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Hyperspherical calculations of ultralow-energy collisions in Coulomb three-body systems
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Quantum mechanical calculations of ultralow-energy collision of Coulomb three-body systems in the
hyperspherical elliptic coordinates are presented. The nonadiabatic coupling between the hyperradius and
hyperangular variables is treated with the slow-variable discretization method in combination with the R-matrix
propagation technique. For scattering state calculations, the two-dimensional matching procedure using Gailitis’s
method [M. Gailitis, J. Phys. B 9, 843 (1976); C. Noble and R. Nesbet, Comput. Phys. Commun. 33, 399 (1984)]
is implemented to determine the boundary conditions between the internal and the asymptotic wave functions.
This method is proved to be very efficient and gives very accurate results. Taking advantage of this method, we
accurately calculate the scattering phase shifts and the scattering lengths of Coulomb three-body systems with
mass ratio varying over several orders of magnitudes. We observed jumps of the scattering length from −∞ to
∞ at certain mass ratios and monotonic decreases between two jumps. These are closely related to the binding
energy of the highest bound state through Levinson’s theorem [N. Levinson, K. Dan. Vidensk. Selsk. Mat. Fys.
Medd. 25, 9 (1949)]. Our calculations provide a comprehensive perspective to the scattering length from the
variation of mass ratio of Coulomb three-body systems.
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I. INTRODUCTION

The Coulomb three-body problem is fundamental to atomic
and molecular physics as a basic component for understanding
more complex many-body problems. This problem is not
analytically solvable, but is still simple enough to be studied
with accurate numerical results by advanced computational
techniques. A number of theoretical studies have been devoted
to accurate scattering calculations with different computational
methods for various systems including prototypical systems of
H− [1], He [2–4], HD+ [5], and H2

+ [6] as well as exotic
atoms such as Ps− [7–10], dtμ [11,12], and p̄H [13]. In
addition to those studies for each particular system, systematic
investigations are very important for a deeper understanding
of the underlying physics. A three-body system interacting
via the Coulomb force is parametrized by the combinations
of charges and masses of constituting particles. Physical
quantities can be analyzed by continuously changing these
parameters. For instance, the parameter region for the existence
of stable bound states in Coulomb three-body systems has been
explored [14,15]. It is known that only certain combinations
of the masses of constituting particles with unit charge can
have stable bound states. The boundary of the stability domain
in the mass ratio space is examined using accurate variational
calculations [15]. For resonance states, evolution of the wave
function as a function of the mass ratio was analyzed from
the hyperspherical point of view [16]. It is also shown that the
resonance width oscillates over a wide range with the mass
ratio due to the interference between two decaying paths [17].
Adiabatic quasiseparability of Coulomb three-body systems
in the hyperspherical elliptic (HSE) coordinates [18] was
analyzed in Ref. [19]. It has been demonstrated that the bound
and resonance states for arbitrary charges and masses can be
characterized by a set of approximate quantum numbers [19].
Such analyses indeed provide rich information on the stability
of quantum many-body systems.

In this paper we report a systematic study of ultralow-
energy collisions in Coulomb three-body systems. Recent
progress in experimental techniques opened a new research
field of cold collisions [20–22]. Knowledge of the cold
collisions is essential for various physics communities, such
as laser cooling and trapping [23], chemical reactions at
ultralow energies [24], formation of Rydberg atoms and
exotic atoms [25], and intense laser-atom interactions [26,27].
Indeed, several accurate calculations [28–31] in the ultralow-
energy collision regime have been presented for several
Coulomb three-body systems, but no systematic investigations
so far.

We restrict ourselves to the analysis of symmetric Coulomb
three-body systems consisting of singly charged particles,
where two of the three are identical and the third particle
has the opposite charge. The properties of these systems are
uniquely characterized by the mass ratio M of the constituting
particles. The limit M → 0 of these systems is the atomic
system H− and the limit M → ∞ is the molecular system
H2

+. Some other systems such as Ps− correspond to a
finite value of M. We focus on the low-energy collisions
between one of the two identical particles with the other
pair in the ground state. We employ the HSE coordinate
method [18,19] to obtain accurate phase shifts for a number
of different M values in the ultralow-energy regime. With
the quasiseparability of Coulomb three-body systems in the
HSE coordinates, observables are calculated very efficiently
for arbitrary Coulomb three-body systems just by treating the
charges and masses as input parameters.

The scattering length is a fundamental concept in ultracold
collisions. It played an essential role in the blueshift and
redshift of high Rydberg states of atoms in low-pressure
gases [32]. Knowledge of it was also essential in the first
creation of atomic Bose-Einstein condensate [33,34]. The
Efimov states exist [35,36] in an anomalous situation when
the two-body scattering length goes to infinity. As we will see
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later, the scattering length jumps from −∞ to ∞ many times
whileM is increased continuously. We analyze those jumps by
relating them to the binding energy of the highest bound state
of the system. Our results give a comprehensive perspective to
the ultralow-energy collisions from the variation of the mass
ratio of Coulomb three-body systems.

