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Two-center close-coupling calculations of positron–molecular-hydrogen scattering
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A two-center close-coupling method that includes positronium (Ps) formation channels has been developed for
positron scattering on molecular hydrogen. Calculations are performed within the fixed-nuclei approximation.
Results for the grand total, Ps-formation, and direct ionization cross sections are presented. In general, good
agreement with experiment is seen in all the calculated cross sections.

DOI: 10.1103/PhysRevA.92.032707 PACS number(s): 34.80.Uv, 34.10.+x, 34.80.Lx

I. INTRODUCTION

Molecular hydrogen is a natural starting point for both
theoretical and experimental studies of collisions with molec-
ular targets. Positron collisions with this target have been
studied extensively by various experimental groups over the
last 30 years [1–14]. Theoretical studies of this scattering
system are challenging because of the complexities associated
with the molecular structure and its nonspherical nature.
Rearrangement processes add another degree of complexity
to the problem. Until recently theoretical studies [15–27] have
been focused only at certain energy regions. In addition, there
are few theoretical studies which include the Ps-formation
channels explicitly. The first calculations of Ps-formation cross
section [15–17,20] were obtained with the use of the first
Born approximation. Biswas et al. [21] used a coupled-static
model, which included only the ground states of H2 and Ps.
This simple model is the only two-center coupled-channel
calculation available to date. Comprehensive review of the
positron interactions with atoms and molecules has been given
by Surko et al. [28].

Effect of using realistic target wave functions and channel
coupling on the Ps-formation cross section has not yet been
studied and is our goal here using the convergent close-
coupling (CCC) method [29,30]. The CCC method has been
successfully applied to electron-atom (see Bray et al. [31], and
references therein) and two-center positron-atom [30,32–34]
scattering problems. It has also been applied to calculate
antihydrogen formation [35,36] in low-energy collisions of
positronium (Ps) and antiprotons. For positron scattering, the
internal consistency of the two-center method is a powerful
mechanism for validating the computational results [37]. The
method has been extended to antiproton-atom collisions as
well [38,39].

The recent single-center CCC calculations of positron
scattering on molecular hydrogen by Zammit et al. [40]
and antiproton collisions with H2 by Abdurakhmanov et al.
[41,42] have shown that the CCC formalism can also be
successfully applied to molecular targets. A limitation of
the single-center approach to positron scattering, however,
is that Ps formation is not included explicitly, but rather
via positive-energy target pseudostates with large angular
momenta. This works well at energies below the Ps-formation
threshold and at energies above the ionization threshold with
the limitation that the direct ionization and Ps-formation
channels are inseparable. Furthermore, over the small energy

range between the two thresholds it is formally invalid due to
no allowance for positron flux into Ps-formation channels. The
two-center approach, on the other hand, does explicitly include
Ps-formation channels and hence yields Ps-formation as well
as direct-ionization cross sections and is valid at all energies.

II. METHOD

In Fig. 1 we present the coordinate system we use for
positron-H2 scattering, with the origin being at the center of
mass, i.e., at the midpoint between the two protons. Vectors
r0, r1, and r2 denote the positions of the positron, electron
1 and electron 2, respectively. To describe Ps-formation
channels it is convenient to use Jacobi coordinates (R,ρ),
where R = (r0 + r1)/2 is the position of the Ps center of
mass (c.m.) relative to the H2 origin, and ρ = r0 − r1 is the
relative coordinate of the positron and electron. We emphasize
that since there are two electrons which can form positronium,
there are two corresponding sets of Jacobi coordinates. When
necessary we will refer to them explicitly as (R1,ρ1,r2) and
(R2,ρ2,r1). Figure 1 shows one of them, where Ps is formed
by electron 1. We consider H2 within the Born-Oppenheimer
approximation where the two protons are considered to be at
a fixed internuclear distance denoted as d.

