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Positronium collisions with molecular hydrogen
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Positronium (Ps) collisions with molecular hydrogen are investigated theoretically. Elastic and Ps ionization
cross sections are calculated. For elastic scattering the pseudopotential method, previously developed for rare-gas
atoms, is applied. Ps ionization cross sections are calculated using the binary-encounter approximation. The results
agree with swarm measurements at low collision energies and with beam measurements at higher energies. The
total Ps-H2 cross section when plotted as a function of collision velocity is close to the e−-H2 cross section at
velocities above the Ps ionization threshold, confirming earlier observations [Brawley et al., Science 330, 789
(2010)]. However, below the threshold the two sets of cross sections are different because of the different nature
of the long-range interaction between the projectile and the target, the polarization interaction in the case of
e−-H2 collisions and the van der Waals interaction in the case of Ps-H2 collisions.
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I. INTRODUCTION

Positronium-atom and positronium-molecule collisions at
low energies are mostly controlled by the electron exchange
between the Ps electron and the target, and by the van der Waals
interaction between the Ps and the target. Moreover, at energies
above the Ps ionization threshold (6.8 eV) the exchange
interaction becomes dominant. This, to a large extent, explains
the recently discovered similarity [1–3] between e− and Ps
cross sections at intermediate energies when the cross section
is plotted as a function of the projectile velocity. This similarity
can also be explained, in a more direct way, within the
framework of the impulse approximation [4]. However, the
impulse approximation breaks down below the Ps ionization
threshold; therefore, for a more accurate description of Ps
scattering, methods that incorporate the Ps-target interaction
are necessary [5].

Completely ab initio inclusion of electron exchange in Ps
collisions with atoms and molecules is a very challenging task
and has been accomplished only for simple targets such as the
hydrogen atom [6,7]. Therefore it is advantageous to develop a
simplified method of incorporating exchange in Ps collisions.
A well-known method in electron collisions is based on the use
of a local exchange potential derived from the free-electron gas
model called the Hara free electron gas exchange (HFEGE)
potential [8] and its modifications [9]. However, quite often
the inclusion of this potential is not sufficient because this
method does not provide the correct nodal structure of the
wave function of the scattered electron. To satisfy the Pauli
exclusion principle, the correct structure should guarantee the
orthogonality of the wave function of the scattered electron to
all occupied target orbitals. Therefore quite often the HFEGE
potential is supplemented by the orthogonality constraints
[10]. In many cases this procedure significantly improves
agreement with the exact static-exchange calculations. For Ps-
atom collisions the orthogonality condition was implemented
by Biswas and Adhikari [11,12] in the form of an orthogonal
exchange kernel similar to the exchange amplitude of Ochkur
[13] and Rudge [14]. Integration of the static-exchange and
close-coupling equations with these exchange kernels pro-

duces scattering cross sections for Ps collisions with rare-gas
atoms that are in good agreement with existing experiments.

The orthogonality constraint can be mocked by introducing
an l-dependent repulsive component in the effective potential
for electron-atom or electron-molecule interaction [15]. The
repulsive core makes the wave function of the scattered
electron very small in the region where the occupied orbitals
are significant, and therefore strongly reduces the overlap
integral. This procedure reduces the actual scattering phase
shift at low energies by a factor of π times an integer and leads
to a violation of the Levinson-Swan theorem [16], but does not
affect the cross sections at low energies. This approach leads
to a description of the electron-target interaction in terms of
an l-dependent pseudopotential [15].