This paper is organized as follows. The HSE coordinate
method is recapitulated in Sec. II. Essential steps of the
calculations are outlined. In Sec. III the results of the phase
shifts for real physical systems, such as H−, Ps−, and H2

+,
are compared with previous data obtained by other methods,
confirming the accuracy of our method. Then the mass ratio
dependence of the extracted scattering lengths is presented and
discussed. Section IV summarizes the paper.

II. METHOD

We provide essential steps of the HSE coordinate method
for bound- and continuum-state calculations. Detailed descrip-
tions of the method can be found in previous papers [19,37].
In this section we consider a general three-body system with
masses mi and charges ei (i = 1,2,3) interacting with each
other by the Coulomb forces, although we will analyze only
symmetric systems with e1 = e2 and m1 = m2. In this paper
we use modified atomic units (m.a.u.), defined by e3 = m3 =
� = 1, which are suitable for considering a wide range of
masses and charges at the same time. We also use the standard
atomic units (a.u.) when a particular system is considered.

Let ri (i = 1,2,3) be the position of the ith particle in the
center-of-mass frame. The mass scaled Jacobi coordinates are
defined by

xi =
√

Miri , (1)

yi = √
μi(ri+2 − ri+1), (2)

where

Mi = mi(mi+1 + mi+2)

mi + mi+1 + mi+2
, μi = mi+1mi+2

mi+1 + mi+2
(3)

are the reduced masses and {i,i + 1,i + 2} denote a cyclic
permutation of {1,2,3}. The three sets of Jacobi coordinates
are related by the kinematic rotation[

xi+2

yi+2

]
=

[− cos γi − sin γi

sin γi − cos γi

][
xi+1

yi+1

]
, (4)

with the kinematic rotation angles given by

tan γi =
√

mi(m1 + m2 + m3)

mi+1mi+2
, 0 � γi � π/2. (5)

In the HSE coordinates, the six degrees of freedom of the
three-body system are described by the hyperradius

R =
√

x2
i + y2

i =
(

3∑
i=1

mir
2
i

)1/2

, (6)

which measures the size of the system, and five hyperangles
symbolically represented by �, which define the relative
positions of the three particles. The hyperangles � can be
split into two parts �E and �S . The former �E represents the

three Euler angles defining the orientation of the three-body
system with respect to the laboratory fixed frame and �S

represents two variables parametrizing the shape of the
three-body triangle. Since we focus on the ultralow-energy
collision, we only consider the system with zero total angular
momentum J = 0. In this case, the Euler angles can be
eliminated and thus the six-dimensional problem is reduced
to a three-dimensional one with variables R and �S . In the
HSE coordinates, the two shape angles �S are defined by [18]

ηi = χi+1 − χi+2, − 2γi � ηi � 2γi, (7)

ξi = χi+1 + χi+2, 2γi � ξi � 2π − 2γi, (8)

where {χi} are the so-called Delves hyperangles

tan
χi

2
= yi

xi

, 0 � χi � π. (9)

In what follows we use �S = (η3,ξ3) for shape angles and for
simplicity omit the subscript. The Schrödinger equation for
J = 0 in the HSE coordinates is then written as(

−1

2

1

R5

∂

∂R
R5 ∂

∂R
+ 	2(�S)

2R2
+ C(�S)

R
− E

)
×
(R,�S) = 0, (10)

where C(�S) is the effective charge and 	2(�S) is the square
of the grand angular momentum operator. The explicit forms
of C(�S) and 	2(�S) in the HSE coordinates are

	2(η,ξ ) = − 16

cos η − cos ξ

[
∂

∂η
(cos η − cos 2γ )

∂

∂η

+ ∂

∂ξ
(cos 2γ − cos ξ )

∂

∂ξ

]
, (11)

C(η,ξ ) = 4
cos(η/2) + cos(ξ/2)

cos η − cos ξ

×
[
z+ cos

η

4
sin

ξ

4
+ z− sin

η

4
cos

ξ

4

]
(12)

+
√

2z3√
1+p+ cos(η/2) cos(ξ/2)−p− sin(η/2) sin(ξ/2)

,

where

zi = ei+1ei+2
√

μi, z± = z2 ± z1 (13)

and

p+ = 1 + 2m3

m1 + m2
, p− = m2 − m1

m1 + m2
. (14)

One of the basic ideas of the hyperspherical method is the
adiabatic separation between R and �S [38,39]. The crucial
step is to solve the two-dimensional (2D) adiabatic eigenvalue
problem (EVP)

[Had(R) − Uν(R)]�ν(�S ; R) = 0, (15)

where

Had(R) = 1
2	2(�S) + RC(�S) (16)

is the adiabatic Hamiltonian, which is an operator in �S

and depends parametrically on R. The eigenvalues Uν(R)
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and the associated eigenfunctions �ν(�S ; R) are called the
hyperspherical potentials and the adiabatic channel functions,
respectively. Following Refs. [18,19], we adopt a two-step
procedure based on the splitting of the effective charge into
two parts

