The system
has an oblate shape at small magnetic fields and gradually
becomes more spherical for high fields. The change in shape
is more noticeable for He−, which is also oblate for low fields
but becomes prolate at around B = 0.5 a.u and then changes
back to spherical for high fields.

IV. SUMMARY

The energies and the structures of three-electron systems
(He−, Li, and Be+) have been calculated using deformed
explicitly correlated Gaussian basis representation. The basis
functions had different parameters in the z direction and the xy

plane following the symmetry of the magnetic Hamiltonian.
This flexibility allows higher accuracy than other methods
using spherical basis states. The basis parameters were opti-
mized by the stochastic variational method, which provides an
efficient and simple way to reach highly accurate ground-state
energies. The stability of the system as a function of the
nuclear charge and magnetic field was analyzed, pointing out
the similarities and the differences in the properties of these
systems. The approach presented in this paper can be extended
to larger systems and work on four- and five-electron systems
is underway.
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