It is particularly convenient for a description of Ps-atom
scattering, since the orthogonality constraint is difficult to
implement for the electron bound in Ps. The pseudopotential
approach was successfully used [5] for theoretical description
of Ps-Ar and Ps-Kr collisions. At higher energies, comparable
to the energy of electronic excitation of the target, the pseu-
dopotential approach starts to fail. However, if the excitation
cross sections are not large, as in the case of the rare-gas
atoms, the error might be not very significant. In the present
paper we use the pseudopotential method to calculate elastic
scattering of Ps by the hydrogen molecule. Since only one
orbital, σg , is occupied in this case, we need to use the
repulsive core only in one symmetry. We supplement the
elastic cross-section calculations by calculation of ionization
of Ps in Ps-H2 collisions. As was shown in the atomic case
[4,17], this is the major inelastic channel in Ps collisions;
therefore the sum of elastic and Ps ionization cross sections
produces the total cross section with good accuracy. In the next
section we describe the basic theory, and then we present the
results of our calculations and comparison with experiment.
We note that since the discovery [1] of similarities between
electron and Ps scattering, it became customary to plot the Ps
scattering cross sections, as well as the electron cross sections,
as functions of velocity rather than energy. We continue
this tradition in the present paper. Atomic units are used
throughout.

1050-2947/2015/92(3)/032708(8) 032708-1 ©2015 American Physical Society

http://dx.doi.org/10.1126/science.1192322
http://dx.doi.org/10.1126/science.1192322
http://dx.doi.org/10.1126/science.1192322
http://dx.doi.org/10.1126/science.1192322
http://dx.doi.org/10.1103/PhysRevA.92.032708


R. S. WILDE AND I. I. FABRIKANT PHYSICAL REVIEW A 92, 032708 (2015)

FIG. 1. (Color online) Elastic Ps-H2 cross sections calculated by
combining HFEGE and van der Waals potentials. Black solid line:
only the spherically symmetric part of the potential is included. Red
dashed line: the full anisotropic interaction is included.

II. THEORETICAL MODEL FOR PS-H2 SCATTERING

A. Elastic scattering

The static contribution to the Ps-H2 interaction is zero;
therefore only the exchange potential contributes to Ps-H2

scattering in the static-exchange approximation. The van der
Waals interaction between Ps and H2, accounting for the long-
range part of electron correlation, can be written as

VW (R) = −C0 + C2P2(cos χ )

R6
{1 − exp[−(R/Rc)8]}, (1)

where R is the position of the center of Ps relative to the center
of H2, χ is the angle between R and the internuclear axis,
and Rc is a cutoff radius. The van der Waals coefficients C0

and C2 were calculated from the London formula [18] and the
theoretical principal values of the polarizability tensor for H2

[19], α‖ = 6.762 a.u., α⊥ = 4.506 a.u. These polarizabilities
are related to α0 and α2 entering the polarization potential

Vpol(r) = −α0 + α2P2(cos θ )

2r4

by the equations

α0 = 1

3
(α‖ + 2α⊥), α2 = 2

3
(α‖ − α⊥).

From here we obtain α0 = 5.258 a.u., α2 = 1.504 a.u., and
from the London formula C0 = 49.3 a.u., C2 = 14.1 a.u.

Although H2 is not, strictly speaking, a spherically symmet-
ric target, the e−-H2 and e+-H2 interactions can be described,
with very good accuracy, in terms of a spherically symmetric
potential. The accuracy is improved further when we treat
Ps-H2 collisions. The nonspherical parts of the exchange and
the van der Waals potentials are relatively small, and therefore
nondiagonal elements of the scattering matrix leading to l

transitions are insignificant.
In Fig. 1 we present the cross sections for Ps-H2 scattering

calculated with the HFEGE plus van der Waals potential

and compare them with the same calculations where only
the spherically symmetric part of both potentials is included.
The results are very close. When only the exchange potential
is included, the results are practically indistinguishable. We
should stress, though, that the only purpose of this calculation
is to justify the validity of the approximation of spherical
symmetry. The cross sections in this calculation are unphysical
because they do not incorporate the Pauli exclusion principle
and differ strongly from the more accurate theory.

The approximation of spherical symmetry significantly
simplifies the construction of the pseudopotential for Ps
scattering. In what follows we outline the version of the
pseudopotential used in the present calculations, referring the
reader for details to Ref. [5].