We are interested in relatively low-energy positron colli-
sions, where Ps formation is significant, and therefore we can
neglect the relativistic and spin-orbit interactions. For this case
the scattering wave function � must satisfy the Schrödinger
equation

(H − E)�(r0,r1,r2,d) = 0, (1)

where E is the total energy and H is the total Hamiltonian
of the system. The Hamiltonian of the e+-H2 system can be
written as

H = H0 + Ve(r1,d) + Ve(r2,d) + 1/d + Vp(r0,d)

+ 1

|r1 − r2| − 1

|r0 − r1| − 1

|r0 − r2| , (2)

where

H0 = − 1
2∇2

0 − 1
2∇2

1 − 1
2∇2

2

is the free Hamiltonian of the three particles, and Ve and
Vp are the electron-nucleus and positron-nucleus potentials,
respectively.
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FIG. 1. (Color online) Coordinate system for e+-H2 collision.

In this work, following the CCC approach [30], we
explicitly include Ps-formation channels with the use of a
two-center expansion technique. This is done by expanding
the total scattering wave function � of the collision system
in terms of the target (H2) and positronium (Ps) states in the
following way [30]:

� ≈
Nα∑
α=1

Fα(r0)ψα(r1,r2,d) +
Nβ∑
β=1

{Gβ(R1)ψβ(ρ1)φion(r2,d)

+ Gβ(R2)ψβ(ρ2)φion(r1,d)}, (3)

where the first term corresponds to expansion in terms of the
target wave functions ψα with expansion coefficients being
Fα , and the second term corresponds to expansion in terms of
the positronium states ψβ with coefficients Gβ . Nα and Nβ are
the number of target states and Ps states, respectively. Indices
α and β are used to denote a full set of quantum numbers for
the target and Ps, respectively. Basis states may contain both
eigen- and pseudostates of both the target and Ps depending on
the choice. The second term allows for both active electrons
to form positronium. The residual ion of H2

+ is described by
φion, and we consider it to be only in its ground state.

Substituting expansion (3) into Eq. (1) we obtain a set of
momentum-space coupled-channel equations for the transition
matrix elements [30] (for brevity we make the d dependence
implicit)

Tγ ′γ (kγ ′ ,kγ ) = Vγ ′γ (kγ ′ ,kγ ) +
Nα+Nβ∑

γ ′′

∫
dkγ ′′

(2π )3

×Vγ ′γ ′′(kγ ′ ,kγ ′′ )Gγ ′′
(
k2
γ ′′

)
Tγ ′′γ (kγ ′′ ,kγ ),

(4)

where γ = {α,β} and kγ is the momentum of the free particle
relative to the c.m. of the bound subsystem in channel γ .
The effective two-body free Green’s functions Gγ ′′ (k2

γ ′′) are
defined as

Gα′′
(
k2
α′′

) =(
E + i0 − k2

α′′
/

2 − εα′′
)−1

, (5)

Gβ ′′
(
k2
β ′′

) =(
E + εion + i0 − k2

β ′′
/

4 − εβ ′′
)−1

, (6)

for the target and Ps channels, respectively. It describes the free
relative motion of particle γ ′′ and bound pair γ ′′ with binding
energy εγ ′′ . Here εion is the binding energy of the H2

+ residual
ion.

The transition matrix elements Vγ ′γ ′′ (kγ ′ ,kγ ′′ ) are defined
as

Vα′α(kα′ ,kα) = 〈kα′ |〈ψα′ |Uα′α|ψα〉|kα〉,
Vβ ′β(kβ ′ ,kβ) = 〈kβ ′ |〈ψβ ′φion|Uβ ′β |ψβφion〉|kβ〉, (7)

Vβα(kβ,kα) = 〈kβ |〈ψβφion|Uβα|ψα〉|kα〉,
where

Uα′α = Vp(r0,d) − 1

|r0 − r1| − 1

|r0 − r2| ,

Uβ ′β = Vp(r0,d) + Ve(r1,d) + 1

|r1 − r2| − 1

|r0 − r2| , (8)

Uβα = Uαβ = H − E

are the corresponding channel potential operators.
After performing a partial-wave expansion of the incoming

and outgoing particles’ plane waves |kγ 〉, Eq. (4) is solved for
each total angular-momentum projection K , spin S, and parity

. The partial-wave expansion is performed for Vγ ′γ (kγ ′ ,kγ )
[and for Tγ ′γ (kγ ′ ,kγ )] according to

Vγ ′γ (kγ ′ ,kγ ) =
∑

L′,M ′,L,M,K

YL′M ′ (̂kγ ′)