C(η,ξ ) = Cs(η,ξ ) + Cr (η,ξ ), (17)

where Cs(η,ξ ) and Cr (η,ξ ) are the separable and the residual
parts, respectively, and their explicit forms are given in
Ref. [19]. First, we solve the separable EVP in Eq. (15),
where C(η,ξ ) is replaced by Cs(η,ξ ). The 2D EVP then
consists of a pair of two 1D EVPs, which can be solved
much more easily with the discrete-variable representation
(DVR) method. In the second step, we use the direct products
of the separable basis sets generated in the previous step
for solving the 2D adiabatic EVP in Eq. (15). It has been
shown that for Coulomb three-body systems, the contributions
of Cr can be minimized systematically and the number of
basis functions in the second step of diagonalization can be
significantly reduced. This quasiseparability using η and ξ is
of great advantage to numerical calculations with the HSE
coordinates. A complete analysis of the quasiseparability for
Coulomb three-body systems is given in Ref. [18].

For the symmetric systems, the solutions of Eq. (10) can be
separated into either even or odd states under the permutation
of the two identical particles 1 and 2. In the HSE coordinates,
the permutation is represented by the exchange of η and −η.
We separately calculate the even and odd states in Eq. (15) by
choosing symmetric and antisymmetric basis sets with respect
to η = 0. As examples, the lowest 100 hyperspherical adiabatic
potentials of Ps− with even and odd symmetries are shown in
Figs. 1(a) and 1(b), respectively.

Having Uν(R) and �μ(�S ; R), we next solve the coupled
equations in R. Substituting a different function defined by

ψ(R,�S) = R3/2
(R,�S) (18)

into Eq. (10), we obtain

[K(R) + Had(�S ; R) − R2E]ψ(R,�S) = 0, (19)

where

K(R) = −1

2

∂

∂R
R2 ∂

∂R
+ 15

8
(20)

corresponds to the kinetic energy operator for the motion in R.
We use slightly different procedures for bound and continuum
states.

For bound-state calculations we solve Eq. (19) with
the slow-variable discretization (SVD) method [40]. In this
method the wave function is expanded as

ψn(R,�S) =
NDVR∑
i=1

Nch∑
ν=1

Cn
iνπi(R)�ν(�S ; Ri), (21)

where πi(R) (R ∈ [0,∞]) are the DVR basis functions
constructed from the associated Laguerre polynomials and
indexed by the DVR quadrature points Ri . Substituting
Eq. (21) into Eq. (19), we arrive at the SVD algebraic EVP
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FIG. 1. (Color online) Hyperspherical adiabatic potentials
[Uν(R) + 15/8]/R2 for Ps− with (a) even and (b) odd permutation
symmetries.

defining the coefficients Cn
iν and eigenvalues En,

NDVR∑
j=1

Nch∑
μ=1

{
KijOiν,jμ + R2

i [Uν(Ri) − En]δij δνμ

}
Cn

jμ = 0,

(22)
where NDVR and Nch are the numbers of the hyperradial
DVR basis set and of the adiabatic channels included in the
calculations, respectively. The total dimension of the basis set
for the SVD EVP is NSVD = NDVR × Nch. In Eq. (22)

Kij = 1

2

∫ ∞

0

dπi(R)

dR
R2 dπj (R)

dR
dR + 15

8
δij (23)

is the DVR matrix for the operator K(R) and

Oiν,jμ = 〈�ν(�S ; Ri)|�μ(�S ; Rj )〉 (24)

is the overlap matrix. Here 〈· · · | · · · 〉 denotes the integration
over η and ξ .

In order to obtain very accurate results, we should include
a large number of adiabatic channels that may have strong
nonadiabatic couplings near the sharp avoided crossings as
shown in Fig. 1. The SVD method implicitly incorporates the
nonadiabatic couplings among the adiabatic channels in an
algebraic form using the overlap matrix elements at the DVR
quadrature points.
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For scattering state calculations, Eq. (19) should be solved
from R = 0 to the matching hyperradius R = Rm and matched
to the asymptotic solutions to extract scattering information.
The interval [0,Rm] is divided into a number of sectors and
within each sector the equations are solved using the SVD
method. We then employ the R-matrix propagation [41] from
sector to sector. This combined method of SVD and R-matrix
propagation was first introduced in treating electron impact
ionization of hydrogen [4] and atom transfer reactions in
atom-diatom collisions [37] where its accuracy and efficiency
were confirmed. Then it was used in other Coulomb three-body
systems, such as dtμ [11]. Very recently, this method was also
employed in the recombination processes of three identical
bosons [42] and the elastic and reactive atom-molecule
collisions [43]. In this R-matrix propagation procedure,
we consider the kinetic energy operator in the kth sector
between Rk−1 and Rk , amended by the Bloch operator L(R),
namely,

K̃(R) = K(R) + L(R), (25)

where

L(R) = 1

2
R2[δ(R − Rk) − δ(R − Rk−1)]

∂

∂R
. (26)

The Bloch operator is introduced here to make the operator
K̃(R) Hermitian. Within each sector, we solve Eq. (19) with
K(R) replaced by K̃(R),