The e−-H2 exchange interaction is incorporated by the
pseudopotential

V =
∑
lm

|lm〉vl(r)〈lm|, (2)

where vl(r) is the spherically symmetric exchange potential
in the lth partial wave as a function of the electron radial
coordinate r relative to the center of H2, and |lm〉 is the
projector on the state with angular momentum l and its
projection m. This potential can be represented as an integral
operator with the kernel

V (r,r′) = 1

r2
δ(r − r ′)

∑
lm

vl(r)Y ∗
lm(r̂)Ylm(r̂′). (3)

Averaging of this potential over the electron-density distribu-
tion in Ps produces the following kernel:

V (R,R′) =
∑
lm

∫
1

r2
δ(r − r ′)vl(r)Y ∗

lm(r̂)Ylm(r̂′)|�(ρ)|2dρ,

(4)

where ρ is the relative e−-e+ coordinate, r = R + ρ/2 and
r′ = R′ + ρ/2, and �(ρ) is the Ps wave function.

The integral (4) can be represented in a form convenient
for calculations by going into a coordinate system with the
polar axis parallel to the vector s = R′ − R. We now present
the final result, referring the reader for details to [5]:

V (R,R′) = 1

2πs

∑
l l′

(2l + 1)(2l′ + 1)Pl′ (cos θR)

×
∫ ∞

0
Pl

(
1 − s2

2r2

)
Pl′

(
− s

2r

)
Fl′(r,R)vl(r)dr,

(5)

where

cos θR = R′ cos 	 − R

s
,

	 is the angle between R and R′, and Fl(r,R) are coefficients
in the expansion

e−2|r−R| =
∞∑

l′=0

Fl′(r,R)(2l′ + 1)Pl′ (cos θrR),

which can be expressed in terms of the modified spherical
Bessel and Hankel functions.
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The kernel (5) can be expanded in spherical harmonics,

V (R,R′) = 1

RR′

∞∑
L=0

2L + 1

4π
VL(R,R′)PL(cos 	).

By substitution of this kernel and the spherically symmetric
part of the van der Waals potential into the Schrödinger
equation, we obtain the following partial radial equation:

1

2m

d2fL

dR2
+

[
E − V̄W (R) − L(L + 1)

2mR2

]
fL(R)

−
∫

VL(R,R′)fL(R′)dR′ = 0, (6)

where m = 2 a.u. is the Ps mass, V̄W (R) is the spherically
symmetric part of the van der Waals potential, and fL(R) is
the radial part of the Ps center-of-mass wave function for the
orbital angular momentum L.

B. Calculation of the pseudopotential

The partial potentials vl(r) in Eq. (2) are all identical to the
modified HFEGE potential except for the case l = 0. To mock
the orthogonality constraint to the occupied σg orbital, we use
a potential with the repulsive core in the form similar to that
used in Ref. [5]:

v0(r) = B

r3
e−βr .

The fitting parameters B and β are chosen to reproduce
the s-wave static-exchange scattering phase shifts for e−-
H2 scattering. Specifically, we choose the static-exchange
potential for the e−-H2 interaction in the form

V (r) = Vst (r) + v0(r),

where Vst (r) is the spherically symmetric part of the static
e−-H2 interaction. One of the best fits was obtained for B =
5.919 a.u., β = 0.243 9 a.u. The exact and fitted scattering
phase shifts are presented in Fig. 2. Due to known deficiencies
of the repulsive core pseudopotentials [15], they cannot
reproduce ab initio phase shifts in a broad energy range.
Considering this, the fit looks rather good. We tried slightly
different forms of the pseudopotentials and found that the
uncertainty in fitting does not affect the Ps-H2 cross sections.