×VKS

γ ′L′M ′,γLM (kγ ′ ,kγ )Y ∗

LM (̂kγ ), (9)

where YLM (̂kγ ) are the spherical harmonics of unit vector
k̂γ . Quantum numbers L and L′ are the angular momenta
of the free particles in channels γ and γ ′, and M and M ′
are their projections, respectively. Note that the total angular
momentum projection is K = M + m = M ′ + m′ (we set d
to be the axis of quantization in all channels). Here m and m′
are the angular momentum projections of the target molecule
or Ps in channels γ and γ ′. The effective potentials in partial
waves are given by

VKS

γ ′L′M ′,γLM (kγ ′,kγ ) = δK,M+m

∫∫
d k̂γ ′ d k̂γ Y ∗

L′M ′ (̂kγ ′)

×Vγ ′γ (kγ ′ ,kγ )YLM (̂kγ ). (10)

Expansion (9) transforms Eq. (4) into

T KS

γ ′L′M ′,γLM (kγ ′,kγ )

= VKS

γ ′L′M ′,γLM (kγ ′,kγ )

+
Nα+Nβ∑

γ ′′

∑
L′′

∫
dkγ ′′

(2π )3
k2
γ ′′VKS


γ ′L′M ′,γL′′M ′′ (kγ ′,kγ ′′ )

×Gγ ′′
(
k2
γ ′′

)
T KS


γ ′′L′′M ′′,γLM (kγ ′′ ,kγ ), (11)

where L′′ is the angular momentum of the free particle in
channel γ ′′.

In the present work we only use a few Ps eigenstates so as
to take advantage of their analytical form. The target states are
obtained by diagonalizing the H2 Hamiltonian in a set of anti-
symmetrized two-electron configurations, built from Laguerre
one-electron orbitals, for each target symmetry characterized
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by the projection of orbital angular momentum mT , parity
πT , and spin sT . This results in a set of square-integrable
negative and positive energy pseudostates. With increasing of
the basis sizes, the negative-energy states converge towards
the true eigenstates, while the positive energy pseudostates
become increasingly dense in energy and effectively represent
the target continuum. To calculate H2 states, we adopt the
fixed-nuclei approximation and perform calculations at the
ground-state equilibrium internuclei distance, which is d =
1.4a0. Note that when d is set to 0 one should obtain the
He results. We used this test for both structure and scattering
calculations. Details of H2 structure calculations can be found
in Ref. [40].

The derivation of the rearrangement matrix elements are
similar to the He case. However, algebra is somewhat more
difficult because of nuclear separation and target orientation
dependency. Another difference is that partial wave expansion
is done over the total angular momentum projection K . By
choosing the z axis to be along the d (body frame) we can
write the electron interaction with the nuclei as

Ve(r,d) = − 1

|r − d/2| − 1

|r + d/2|

=
√

4π

∞∑
λ=0

[1 + (−1)λ]
√

2λ + 1
rλ
<

rλ+1
>

Yλ0(r̂), (12)

where r> = max{r,d/2}. It is possible to transform the
obtained results with this choice of z axis to any given
orientation of the molecule.

For simplicity, we consider only the spherical part of the
nuclear potential when calculating the rearrangement matrix
elements:

Vp(r0,d) = 1

|r0 − d/2| + 1

|r0 + d/2| ≈ 2

r>

, (13)

where now r> = max{r0,d/2}. Then the momentum space
representation of the above positron-nucleus potential can be
shown to be

V̄p(p) = 4π2sin(dp)

dp3
. (14)

With these we further follow the procedure used for positron-
He calculations [33].

For positron scattering from the ground state of H2 only
states with zero total spin are required and so S = 1/2.
T -matrix elements are used to obtain body-frame scattering
amplitudes f

(B)
f i , which are then transformed to laboratory-

frame scattering amplitudes f
(L)
f i via rotation by Euler angles.

Orientationally independent cross sections are calculated
by averaging over all rotations of the molecule [43]. An
orientationally averaged analytic Born subtraction method [43]
is employed for H2 direct transition channels to reduce the
number of partial waves requiring explicit solution.

