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One-pion-exchange effect in the energy spectrum of muonic hydrogen
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In this work, the effects from one-pion exchange in ep and μp bound states by two-photon coupling are
discussed. We at first calculate the effective couplings of a pion with a lepton (electron or muon) by two-
photon coupling and the corresponding effective nonrelativistic potential. Then we calculate its corrections
to the hyperfine structure of 2S and 2P states. We find that the corrections to the hyperfine structures of
electronic hydrogen’s 2S and 2P states and muonic hydrogen’s 2P state are small and can be neglected,
while the correction to the hyperfine structure of muonic hydrogen’s 2S state �E2S

HFS(F = 1,μp) is about
0.0028 meV. And after some further discussion we suggest that the similar exchange of a scalar meson such
as σ between μp by two-photon coupling may give a much larger contribution to the Lamb shift of muonic
hydrogen.
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I. INTRODUCTION

The precise measurement of the Lamb shift in muonic
hydrogen was first reported in [1], which gave the proton
size rp = 0.8418 fm, and this result was confirmed by later
measurement [2], while CODAE2010 [3] gave rp = 0.878 fm
from the ep scattering data and electronic hydrogen data.
If the latter value is taken to estimate the Lamb shift of
muonic hydrogen, there is a discrepancy of about 0.316 meV
between the theoretical and experimental result [4]. Due to this
discrepancy, many new theoretical discussions and calculation
on the energy spectrum of muonic hydrogen are given in the
literature [5,6].

In this paper, we consider a new correction due to one-pion
exchange between the electron or muon and the proton by
two-photon coupling, which is shown in Fig. 1(a). Such effects
are usually neglected in the literature since the exchange of
a pion results in a short distance potential due to its mass
(compared with the size of electronic hydrogen), which is not
important to the energy spectrum of electronic hydrogen. For
muonic hydrogen, the muon is much closer to the proton than
the electron is in the electronic hydrogen, which means that
the energy spectrum of muonic hydrogen is more sensitive to
a short distance potential than the electronic hydrogen case.
Since the masses of the muon and pion are of the same order,
physically it is natural to expect that the effects from pion
exchange by two-photon coupling may play a role in muonic
hydrogen. In the literature, similar effects from two-pion
exchange between muon and proton are discussed in the frame
of chiral perturbative theory [6].

II. BASIC FORMULA

The effective coupling of π0 with 2γ can be written as

Lint
π0γ γ

= gπ0γ γ εμνρωφπ0FμνFρω, (1)
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where εμνρω is the four-dimensional Levi-Civita antisymmet-
ric tensor with ε0123 = 1 and the corresponding vertex is
written as

�
μρ

π0γ γ
= −4igπ0γ γ εμνρωq1νq2ω, (2)

where q1 and q2 are the incoming momenta of the two photons
with the Lorentz indexes μ and ρ, respectively.

With this coupling, the decay width of π0 to 2γ is
expressed as

�th
π0→2γ

= M3
π

π
g2

π0γ γ , (3)

with Mπ the mass of π0. Combining this theoretical expression
with the experimental data �ex

π0→2γ
= 7.7 eV, we can get

gπ0γ γ = 3.14 × 10−3 GeV−1, where the choice of the sign
of the coupling is consistent with the calculation of chiral
anomaly.

When the two photons are off-shell, the form factors are
needed to describe the behavior. Here we add the following
form factors to the vertex to describe the behavior as [7]

�
μρ,full
π0γ γ

= −4igπ0γ γ εμνρωq1νq2ω

−�2

q2
1 − �2

−�2

q2
2 − �2

. (4)

Such a form is similar to the dipole form used in Ref. [8]
with similar parameter �π0 = 0.776 GeV fitted from the
experimental data. In our calculation, we take � = 0.77
GeV as a typical example to show the results and take
� = 0.6–1 GeV to show the sensitivity to the parameter �.