The modified HFEGE potential is energy dependent;
therefore, before using it for Ps-H2 scattering, we average it
over the electron velocity distribution in Ps. For the calculation
of the static potential for Ps-H2 scattering, the HFEGE
potential should be averaged further over the electron-density
distribution in the position space. This approach might be
not quite consistent from the point of view of fundamental
quantum mechanics, as the two averages are not correlated.
It seems that an average with a correlated distribution in
the phase space, like the Wigner distribution [20], should be
more appropriate. However, the velocity dependence of the
HFEGE potential is very weak. Therefore the inclusion of
correlations between position and velocity into the averaging
procedure does not change results noticeably. In Fig. 3 we
present the exchange potential for several electron velocities
and for several Ps velocities obtained from the averaging of
the electron potential over the electron velocity distribution

FIG. 2. (Color online) s-wave static-exchange phase shifts for
e−-H2 scattering. Black solid line: ab initio calculations with
the HFEGE exchange potential. Red dashed line: pseudopotential
calculations.

in Ps for a given Ps velocity. The potential does not change
very much after averaging. Additional checks with the Wigner
distribution function for the ground-state Ps [21] show that in
the present case a correlated and uncorrelated average leads
practically to the same results.

C. Impulse approximation for elastic scattering

The impulse approximation works at higher energies well
above the Ps ionization threshold. It appears to be useful in
normalizing the pseudopotential calculations because of the
uncertainty in the choice of the cutoff parameter Rc in the van

FIG. 3. Local exchange potential for the e−-H2 interaction. Panel
(a): potentials for different electron velocities (from bottom to top),
v = 0.05, 0.2, 0.50, 1.0, and 2.0 a.u. Panel (b): potential averaged
over the electron velocity distribution in Ps for the same Ps velocities
as electron velocities in panel (a).
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der Waals potential. As in Ref. [5], we attempted to choose Rc

by requiring that the pseudopotential calculations merge with
the impulse-approximation results at higher velocity (energy).

As in the pseudopotential calculations, we use the approx-
imation of spherical symmetry. The version of the impulse
approximation used in the present paper is similar to that
used in Refs. [4] and [22], but with a modification related
to the on-shell reduction of electron and positron-scattering
amplitudes. We start with the electron contribution to the Ps
scattering amplitude in the form

f (q) =
∫

g∗
f (Q)f −(v

′′
,v′)gi(Q + q)dQ, (7)

where gi(Q), gf (Q) are initial and final Ps wave functions in
the momentum space, q is the momentum transfer, and f − is
the electron elastic-scattering amplitude as a function of the
initial velocity v′ and the final velocity v

′′
:

v′ = v0 − Q + q
2
, v

′′ = v0 − Q − q
2
, (8)

where v0 is the Ps initial velocity. A similar expression holds
for the positron contribution.

The problem with the electron-scattering amplitude enter-
ing Eq. (7) is that it is off the energy shell since |v′| 	= |v′′ |.
The on-shell reduction of Starrett et al. [22], also used in
Ref. [4], assumes that the amplitude is a function of the
effective velocity v = max(v′,v

′′
) and momentum transfer q

linked to the electron-scattering angle θsc by q = 2v sin(θsc/2).
In the present application we found that this version of the
on-shell reduction might overestimate the contribution of the
small scattering angles. Therefore we chose

v = v′ + v
′′

2
,

with the same relation between θsc, q, and v. Although
generally different versions of the on-shell reduction can lead
to significantly different results for the Ps scattering amplitude,
at higher energies they converge, and that serves our major
purpose of normalization at higher energies.

D. Binary-encounter approximation for ionization

The impulse approximation can be applied to Ps ionization
in its collision with atoms and molecules. There are two
difficulties with these calculations. One is related to the afore-
mentioned ambiguity of the on-shell reduction of the electron
and positron-scattering amplitudes. The other difficulty is
computational. In order to avoid lengthy calculations, Starrett
et al. [22] used an additional “peaking approximation,” assum-
ing that the Ps wave function in the momentum space varies
much faster than the scattering amplitude. In fact, one can
avoid both difficulties by using a simpler approach based on the
binary-encounter approximation [23,24], which employs the
differential cross sections for electron and positron scattering,
instead of scattering amplitudes.