III. RESULTS

In the present work we calculate various cross sections for
e+-H2 scattering using the two-center CCC method. The direct
ionization cross section is obtained by simply summing the

individual cross sections for excitation to the positive-energy
pseudostates of the target. The direct ionization combined
with Ps-formation cross sections give the total electron-loss
cross sections, which can also be calculated by the single
center CCC approach, but only above the ionization threshold.
Combination of the total electron-loss, excitation, and elastic
scattering cross sections give the grand total cross section.

Generally, resulting cross sections should be checked for
the convergence by increasing the basis sizes for both target
and Ps centers. However, calculation of rearrangement matrix
elements for positron-H2 scattering are computationally very
expensive. Therefore in this work we use a complete set of
states only in the target space and restrict Ps to a few low-
lying eigenstates. This type of calculation is an initial test
of the method, which should still give reasonably accurate
Ps-formation cross sections. This is because in the low-energy
region, where most of the experimental data are available, the
main contribution to Ps formation comes from the ground and
the lowest lying excited states of Ps. In addition, we don’t
consider the elastic scattering region below the Ps-formation
threshold, which was very accurately calculated by the single-
center CCC method [40].

To simplify scattering calculations we make three approx-
imations. First, we assume that the H2

+ ion remains in its
ground state in the Ps-formation channels. Second, we neglect
electron exchange between Ps and the residual H2

+ ion. These
two approximations have previously been used in calculations
of positron scattering on helium [33] and magnesium [32],
yielding good results. Last, we consider only the spherical part
of the nuclear potential when calculating the rearrangement
matrix elements. However, it is difficult to estimate the quality
of this approximation, and we have to rely on agreement of
the final result with experiment.

To test convergence of the results we performed calculations
with three different basis sizes. The corresponding results
are denoted as CCC(Nlmax ,NPs), where for l � lmax, N − l

one-electron orbitals will be used in generating the H2 target
structure, and NPs is the number of Ps eigenstates. For example,
the CCC(142,3) calculation utilizes 14s, 13p, and 12d orbitals,
which generates 139 H2 states. It also includes the three 1s,
2s, and 2p Ps states.

Figure 2 shows the grand total cross section (GTCS) for
e+-H2 scattering calculated with different bases. We have also
presented the single-center CCC results [40]. Comparison
between the CCC(121,1) and the CCC(141,1) calculations
shows the level of convergence with regards to Nmax. In the
remaining figures we concentrate on effects of including more
Ps states and H2 states with larger angular momentum and
keep Nmax fixed at 14. It can be seen that the CCC(141,1)
and CCC(141,3) results are close to each other indicating
that having three Ps states is sufficient to take into account
Ps-formation channels within reasonable accuracy, however,
both results are below the single center CCC results at
higher energies. With additional 12d orbitals included in H2

we obtained cross sections converging to the single-center
CCC results above the ionization threshold. This shows that
CCC(142,3) contains enough target and Ps states to give con-
vergent GTCS. It is worth noting that the two-center method
can achieve convergence at a much faster rate compared to
the single-center method. The single-center calculations of
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FIG. 2. (Color online) The grand total cross section (GTCS) for
e+-H2 scattering calculated with different basis sizes. The single
center CCC(108,0) results of Zammit et al. [40] are valid only above
the direct ionization threshold indicated by the vertical line.

Zammit et al. [40] contain 556 target states with orbital
angular momenta up to eight. In this work, the two-center
CCC(142,3) contains only three Ps eigenstates and 139 target
states with maximum orbital angular momenta equal to 2.
As has been discussed before [30,33], the reason for the
slow convergence in the single-center method is the absence
of explicit boundary conditions for Ps-formation channels.
By including higher angular momenta orbitals, a single-
center method can indirectly take into account Ps-formation
channels via excitations to positive energy pseudostates with
high angular momenta. However, at energies just above the
ionization threshold convergence requires large Nlmax . Outside
this region the agreement between the single- and two-center
approaches is excellent.
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FIG. 3. (Color online) The grand total cross section (GTCS) for
e+-H2. Experimental data are due to Machacek et al. [14], Hoffman
et al. [1], Charlton et al. [2], Karwasz et al. [12], and Zecca et al.
[13]). The single center results are due to Zammit et al. [40]. The
present calculations are described in the text.
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FIG. 4. (Color online) The Ps-formation cross section in e+-H2

collisions. Experimental data are due to Zhou et al. [10], Fromme
et al. [6], and Machacek et al. [14]. The present calculations are
described in the text. Coupled static model calculations of Biswas
et al. [21] are also shown.