[K̃(R) + Had(�S ; R) − R2Ẽ]ψ̃(R,�S) = 0 (27)

with the SVD expansion as in Eq. (21),

ψ̃n(R,�S) =
NDVR∑
i=1

Nch∑
ν=1

C̃n
iνπi(R)�ν(�S ; Ri), (28)

where πi(R) is the DVR basis set associated with the Legendre
polynomials. Then the R matrix R defined by

〈�ν(�S ; R)|ψ(R; �S)〉

=
∑

μ

Rνμ(R)

〈
�ν(�S ; R)

∣∣∣∣∂ψ(R; �S)

∂R

〉
(29)

is propagated from Rk−1 to Rk across the boundary using

R(Rk) = Rkk − Rkk−1[Rk−1k−1 + R(Rk−1)]−1Rk−1k,

(30)

where

Rkl
νμ = 1

2

NSVD∑
n=1

F̃νn(Rk)F̃μn(Rl)

Ẽn − E
(31)

and

F̃νn(Ra) = Ra〈�ν(�S ; Ra)|ψ̃n(Ra,�S)〉. (32)

In Eq. (31) Ẽn are the eigenvalues of Eq. (27) and in Eq. (32)
Ra stands for either Rk−1 or Rk . We repeat this procedure from
the first sector with R(R = 0) = 0 to the last sector to obtain
the R matrix at the matching radius R(R = Rm). This step
constructs the solutions in the interior region.

In our scattering calculations, the asymptotic wave func-
tions are expressed in the mass-scaled Jacobi coordinates [37].
In the limit of xi � yi the potential energy of the three-body
system is expanded in (xi,yi) coordinates as

V =
√

μiei+1ei+2

yi

+
√

Miei

xi

∞∑
l=0

[
ei+2

(
yi

xi tan γi+2

)l

+ ei+1

( −yi

xi tan γi+1

)l
]
Pl(cos θi), (33)

where Pl(cos θi) are the Legendre polynomials, θi is the angle between xi and yi . The first term of Eq. (33) is the Coulomb
interaction of the bound pair and the second part of the sum over l = 0,1, . . . corresponds to the multipole expansion of the
potential between the ith particle and the bound pair. Retaining only 0 � l � lmax terms in the expansion in Eq. (33), we get[

−�yi

2
− �xi

2
+

√
μiei+1ei+2

yi

+
√

Miei(ei+1 + ei+2)

xi

+
lmax∑
l=1

Al − E

]

as(xi ,yi) = 0, (34)

where

Al =
√

Miei

[
ei+2

(
1

tan γi+2

)l

+ ei+1

( −1

tan γi+1

)l
]

yl
i

xl+1
i

Pl(cos θi). (35)

The solutions to Eq. (34) can be written as


(S,C)
μas

(xi ,yi) = R3/2
∑
νas

1

xi

√
kνas

F (S,C)
νasμas

(xi,kνas )Bνas (yi).

(36)
Here

Bνas (yi) = 1

yi

ϕνj (yi)Pj (cos θi) (37)

is the asymptotic channel function, which describes the motion
of the ith bound pair with a collective index νas = {ν,j},

describing ν and j as the principle and angular quantum
numbers of the bound pair, respectively, and ϕνj (yi) is the
solution to the radial equation

[
d2

dy2
i

+ 2μi

(
ενj −

√
μiei+1ei+2

yi

)
− j (j + 1)

y2
i

]
ϕνj (yi) = 0,

(38)
with the boundary conditions

ϕνj (0) = ϕνj (∞) = 0. (39)
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In Eq. (37) ενj < 0 is the bound-state energy of the bound pair
in the νas = {ν,j} channel. The relative motion of the ith parti-
cle and the ith bound pair is described by 1

xi

√
kνas

F (S,C)
νasμas

(xi,kνas )

in Eq. (36) with F (S,C)
νasμas

(xi,kνas ) being the regular S and irregular
C solutions of the equation[

d2

dx2
i

− j (j + 1)

x2
i

− 2
√

Miei(ei+1 + ei+2)

xi

+ k2
μas

]
Fμas (xi)

=
∑
νas

lmax∑
l=1

Al
μasνas

xl+1
i

Fνas (xi), (40)

where

kμas =
√

2Mi

(
E − εμas

)
(41)

are the asymptotic momenta, describing the relative momenta
between the incident particle and the target system, and

Al
μasνas

=
∫

Bμas (yi)AlBνas (yi)dyi (42)

is the matrix of the multipole couplings. Equation (40) is
solved using Gailitis’s method [44,45] with proper boundary
conditions at xi → ∞ for open and closed channels and we
found that it is sufficient to set lmax = 1 for the systems
considered here.