Consider the process

B + Ps → B + e+ + e−,

where B is a neutral target. The ionization probability due to
e− − B collisions is [23]

Pion = NB〈|v − vB |
∫

�E>I

dσ 〉, (9)

where vB is the relative collision velocity, v is the electron
velocity relative to the Ps center of mass, dσ is the differential
cross section for e− − B elastic scattering, and the integration
is restricted by the angles which result in the energy transfer
to electron �E greater than the Ps ionization potential I =
6.8 eV. The averaging is over the e− velocity distribution in
Ps. A similar expression can be written for the e+ contribution.
(Interference is neglected.)

By dividing Eq. (9) by the incident flux of particles B, we
obtain the total ionization cross section

σion = 1

vB

〈|v − vB |
∫

�E>I

dσ 〉. (10)

In the lab frame where B is at rest, as a result of scattering, the
electron velocity changes from u = v − vB to u′, |u′| = |u|.
The change of the electron kinetic energy in the Ps frame is

�E = 1

2
[(u′ + vB)2 − (u + vB)2] = vB · (u′ − u).

If we direct vB along the z axis and introduce spherical angles
(θ,φ) and (θ ′,φ′) for the vectors u and u′, we obtain

�E = vBu(cos θ ′ − cos θ ).

For the ionization process, integration over θ ′ is subject to the
restriction

I < �E < v2
B,

where the upper limit follows from the Ps kinetic energy in
the lab frame, consistent with the threshold velocity for the
ionization process, v2

B > I . These constraints correspond to
the region in the (θ,θ ′) plane defined by

cos θ + I

vBu
< cos θ ′ < cos θ + vB

u
. (11)

The differential cross section for e− − B scattering is,
assuming that B is spherically symmetric,

dσ

d
=

∑
ll′

(2l + 1)(2l′ + 1)f ∗
l′ flPl′ (cos θs)Pl(cos θs),

where θs is the scattering angle in the lab system, i.e., the angle
between u and u′, and fl is the partial scattering amplitude

fl = 1 − e2iδl (u)

2iu
.

According to Eq. (10), this expression should be multiplied by
|v − vB | = u, integrated over scattering angles, and averaged
over the velocity distribution of e− in the ground-state Ps given
by

1

4π
|g1s(v

2)|2 = 1

4π

256

π (4v2 + 1)4
.

For this 5-dim integration we choose the integration variables
θ,φ,θ ′,φ′,u. Using the addition theorem for spherical harmon-
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ics and writing

Ylm(û) = 	lm(cos θ )
eimφ

√
2π

,

where 	lm(cos θ ) are normalized associated Legendre func-
tions, we can perform integration over azimuthal angles φ and
φ′ with the result

σion = 4π

vB

∫ ∞

I/2vB

duu3

×
∫ 1−I/vBu

−1
d(cos θ )|g1s

(
u2 + v2

B + 2uvB cos θ
)|2

×
∑
ll′m

f ∗
l′ (u)fl(u)	l′m(cos θ )	lm(cos θ )

×
∫ cos θ+vB/u

cos θ+I/vBu

d(cos θ ′)	lm(cos θ ′)	l′m(cos θ ′).

(12)

Integration limits follow from the restrictions (11).

E. Calculation of e− and e+ potentials and scattering
phase shifts

In order to employ the impulse and binary-encounter
approximations described above, we need to calculate elastic-
scattering phase shifts δl(u) for e−-H2 and e+-H2 collisions.
A common method used in describing these processes is to
expand the interaction potential in Legendre polynomials [25]:

V (r) =
∑

λ

Vλ(r)Pλ(cos θ ), (13)

where θ is the angle describing the electron (positron) position
in the body frame, relative to the molecular axis. For e−-H2

scattering the interaction potential consists of a sum of static,
exchange, and polarization potentials, and for e+-H2 scattering
just static and polarization potentials.