In Fig. 3 we compare our results with the available
experimental data for GTCS. As was mentioned earlier we are
concentrating only on the energy range above the Ps-formation
threshold. Starting from the threshold the two-center results
agree very well with the experimental data. Above 30 eV the
single- and two-center results are almost indistinguishable.
This is an important demonstration of internal consistency
of the CCC approach to such collisions. It is far from trivial
because the explicit Ps-formation component can be quite large
[37].

Figure 4 presents the Ps-formation cross sections, which
in the region near the maximum are as much as 50% of the
GTCS. Our results obtained with different bases are compared
with the experimental data of Zhou et al. [10], Fromme et al.
[6], and Machacek et al. [14]. CCC(141,1) underestimates
experimental measurements. Adding two more Ps states brings
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FIG. 5. (Color online) The total direct ionization cross sections
for e+-H2 collisions. Experimental data are due to Fromme et al. [6],
Knudsen et al. [7], and Jacobsen et al. [9]. The theoretical results are
described in the text.
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FIG. 6. (Color online) The total electron-loss cross section for
e+-H2 collisions. Experimental data are due to Moxom et al. [8] and
Fromme et al. [6]. The theoretical calculations are described in the
text.

the Ps-formation cross section up to agree better with the
experimental data. When d orbitals are added to the H2 basis
the maximum of the Ps-formation cross section drops by about
10%. There is generally good agreement between different
sets of experimental data. However, our results underestimate
experimental cross sections above 50 eV. We suspect that at
these energies there will be a substantial contribution from Ps
formation in higher excited states, which is missing from the
present calculations.

In Fig. 5 we compare our results for the direct total
ionization cross section (TICS) with the available experimental
data. The experimental data of Fromme et al. [6] and Knudsen
et al. [7] are in agreement with each other but differ from
measurements of Jacobsen et al. [9] between 30 and 100 eV.
CCC(142,3) is in better agreement with the measurements of
Jacobsen et al. [9]. CCC(141,1) and CCC(141,3) underesti-
mate both sets of experimental data.

The total electron-loss cross section is given in Fig. 6.
In the two-center method they are calculated as a sum of
TICS and Ps-formation cross sections. In the single-center
formalism it is just a sum of all cross sections for excitations
to positive-energy pseudostates. Perfect internal consistency
would require agreement here between the two methods above

the ionization threshold. In practice this is impossible near the
threshold because we would require a massive basis expansion
in the single-center approach, which should behave like a
step function: zero below threshold and all Ps formation
immediately after. Also, at energies above 30 eV the lack of
higher Ps states in the two-center approach explains the visible
discrepancy. CCC(142,3) results are in reasonable agreement
with experimental data up to 30 eV. Above 30 eV they
underestimate both the experimental data and the single-center
results.

IV. CONCLUSION

In conclusion, we have developed a two-center close-
coupling approach to e+-H2 scattering including Ps-formation
channels and presented orientation-averaged results for the
grand total, Ps-formation, direct-ionization, and total electron-
loss cross sections. All channels have been treated within the
fixed-nuclei approximation. In addition, three approximations
have been used to facilitate the calculations of the Ps-formation
channels. We assumed that the residual H2

+ ion remained in
its ground state in the Ps-formation channels and neglected
electron exchange between Ps and the residual H2

+ ion. We
also considered only the spherical part of the nuclear potential
when calculating the rearrangement matrix elements. While
the first two approximations are believed to be reliable, it is
difficult to estimate the impact of the third one. However,
the obtained results are generally in good agreement with
experimental data, indicating that, in particular, the spherical
part is the main contributor to the nuclear potential. In
the future, we plan to remove some of the aforementioned
approximations. Due to time-consuming calculations of the
rearrangement amplitudes we have included only a few low-
lying eigenstates for the Ps center. We plan to investigate more
efficient ways of calculating Ps-formation matrix elements in
order to be able to include Ps pseudostates as well. We also
aim to apply the method to other diatomic molecules.
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