We now implement the 2D matching to extract scattering
information [37]. Matching requires that the function and its
derivative solved with the SVD and R-matrix propagation
methods for R � Rm and those obtained with Gailitis’s method
for R � Rm coincide at the hyperspherical surface R = Rm.
Projecting these conditions on the hyperspherical channel
functions by performing the integral over the hyperangles η

and ξ , the K matrix is given by

K = −(F(C) − RD(C))−1(F(S) − RD(S)), (43)

where

F(S,C)
ννas

= 〈�ν(�S ; R)|
(S,C)〉|R=Rm , (44)

D(S,C)
ννas

=
〈
�ν(�S ; R)

∣∣∣∣∂
(S,C)

∂R

〉∣∣∣∣
R=Rm

. (45)

The advantage of the 2D matching is that the scattering
information can be extracted with a smaller matching radius
and thus the computational demand in the calculations for the
interior region can be significantly reduced. It has been widely
used in the hyperspherical approach and its accuracy has been
confirmed in [2,4,11,37,46].

For the ultralow-energy regime, there is only one open
channel. In this situation the matrix (43) is a number K = K

and the phase shift

δ = arctan K. (46)

Convergence of the calculations strongly depends on the
system. In the bound-state calculations, we introduce a scaling
parameter in the hyperradial grid in such a way that the largest
DVR quadrature point Ri=NDVR = Rmax. Then we check the
convergence of the bound-state energies by increasing NDVR.
For H− as a typical system of M ∼ 0, Rmax = 50 a.u. and
NDVR = 30 together with Nch = 30 in the SVD expansion

[see Eq. (22)] are large enough to obtain the accuracy of eight
significant digits in the bound-state energies. For Ps− with
M = 1, Rmax = 100 a.u., NDVR = 30, and Nch = 30 are used.
For systems with large M, especially for those with a very
weakly bound state, larger Rmax and NDVR are needed, while
Nch can be reduced. For example, for H2

+, Rmax = 3500 a.u.
and Nch = 10 are enough to obtain converged bound-state
energies. For the scattering calculations, the main factor
influencing convergence is the matching radius Rm. For H−,
Rm = 100 a.u. is large enough to reach accurate results. For
H2

+, Rm should be larger than 104 a.u., if we aim to extract
the scattering length at ultralow collision energies. We also
carefully check the accuracy of the adiabatic channel function
by increasing the number of DVR quadrature points in η and
ξ particularly at large R. For H−, with R = 100 a.u., we used
200 quadrature points in each of η and ξ . We have checked that
this number ensures the accuracy of nine digits in the adiabatic
potentials. For H2

+ with R = 104 a.u., the quadrature points
in η and ξ required are 800 to reach this accuracy. In the SVD
procedure for the scattering calculations, larger Nch are needed
compared to the bound-state calculations. Thus Nch = 135 for
H− and 100 for H2

+ are included. The convergence has been
checked by enlarging these parameters for all the systems
considered in this work.

III. RESULTS AND DISCUSSION

We consider symmetric Coulomb three-body systems with
positive and negative unit charges, i.e., ±e1 = ±e2 = ∓e3 = 1
and m1 = m2. These systems can be characterized by the
mass ratio M = m1/m3 = m2/m3. First we will present the
numerical results of the phase shifts δ at several collision
energies and the scattering length a for some realistic systems
and compare them with previous data calculated with other
methods. Then we will analyze the scattering length a(M)
by changing M continuously in a wide range to study
ultralow-energy collisions.

A. Comparison with preceding results

For the low-energy collisions here, there is only one open
channel for both even and odd symmetries, corresponding to
the collisions of a particle with the others in their ground
state. In Table I we compare our results of the phase shifts in
both symmetries with other available data for the e-H (H−),
e-Ps (Ps−), and p+H (H2

+) collisions, which are prototypes
of M → 0, M ∼ 1, and M → ∞, respectively. The relative
momenta between the incident particle and the target system
in Eq. (41) in a.u. are indicated as

k =
√

2M1(E + μ1/2), (47)

where E is the total energy measured from the breakup
threshold, defined in Eq. (10), and −μ1/2 represents the
ground-state energy of the target. The H− system has been
widely studied with various methods. In this table we compare
our results with the results from the variational methods [1,47],
the complex-correlation Kohn T -matrix method [48], and the
Siegert pseudostate method [49]. It is shown that our results
agree well with those for both even and odd permutation
symmetries. Note that in our calculations and in Ref. [49]
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TABLE I. Comparison of phase shifts (in radians) of H−, Ps−, and
H2

+. For H−, the mass of the proton in our calculation and Ref. [49]
is set to be 1836.1527 a.u., while in Refs. [1,47,48] it is infinite. The
numbers in the parentheses give the uncertainty in the last digit.

