
PHYSICAL REVIEW A 92, 032509 (2015)

Metric-space analysis of systems immersed in a magnetic field
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Understanding the behavior of quantum systems subject to magnetic fields is of fundamental importance and
underpins quantum technologies. However, modeling these systems is a complex task, because of many-body
interactions and because many-body approaches such as density-functional theory get complicated by the presence
of a vector potential into the system Hamiltonian. We use the metric-space approach to quantum mechanics to
study the effects of varying the magnetic vector potential on quantum systems. The application of this technique
to model systems in the ground state provides insight into the fundamental mapping at the core of current
density-functional theory, which relates the many-body wave function, particle density, and paramagnetic current
density. We show that the role of the paramagnetic current density in this relationship becomes crucial when
considering states with different magnetic quantum numbers m. Additionally, varying the magnetic field uncovers
a richer complexity for the “band structure” present in ground-state metric spaces, as compared to previous studies
varying scalar potentials. The robust nature of the metric-space approach is strengthened by demonstrating the
gauge invariance of the related metric for the paramagnetic current density. We go beyond ground-state properties
and apply this approach to excited states. The results suggest that, under specific conditions, a universal behavior
may exist for the relationships between the physical quantities defining the system.
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I. INTRODUCTION

Systems immersed in magnetic fields are a fundamen-
tal research topic, as is the case, for example, for atoms
immersed in strong fields [1,2], and are also an integral
part of emerging quantum technologies, such as quantum
computation, which utilize quantum systems controlled or
otherwise affected by magnetic fields. For example, the
inhomogeneous magnetic field generated by the nuclei’s
spins decreases quantum coherence of electron-spin qubits
in III–V quantum dots [3], while full polarization of the spin
bath through an applied magnetic field suppresses electron-
spin decoherence in nitrogen-vacancy centers and nitrogen
impurities in diamond [4]. Understanding systems immersed
in a magnetic field at a quantum level is therefore of both
fundamental and technological importance.

However, the presence of a magnetic field introduces
additional complexity to the system’s Hamiltonian. In fact,
as opposed to a confining potential, which is defined by
a scalar potential V (r), the magnetic field is defined by
B(r) = ∇ × A(r), where A(r) is a vector potential. To account
for its presence, density-functional theory (DFT) must be
extended to current-density-functional theory (CDFT). In this
paper we will use the metric-space approach to quantum
mechanics [5–8] to study the effect on quantum systems of
changing the vector potential and we will carefully consider
the implications of the results for CDFT. This is particularly
relevant as there are still open questions with respect to the
fundamentals of this theory (see, for example, Refs. [9–13]).

The metric-space approach involves the derivation of
“natural” metrics from conservation laws to assign a distance
between two physically relevant functions [8]. In recent work
these metrics were applied to the basic variables of both
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standard DFT [5–7,14] and CDFT [8]. In Refs. [5,8] it was
demonstrated that the core theorems of DFT and CDFT, re-
spectively, indeed represent mappings between metric spaces:
This helps understanding the power of the metric-space
approach and why its use has already allowed for the discovery
of additional properties of these core theorems. The results
in Ref. [8], pertaining to systems with fixed magnetic fields,
considered only the effects of varying the scalar potential; in
this paper we demonstrate how the metric-space approach to
quantum mechanics can be applied to analyze systems while
varying the vector potential and hence the magnetic field.

A significant issue for any theory involving magnetic fields
is gauge transformations of the scalar and vector potentials.
The magnetic field, along with all physical observables, is
gauge invariant. Hence, in order to properly describe the dis-
tances between physical quantities, the metrics we derive must
be robust against gauge transformations. However, quantities
such as the wave function and the paramagnetic current density
are gauge variant and changes in the vector potential can
result in gauge transformations for these quantities. Thus, here
we will extend the metric-space approach to ensure that the
metrics associated with these quantities are gauge invariant.

We will provide further insight into the fundamental
mappings between key physical quantities at the core of
CDFT by studying the ground state of model systems as
the vector potential is varied. In particular we will examine
how the “band structure” introduced into ground-state metric
spaces by the presence of a magnetic field [8] responds to
changes in the field. To complement this picture, we will apply
the metric-space approach to quantum mechanics to explore
the properties of excited states. Results will also help with
validating the conclusions from the ground-state analysis.

The rest of this paper is organized as follows. In Sec. II we
briefly review how functions obeying integral conservation
laws can be cast as metric spaces and the application of
this approach to the wave function, particle density, and
paramagnetic current density. Section III demonstrates how
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the gauge properties of the paramagnetic current density are
accounted for when forming the related metric space in order
to ensure that the metric is gauge invariant. In Sec. IV we
examine how the “band structure” present in metric spaces for
ground states is affected by variations in the magnetic field and
the relevance of this for CDFT. Section V goes beyond ground
states. In Sec. VI we present a summary and our conclusions.
We use atomic units � = e = me = 1/4πε0 = 1 throughout
this paper.