For e−-H2 we have used the static, exchange, and polariza-
tion potentials used by Gibson and Morrison [26]. The static
potential is calculated from the ground-state H2 electronic
charge density determined by using the wave function of Fraga
and Ransil [27]. For e−-H2 scattering this static potential is
attractive, while for e+-H2 it is repulsive.

Within the HFEGE model the local exchange potential can
also be calculated using the ground-state H2 electronic charge
density. As mentioned above, we use a modified form of this
potential called the tuned free electron gas exchange (TFEGE)
potential, which has been shown to give good agreement with
exact static-exchange calculations for H2 [9]. In the TFEGE
model the ionization potential of H2 is considered to be an
adjustable parameter. By tuning this parameter to 0.071 a.u.
instead of the experimental value of 0.564 a.u., good agreement
with exact static-exchange calculations is obtained for incident
electron energies in the range 0–13.6 eV.

For e−-H2 scattering the ab initio polarization potential
of Henry and Lane [28] is used. For e+-H2 we have used a

spherically symmetric potential of the form

Vpol(r) = − α0

2r4
[1 − exp(−(r/rc)6)]. (14)

We have chosen the value of the cutoff radius to be rc =
1.9 a.u., so that the elastic cross section exhibits a sharp rise
as the positron velocity goes to zero and has a magnitude of
nearly 1 ×10−16 cm2 in the energy range 3–7 eV. This agrees
with experimental measurements of the e+-H2 cross section in
this energy range (for example, see Ref. [29]).

If we take the z axis to be along the direction of the
molecular axis, we can write the set of coupled equations
for the radial wave function of the scattered particle [25]:[

d2

dr2
− l(l + 1)

r2
− 2〈lm|V |lm〉 + k2

]
ulm(r)

= 2
∑
l′m′

〈lm|V |l′m′〉. (15)

Assuming that the off-diagonal matrix elements are small
and can be neglected so that the right-hand side vanishes, we
obtain the radial equation[

d2

dr2
− l(l + 1)

r2
− 2〈l0|V |l0〉 + k2

]
ulm(r) = 0. (16)

Retaining only the first two nonzero terms in the expansion
(13), the matrix elements can be written

〈l0|V |l0〉 = V0(r) + l(l + 1)

(2l + 1)(2l + 3)
V2(r). (17)

Solution of (16) leads to diagonal S-matrix elements in the
body frame. By making a rotation to the lab frame [25] we
can determine phase shifts for various molecular orientations.
We have calculated phase shifts for several orientations and
estimated the average over molecular orientation numerically.
In all cases the averaged cross sections are very close to cross
sections calculated by using only the spherically symmetric
term. Therefore we have used phase shifts (up to lmax =
6) determined by solving Eq. (16), with 〈l0|V |l0〉 = V0(r),
for use in the impulse and binary-encounter approximations
described above.

III. RESULTS AND DISCUSSION

A. e−-H2 and e+-H2 scattering

In Fig. 4 we present the e− and e+ phase shifts used in
the present paper for calculation of elastic scattering in the
impulse approximation and for calculation of ionization cross
sections. The cross sections calculated with them agree very
well with more sophisticated calculations [26] at low energies
and with recommended values [30] derived from combined
experimental and theoretical data at higher energies.

We also used the static-exchange s-wave phase shift for
e−-H2 scattering in order to construct the v0(r) part of the
pseudopotential. They are presented in Fig. 2.