H−

k (a.u.) Present work Ref. [49] Ref. [1] Ref. [47] Ref. [48]

Even
0.1 2.5531 2.5532 2.553(1) 2.5561 2.5536
0.2 2.0661 2.0663 2.0673(9) 2.0666 2.0668
0.3 1.6957 1.6961 1.6964(5) 1.6963 1.6982
0.4 1.4143 1.4149 1.4146(4) 1.4152 1.4154
0.5 1.1998 1.2004 1.202(1) 1.2010 1.2009
0.6 1.0398 1.0404 1.041(1) 1.0408 1.0408
0.7 0.9296 0.9303 0.930(1) 0.9303 0.9311
0.8 0.8867 0.8873 0.886(1) 0.8870 0.8872

Odd
0.1 2.9383 2.9388(4) 2.9385 2.9385
0.2 2.7170 2.7171(5) 2.7174 2.7174
0.3 2.4991 2.4996(8) 2.4997 2.4998
0.4 2.2933 2.2938(4) 2.2941 2.2941
0.5 2.1037 2.1046(4) 2.1046 2.1045
0.6 1.9320 1.9329(8) 1.9328 1.9327
0.7 1.7785 1.7797(6) 1.7794 1.7795
0.8 1.6429 1.643(3) 1.6438 1.6438

Ps−

k (a.u.) Present work Ref. [7] Ref. [8] Ref. [9] Ref. [10]
Even

0.1 2.0557 2.049 2.062 2.056 1.894
0.2 1.3782 1.378 1.386 1.378 1.226
0.3 0.9828 0.984 0.989 0.983 0.876
0.4 0.7455 0.748 0.751 0.746 0.643

Odd
0.1 2.6052 2.605 2.608 2.6056 2.596
0.2 2.1074 2.106 2.111 2.1086 2.105
0.3 1.7105 1.709 1.714 1.7116 1.720
0.4 1.4040 1.402 1.412 1.4056 1.409

H2
+

Even Odd
Energy (eV) Present work Ref. [52] Present work Ref. [52]
0.0001 1.1011 1.1058 2.2759 2.2758
0.0002 0.3610 0.3643 1.5758 1.5757
0.0003 3.0019 3.0036 1.0922 1.0921
0.0005 2.2878 2.2874 0.3960 0.3957
0.0007 1.7586 1.7567 3.0210 3.0204
0.0010 1.1382 1.1345 2.4176 2.4163
0.0015 0.3475 0.3420 1.6537 1.6516
0.0020 2.8655 2.8590 1.0549 1.0530

the proton mass is set to 1836.1527 a.u., while it is infinite in
the other calculations. We also implemented the calculations
with a very large proton mass of 106 a.u. and found that the
results indeed get closer to those of Refs. [47,48], but there
still exist small discrepancies in the fourth decimal places.

For the e-Ps collision the results from the variational
method [7], close-coupling method [9,10], and by directly
solving the modified Faddeev equations [8] are shown
for comparison. A good agreement is achieved with these
accurate calculations.

TABLE II. Phase shifts (in radians) of H2
+.

k (a.u.) Even Odd

0.1 0.6985 1.8974
0.2 2.0269 0.1410
0.3 0.5872 1.8846
0.4 2.4701 0.6764
0.5 1.3260 2.7264
0.6 0.2643 1.7151
0.7 2.4076 0.7635
0.8 1.4603 3.0008

For the p-H case, only limited data are available at low
collision energies. Moreover, the Born-Oppenheimer (BO)
approximation is often used to study the ion-atom collisions.
However, it has been shown that the BO approximation
breaks down for ultralow-energy collisions [50,51]. Hunter
and Kuriyan obtained the phase shifts for p-H collision at low
energies within the BO approximation including nonadiabatic
correction to the BO potentials [52]. These are the only data
we know of for this system. The good agreement of these data
with the present fully nonadiabatic results supports the high
accuracy of the BO approximation. In Table II we include
more data on the p-H collision for reference in future studies.

We now focus our attention on the scattering length a, which
is a property of each collision system in the low-energy limit.
We extract the values of a from the calculated phase shifts δ

by fitting to the effective range expansion [53]

k cot δ = −1

a
+ bk + ck2 ln k, (48)

where coefficients b and c are also determined by the fitting.
Table III lists the extracted a of various systems for even
and odd symmetries from our calculations. Benchmark results
from the variational methods [1,7] for H− and Ps− are
also shown. Our results of H− agree with the variational
calculations within a few percent, but are slightly larger for
both even and odd symmetries. Note that the proton mass of
1836.1527 a.u. is used in our calculations, while it is infinite in
Ref. [1]. By increasing the mass of proton and extrapolation,

TABLE III. Scattering lengths in a.u. for realistic physical
systems. The masses of the muon, proton, deuteron, and tritium are
206.768 26, 1836.1527, 3670.4830, and 5496.9216 a.u., respectively.

Even Odd
Present work Other works Present work Other works

H− 6.02 5.965 ± 0.003a 1.82 1.7686 ± 0.0002a

Ps− 11.88 12.0 ± 0.3b 4.77 4.6 ± 0.4b

H2
+ − 31.0 −28.8c 715.0 725.2c

−29.3d 750d

ppμ−1.455 × 10−1 1.736×10−2

ddμ 2.467 × 10−2 1.519×10−2

t tμ −4.169 × 10−2 1.228×10−2

aReference [1].
bReference [7].
cReference [54].
dReference [55].
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we obtain a = 6.01 a.u. for H− with infinite proton mass.
Thus the differences in a are not attributable to the different
masses used in the two methods. For Ps−, the results also
agree well with the variational calculations in [7] within the
reported uncertainties. For H2

+, no variational calculations
are available. We show in Table III the results based on
the modified BO approximation [54] and from the Faddeev
equation [55] for comparison and found that the differences
among the three calculations are several percent.