With this coupling, the amplitude of the lepton part shown
in Fig. 1(a) can be calculated directly. And after the integration
of the momentum in the loop, the effective vertices between
electron or muon and pion can be written as

iMl→lπ0 = 2
∫

d4k

(2π )4
u(p3,ml)(−ieγ ρ̄)

i(k/ + Ml)

k2 − M2
l + iε

× (−ieγ μ̄)u(p1,ml)
−igμ̄μ

q2
1 + iε

−igρ̄ρ

q2
2 + iε

�
μρ,full
π0γ γ
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FIG. 1. (a) The one-pion exchange between lepton and proton
by two-photon coupling. (b) The effective direct one-pion exchange
between lepton and proton. (c) The effective nonrelativistic potential
due to the one-pion exchange.

≡ −fllπ0 (Q2)

Mπ

u(p3,ml)γ5(p/3 − p/1)u(p1,ml)

≡ u(p3,ml)�llπ0u(p1,ml), (5)

where the index l refers to the lepton (electron or muon);
p3, k, p1, q1, and q2 are the corresponding momenta shown
in Fig. 1(a); Q2 ≡ −q2 ≡ −(p3 − p1)2; and the factor 2 is
due to the symmetry between the Feynman diagram shown in
Fig. 1(a) and its crossed diagram. With Eq. (5), the effective
coupling �llπ0 can be directly used to describe the one-pion-
exchange interaction between lepton and proton shown as
Fig. 1(b). Since we are interested in the corrections to the
energy shifts of muonic hydrogen and electronic hydrogen,
the behavior of the couplings fllπ0 (Q2) in the nonrelativistic
approximation is important for such corrections, and so we
expand the effective couplings at Q2 = 0:

fllπ0 (Q2 ≈ 0) ≈
[
c1,l + c2,l

Q

Mπ

+ c3,l

(
Q

Mπ

)2]
gπ0γ γ . (6)

In the practical calculation, the parameters c1,l can be written
down analytically (see the Appendix); the parameters c3,l

can also be calculated rigorously by expanding the original
expression Eq. (5) and the parameters c2,l can be calculated by
LoopTools [9] after the integration. The final numerical results
for the parameters are presented in Table I and Fig. 2.

From Eq. (6) and Table I, we see that for the ep and μp

system we can safely apply the nonrelativistic approximation
and neglect the last two terms of fllπ0 , since the typical energy
scales of muonic hydrogen and electronic hydrogen are much
smaller than Mπ . From Fig. 2 we see that the effective coupling
c1,μ is not very sensitive to the parameter �, which means that
we can control the uncertainty of the contribution in a good
way.

TABLE I. The numerical results for the effective couplings ci,l

with � = 0.77 GeV as input.

c1,l (GeV) c2,l (GeV) c3,l (GeV)

l = μ 0.00371 − 0.00199 3.27×10−6

l = e 0.0136 − 0.409 3.21×10−6

FIG. 2. The dependence of c1,μ on the parameter �.

For the effective interaction of π0 and proton at low Q2,
we have the following [10]:

Lint
πNN = −fπNN

Mπ

ψγ5γμψ∂μφπ, (7)

with fπNN ≈ 1, and the corresponding effective vertex is
written as

�πNN = −fπNN

Mπ

γ5(p/f − p/i), (8)

with pi and pf the corresponding momenta of the initial and
final proton.

Using these effective interactions, we can use the quasipo-
tential method by matching the amplitude from the effective
interactions in quantum field theory [shown as Fig. 1(b)] and
that from the effective nonrelativistic potential in quantum
mechanics [shown as Fig. 1(c)] similar to the case of pion
exchange between two nucleons. And we can get the following
effective potential in coordinate space:

V π0

lp (r) = c1,lgπ0γ γ fπNN

12π

{[
(3̂r · �σ1̂r · �σ2 − �σ1 · �σ2)

×
(

1 + 3

Mπr
+ 3

M2
πr2

)
+ �σ1 · �σ2

]

× e−Mπ r

r
− 4π

3
�σ1 · �σ2δ(r)

}
, (9)

where σ1 and σ2 are the spin matrices of the lepton and proton.
From Eq. (9), we see that there are only contributions to

the hyperfine structure of muonic hydrogen and electronic
hydrogen, the energy levels of which are shown in Fig. 3.
Using the properties of the Pauli matrix, we have the matrix
elements for the spin-related parts of Eq. (9) as shown in
Table II.
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FIG. 3. (Color online) The 2S and 2P energy levels of muonic
hydrogen.