B. Ps-H2 scattering

In Fig. 5 we present the phase shifts for Ps-H2 scattering
calculated with and without account of the van der Waals
interaction. The cutoff radius for the van der Waals potential
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FIG. 4. e−-H2 and e+-H2 scattering phase shifts calculated with
the local exchange and polarization potentials.

was chosen as Rc = 2.5 a.u. As shown in Fig. 6, this choice
leads to the the pseudopotential cross sections, which are
somewhat higher than the results of the impulse approximation
in the velocity range between 0.8 and 1.8 a.u., but both curves
start to merge at v = 2 a.u. The increase of the cutoff radius Rc

for the van der Waals potential up to 3.5 a.u. did not lead to a
better agreement between the two sets of data. This appears to
be different from the results of Ps-Kr calculations [5], where
the two curves merge already at v = 1.5 a.u., but is consistent
with the results for Ps-Ar scattering.

Like in the case of rare-gas atoms, the van der Waals
interaction significantly changes the s-wave behavior at low
energies and decreases the elastic-scattering cross section. The
calculated scattering length for Ps-H2 scattering is 0.64 and
2.06 a.u., with and without the account of the van der Waals

FIG. 5. (Color online) Ps-H2 scattering phase shifts calculated
with account of the van der Waals potential (black solid lines) and
without it (red dashed lines).

FIG. 6. (Color online) Ps-H2 elastic-scattering cross sections
calculated with account of the van der Waals potential (black
solid lines) and without it (red dashed lines). Dotted line: impulse
approximation.

interaction, respectively. The positive sign of the scattering
length is an indication of the dominance of the Pauli repulsion,
like in the case of rare-gas atoms. The low-energy behavior
of the phase shifts follows the threshold laws discussed in
Ref. [5].

In Fig. 7 we present the elastic, ionization, and total
cross sections for Ps-H2 scattering and compare them with
the elastic and total cross sections for e− − H2 scattering.

FIG. 7. (Color online) Ps-H2 and e−-H2 scattering cross sections.
Solid line: elastic Ps-H2 cross section. Dotted line: Ps ionization cross
section. Black dashed line: total Ps-H2 cross section. Red dashed
line: present e−-H2 elastic cross sections. Error bars: measurements
of Skalsey et al. [32,33] (low velocities) and Garner et al. [31]
(v = 0.6 a.u. and above). Blue triangles: recommended elastic e−-H2

cross sections [30]; red open circles: recommended total e−-H2 cross
sections [30]. (Below v = 1 a.u. they are the same as those given by
the triangles.)
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Previous calculations for rare-gas atoms [4,17] showed that
the excitation of Ps is negligible compared to the processes
of elastic scattering and ionization. Therefore excitation cross
sections were not calculated and were not included in the
total in the present work. We compare the Ps-H2 theory
with two experiments: the beam experiment of Garner et al.
[31] measures the total cross section, and the low-energy
experiment of Skalsey et al. [32,33] extracts the momentum-
transfer cross section from the rate of Ps thermalization
in a hydrogen gas. The momentum-transfer cross sections
are very close to the elastic cross sections at low energies
where the measurements were made. Overall, our calculations
describe very well the absolute magnitude of the measured
total cross section and its dependence on velocity (energy)
at velocity below 1.5 a.u. (about E = 60 eV). At higher
velocities the disagreement might be caused by the failure
of the pseudopotential method [15]. This can be seen from
the phase shifts shown in Fig. 5: the s phase shift starts to
increase at v > 1.7 a.u., whereas, to be consistent with the
Levinson-Swan theorem [16], it should continue to decrease.
On the other hand, the s-wave contribution at high velocities
is relatively small.

As in the case of rare-gas atoms, the Ps-H2 cross section
approaches the e−-H2 cross section plotted as a function
of electron velocity at velocities above the Ps ionization
threshold. Below this threshold, the Ps-H2 cross section is
significantly lower because of the different nature of the long-
range interaction: polarization interaction in e−-H2 scattering
and the van der Waals interaction in Ps-H2 scattering.