The results shown above establish the accuracy of our HSE
coordinate method for the low-energy phase shifts as well as
the scattering lengths in a wide range of mass ratio M from
∼10−3 to ∼103. We also present the calculated values of the
scattering lengths for the other realistic systems of ppμ, ddμ,
and t tμ in Table III for future reference.

B. Mass-ratio dependence of the scattering length

1. Even permutation systems

In order to get a deeper insight into the underlying physics
of the mass ratio dependence of the scattering length, we
calculate a(M) for several systems by varying M. In this
section we use m.a.u. for the purpose of our systematic study.
Note that the conversion of the scattering lengths from atomic
units to the modified atomic units is given by a (m.a.u.) = m3a

(a.u.). The results for the even states are shown in Fig. 2(a) in
the region of M = 0–2000 and they are distributed in a wide
range of positive and negative values. According to Levinson’s
theorem [56] for potential scattering problems, the zero-energy
phase shift can be expressed using the number of bound states
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FIG. 2. (Color online) Mass ratioM dependence of (a) scattering
length a and (b) number of bound states Nb for even permutation
states. The dashed line in (b) shows the results calculated from
the semiclassical method in Eqs. (51) and (52). The insets show
an expanded view of the small-M region.

Nb, namely,

δ(k = 0) = Nbπ (49)

= (Nb + 1
2 )π (if there is a half bound state of zero energy).

(50)

Levinson’s theorem implies that as the potential parameter
changes continuously, the zero-energy phase shift increases
by π when a new bound state appears. As a result, scattering
length evolves from ∞ to −∞ with the changing value of
the potential parameter. This feature can be generalized to
multichannel problems [57] such as the symmetric Coulomb
three-body systems with M as the parameter that changes
continuously. In the following we examine the behavior of
a(M) based on the dependence of Nb(M).

Figure 2(b) shows Nb(M) for the even states; Nb(M)
increases monotonically from 1 to 21 whenM varies from 0 to
2000. We note Nb = 1 for H− where M ∼ 0 and Nb = 20 for
H2

+ where M = 1836.1527. We also plot the semiclassical
estimate given by [58]

Nb =
[

S

π
+ 1

2

]
, (51)

where [x] denotes the integer part of x and S is the semiclas-
sical action in m.a.u. estimated using the BO approximation

S =
∫ ∞

ρ0

√
2M

[ − 1
2 − U (ρ)

]
dρ = α

√
M. (52)

Here U (ρ) is the lowest BO potential for particle 3 in the
two-center Coulomb potential with ρ being the distance
between the two identical particles 1 and 2. The lower bound
ρ0 of the integral in Eq. (52) is the turning point where U (ρ0)
coincides with the dissociation threshold of −1/2 m.a.u. in
the BO approximation. Since U (ρ) and ρ0 are common for
all the cases, the action S can be factorized into

√
M and

a constant α that is determined by the potential. We obtain
α = 1.4729 for the even states by the numerical integration of
the BO potential. Figure 2(b) indicates that the semiclassical
BO approximation from Eqs. (51) and (52) provides a good
estimate of Nb in a wide range of M except for M � 1, where
the BO picture breaks down [see the inset of the Fig. 2(b)].
From the behavior of Nb(M) in Fig. 2(b) we expect that a(M)
would jump from −∞ to ∞ 20 times near the locations where
Nb has 20 steps in the range of 0 � M � 2000.

Figure 3 displays an expanded view of Fig. 2(a) in the
range of 0 < M � 35, where several realistic systems exist.
In this region, as can be seen in Fig. 3(b), the second and
third bound states appear at M ∼ 10 and M ∼ 30, which
are close to the semiclassical BO predictions of M = 10.6
and M = 29.3 from Eqs. (51) and (52), respectively. The
corresponding scattering lengths a(M) of these systems are
shown in Fig. 3(a). Indeed, a(M) has jumps from −∞ to ∞ at
the same locations, where the new bound states appear, and it
decreases monotonically from ∞ to −∞ in the range between
the two jumps. In order to see this behavior more quantitatively,
we estimate a(M) from the relation derived from the analytic
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FIG. 3. (Color online) Mass-ratio M dependence of (a) scatter-
ing length a and (b) number of bound states Nb for even permutation
symmetry states in the range of 0 < M � 35. The blue dots in (a)
are the results calculated with formula (53). The dashed line in (b)
shows the results calculated from the semiclassical method using
Eqs. (51) and (52). The inset shows the scattering lengths of some of
the realistic systems with M ∼ 0.

continuation of the scattering amplitude [58],

a = 1√−2M1Eb

, (53)

where M1 = M(M + 1)/(2M + 1) is the reduced mass
defined in Eq. (3) in m.a.u. and Eb < 0 (m.a.u.) is the
binding energy of the highest bound state measured from the
lowest dissociation threshold of −μ1/2 = −M/2(M + 1).
This should be valid for systems having a very weekly bound
state, where a new bound state just appears with the increasing
M. In Fig. 3(b) we also show the results estimated with
Eq. (53) (blue dots) from the calculated bound-state energies
for the systems having positive scattering lengths. They agree
well with the results of accurate calculations even for rather
tightly bound systems where the scattering length tends to
be small, located at the middle parts between the jumps. For
example, for ddμ, Eq. (53) provides 2.9 m.a.u., which is about
60% of 5.1 m.a.u. from the accurate result.