III. NUMERICAL RESULTS, DISCUSSION,
AND CONCLUSION

The corrections to the energy spectrum can be calculated
directly using perturbation theory and the final numerical
results are presented in Table III.

From Table III, we see that the correction from one-pion
exchange is about 0.0028 meV for �E2S

HFS(F = 1,μp). The
other contributions are very small and can be neglected. In
the literature, the full two-photon-exchange correction to the
Lamb shift is usually taken as 0.0333 meV [11]. The new
contribution of 0.0028 meV is about 8% of this correction and
about 0.9% of the current discrepancy (0.316 meV) [4]. At first
glance, one may conclude that such a mechanism may give no
help to explain the current puzzle of proton size and can be
neglected. We should note that the small contribution of 0.0028
meV is mainly due to the small coupling of π0γ γ due to the
chiral anomaly and not only because of the mass of the pion. To
show this property, we present the dependence of the correction
on Mπ in Fig. 4 by fixing the couplings gπ0γ γ and fπNN . From
Fig. 4, we see that the correction at Mπ = 500 MeV is about
10% of that at Mπ = 135 MeV. On the other hand, due to
the anomaly of the triangle diagram, we know the couplings
of 0−+ mesons with 2γ are much smaller than other mesons

TABLE II. The general relations of hyperfine splitting for the
spin-related parts.

3(σν · r̂)(σp · r̂) σp · σν

2S
f =0
1/2 −3 −3

2S
f =1
1/2 1 1

2P
f =1
3/2 −1 − 5

3

2P
f =2
3/2

3
5 1

TABLE III. The corrections to the hyperfine structure from one-
pion-exchange effects.

�E2S
HFS(F = 1,lp) (meV) �E

2P3/2
HFS (F = 2,lp) (meV)

l = μ 0.0028 1.95×10−8

l = e 1.61×10−9 3.30×10−19

such as the scalar resonance. For example, in the s channel,
the similar coupling of σ with 2γ is much larger than that of
π0 with 2γ [12], and its coupling to the nucleon is also about
13 times larger than fπNN [10]. However, the coupling in the s

channel may be quite different from the t channel for σ , while
naively we can expect the ratio is of a similar order and such
enhancement will result in larger corrections even if the mass
of a scalar resonance is as large as 500 MeV. The precise and
reliable estimation of such a contribution is still far away due to
the difficulty of precise estimation of the couplings and its Q2

dependence in the t channel. In the literature, the possibility
to solve the proton puzzle by introducing some new physical
particles was discussed [13], while from our calculation we
see that by the two-photon coupling the exchange of a meson
also gives a new contribution to the energy spectrum of muonic
hydrogen and may play a similar role as the introduced new
physical particles.

In summary, we suggest that one-pion exchange in muonic
hydrogen with two-photon coupling may give a new correction
to the energy spectrum, and find that the contribution to
�E2S

HFS(F = 1,μp) is about 0.0028 meV, which is still much
too small to explain the proton puzzle. The result hints that
a similar mechanism may give enhanced corrections to the
energy spectrum of muonic hydrogen, especially the exchange
of a scalar resonance such as σ by two-photon coupling.
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FIG. 4. (Color online) The mass dependence of the contribution
to �E2S

HFS(F = 1,μp).
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APPENDIX

The analytical expression for the effective coupling c1,l is written as

c1,l = 9�
[
λ�4 + 2�m2

l (�eff − λ�) + 16dm4
l + 2�3�efflog

(
ml

�

)]
54 800πm4

l �eff
, (A1)

where

�eff ≡
√

�2 − 4m2
l ,

(A2)

λ ≡ log

(
�2 + �eff� − 2m2

l

2m2
l

)
,

with ml the mass of the lepton.
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