This comparison basically confirms previous conclusions
[3] for Ps-H2 collisions based on experimental results for
Ps-H2 and e−-H2 scattering. However, some new interesting
conclusions can be drawn from the high-velocity region.
Although the calculated Ps-H2 cross section is close to the total
e−-H2 cross section in this region, it is somewhat lower than the
experimental results and decreases much faster. (Experimental
points give an essentially flat dependence in the velocity range
between 1.5 and 2 a.u.). At higher velocities the difference
between the elastic and total e−-H2 (about 2 × 10−16 cm2)
cross section becomes essential. This difference is mainly due
to the H2 ionization (about 1 × 10−16 cm2 at v = 2 a.u. [34])
and excitation. The calculated total Ps-H2 cross sections agree
much better with the total e−-H2 cross sections than with the
elastic, although there is no known theoretical justification for
this. The general proof [4] of equivalence between the Ps-A
and e−-A cross section was given for a structureless target A,
and it is not clear why the ionization and excitation processes in
e−-H2 collisions should contribute to the total Ps-H2 scattering.
In addition, the calculated total Ps-H2 cross section decays
faster at high velocities than the total e−-H2 cross section.
This might be due to the failure of the pseudopotential model
at higher energies.

A few calculations of the Ps-H2 collisions were done in
the past. Biswas and Adhikari [35,36] used model exchange
potential similar to that developed for Ps-He and Ps-H colli-
sions [11] to calculate Ps-H2 scattering by the coupled-channel
method and the Born approximation with exchange. The
elastic-scattering calculations were done in the frozen-target
approximation, meaning that the van der Waals interaction was
not effectively included there. The most recent calculations

[36] give the results for total cross sections comparable to ours.
However, the composition of this cross section is different
from the present. Their total cross section is dominated by
Ps ionization and excitation, whereas the elastic cross section
is substantially smaller than ours. In contrast, our total cross
section is dominated by elastic scattering for energies up to
60 eV. The present ionization cross sections are comparable
to those of Biswas and Adhikari, although the latter are about
a factor of 2 higher than the present. In addition, Biswas and
Adhikari found a significant contribution of excitation of Ps(n)
states for the principal quantum number up to n = 6, whereas
our previous calculations [4] for rare-gas atoms and those
of Blackwood et al. [17] found these excitations completely
negligible. Perhaps the Born approximation, which typically
gives large results, caused an overestimation of Ps excitation
and ionization in Ref. [36].

Earlier perturbative calculations of Comi et al. [37] pro-
duced very large elastic cross sections approaching 170 ×
10−16 cm2 at low energies. This is not surprising, particularly
in view of Fig. 1. The elastic cross section is very sensitive
to the exchange and van der Waals interactions, and their
correct inclusion is crucial. The perturbative approach used
in Ref. [37] is certainly not adequate.

IV. CONCLUSION

The pseudopotential method developed earlier for Ps
scattering from rare-gas atoms works well also for Ps-H2

scattering. It also matches reasonably well the results of the
impulse approximation at higher velocities (energies). For
the Ps ionization cross section we have developed a method
based on the binary-encounter approach which avoids the
ambiguities of the impulse approximation related to the on-
shell reduction of electron- and positron-scattering amplitudes.

Like in the case of rare-gas atoms, the total Ps scattering
cross section plotted as a function of Ps velocity is close to
e− scattering cross section above the Ps ionization threshold.
At lower velocities the e−-H2 and Ps-H2 cross sections
are different because of the different nature of the long-
range interaction between the projectile and the target, the
polarization interaction in the former case and the van der
Waals interaction in the latter.

Our calculated total cross sections agree with the swarm
measurements at low collision energies and with beam mea-
surements at higher energies. However, there is a noticeable
difference with the experiment with regard to behavior of the
total cross section at higher velocities: whereas the calculated
cross sections continue to decrease with the velocity, the
measured cross sections demonstrate essentially flat behavior.

Because of near-spherically-symmetric electron charge dis-
tribution in H2, the approximation of the spherically symmetric
potential works quite well for this target. However, for more
complicated molecules the methods used in this paper should
be extended to potentials with no spherical symmetry.
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