The analysis can be repeated for all other regions of M.
Figure 4(a) shows the systems near H2

+. The jumps of 20 and
21 bound states occur atM = 1720–1740 and 1900–1930 [see
Fig. 4(b)], respectively. The locations ofM agree well with the
values of 1730 and 1912 predicted by the BO approximation
from Eqs. (51) and (52). Correspondingly, the scattering length
jumps from −∞ to ∞ around these values ofM and decreases
monotonically during the range of M having 20 bound states.
The H2

+ system is located at slightly larger side ofM from the
center in the 20 bound-state region and the scattering length
has a rather small negative value on the order of 10 m.a.u.
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FIG. 4. (Color online) Same as Fig. 3 but for the systems with
1700 < M � 2000 including H2

+, which support 20 bound states
below the dissociation threshold.

2. Odd permutation systems

The odd permutation symmetry states have attracted special
interest in the theoretical studies of the symmetric Coulomb
three-body systems. It has been known that the lowest BO
potential for the odd states has a shallow minimum and there
are two bound states in H2

+. The existence of the second
bound state in H2

+ was predicted in Ref. [59] and recently an
accurate binding energy of 1.085 045 × 10−9 a.u. was obtained
with a large size of the basis set [55]. This weakly bound state
manifests itself as a huge scattering length of 715 m.a.u. (see
Table III). It is of interest to study the mass ratio dependence of
the scattering length and bound-state structures, in particular
for the isotope systems of H2

+, D2
+, and T2

+. We are unaware
of any data for those systems. Based on the analysis of the mass
ratio dependence in the previous section, we expect that the
scattering length and the number of bound states for D2

+ and
T2

+ would be very different from those for H2
+. Figure 5

depicts the resulting a(M) and Nb(M) for several systems
over the range of 0 < M � 6000 including D2

+ and T2
+.

It is shown that the scattering length jumps at M ∼ 300,
1700, and 4600, respectively. Correspondingly, Nb(M) jumps
around the same values of M. We also plot the semiclassical
approximation for Nb from Eqs. (51) and (52) with α = 0.1220
for the odd BO potential. The semiclassical approximation
underestimates the locations of the jumps by about ∼10%
in this region. The systems with M � 300, such as H−, Ps−,
ppμ, ddμ, and t tμ, have no bound states. There are two bound
states in H2

+ and D2
+, but their scattering lengths are quite

different. H2
+ exits just above the second jump and has a large

scattering length of 715 a.u. In contrast, D2
+ is at slightly larger

M from the center of the second and the third jumps and thus
it has a small negative scattering length of −45 a.u. Moving
further in the larger M side, T2

+ is located in the middle part
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FIG. 5. (Color online) Same as Fig. 3 but for the systems with
odd permutation symmetry in the range 0 < M � 6000.

between the third and fourth jumps, having three bound states.
We carry out the bound-state calculations for D2

+ and T2
+

and obtain the binding energies of the highest bound states
with respect to their dissociation thresholds: 1.4 × 10−6 and
4.6 × 10−8 a.u., respectively. Larger binding energies of D2

+

and T2
+ compared to that of H2

+ can be understood by their
smaller scattering lengths.

IV. CONCLUSION

Taking advantage of the HSE coordinate method, we
have carried out calculations of ultralow-energy collisions
for the symmetric Coulomb three-body systems with positive
and negative unit charges with a mass ratio of constituting
particles M varying over several orders of magnitude. We
have provided accurate results of the phase shifts as well as
scattering lengths for prototypical systems of H−, Ps−, and
H2

+ and the scattering lengths for other exotic systems. Having
the accurate calculations, we have investigated the scattering
lengths systematically by changing M nearly continuously.
We have shown that the scattering length decreases monoton-
ically from ∞ to −∞ with increasing M and jumps from
−∞ to ∞ at certain values of M. This is closely related to
the binding energy of the highest bound state of the system
through Levinson’s theorem. We also analyzed the mass ratio
dependence of the scattering length a and the number Nb

of bound states using a semiclassical approximation based
on the BO picture. The jumps in the phase shifts as well
as the number of bound states can be accurately estimated.
We predicted the existence of the three bound states for odd
permutation symmetry in T2

+ and evaluated its bound-state
energy accurately. Though the present calculations are focused
on Coulomb three-body systems, this accurate and versatile
procedure can be extended to various systems, which is very
important in ultracold physics.
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