II. METRIC SPACES FOR PHYSICAL FUNCTIONS

In Ref. [8] a general procedure for deriving metric spaces
from conservation laws was presented. For completeness in
this section we briefly review this procedure and the properties
of these metric spaces.

A metric space (X,D) consists of a nonempty set of points
X and a metric D : X × X → R, which assigns a distance
between any two elements of X. For all a,b,c ∈ X the metric
must satisfy the following axioms [15,16]:

D(a,b) � 0, D(a,b) = 0 ⇔ a = b, (1)

D(a,b) = D(b,a), (2)

D(a,b) � D(a,c) + D(c,b). (3)

These axioms are known as positivity, symmetry, and the
triangle inequality, respectively.

Consider now a conservation law of the form∫
|f (x)|pdx = c, (4)

with c a finite positive constant and x = (x1, . . . ,xN ) including
any spatial or spin coordinate in any dimensionality. Then
for each p such that 1 � p < ∞, the entire set of functions
that satisfies Eq. (4) forms an Lp vector space. Then the
corresponding metric

Df (f1,f2) =
[∫

|f1(x) − f2(x)|pdx
]1/p

(5)

also applies to the restricted set of physical functions obeying
the conservation law (4) [8]. As c spans the set of its physically
allowed values {ci}, the metric (5) imposes on its metric
space an “onion-shell” geometry that consists of a series of
concentric spheres with radii c

1/p

i , as sketched in Fig. 1.
We note that the procedure developed in Ref. [8] can be

extended to conservation laws of the form
n∑

i=1

|fi |p = c, (6)

as the lp vector spaces for sums are directly analogous to the
Lp spaces for integrals [16]. In this case the induced metric
will be

Df (f1,f2) =
[

n∑
i=1

∣∣f1i
− f2i

∣∣p]1/p

. (7)

Thus, we have a general procedure to construct a metric for
any conservation law that is, or can be cast, in the form of

FIG. 1. (Color online) Sketch of the structure of the “onion-shell”
geometry, consisting of a series of concentric spheres. The first three
spheres are shown, with radii c

1/p

i , i = 1,2,3.

Eq. (4) or (6). We can therefore state that such conservation
laws induce metrics on the set of related physical functions. As
they descend directly from conservation laws, these “natural”
metrics are nontrivial and contain the relevant physics.

Following this procedure the metrics

Dψ (ψ1,ψ2) =
[∫ (|ψ1|2 + |ψ2|2

)
dr1 · · · drN

−2

∣∣∣∣
∫

ψ∗
1 ψ2dr1 · · · drN

∣∣∣∣
]1/2

, (8)

Dρ(ρ1,ρ2) =
∫

|ρ1(r) − ρ2(r)|dr, (9)

Djp⊥

(
jp1 ,jp2

) =
∫ ∣∣{r × [

jp1 (r) − jp2 (r)
]}

z

∣∣dr (10)

for wave functions ψ [5], particle densities ρ [5], and
paramagnetic current densities jp = (jpx

,jpy
,jpz

) [8] have
been introduced. These metrics follow from, respectively, the
conservation of wave-function norm, of particle number, and
of the z component of the angular momentum; the latter can
be expressed as Eq. (4), when using the relation [8]

∫
[r × jp(r)]zdr = 〈ψ |L̂z|ψ〉 = m. (11)

For paramagnetic current densities, Eq. (11) directly imposes
an equivalence relation on the set of all paramagnetic current
densities because [r × jp(r)]

z
is independent of jpz

. As a result,
Djp⊥ is a metric defined on a set of equivalence classes of
paramagnetic current densities, with the classes characterized
by paramagnetic current densities with the same transverse
component jp⊥ = (jpx

,jpy
).

The radii of the concentric spheres in the “onion-shell”
geometry of the aforementioned metric spaces are

√
N for
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the wave-function metric space,1 N for the particle density
metric space, and |m| for the paramagnetic current density
metric space [5,8]. When considering individual spheres, the
diameter of the sphere imposes an upper bound on the value
of the distance.

III. GAUGE INVARIANCE OF METRICS

When dealing with electromagnetic fields, it is important to
consider the choice of gauge. The scalar and vector potentials
in the Hamiltonian are not unique, as a change of gauge
transforms the potentials according to

V ′(r) = V (r) + c′, A′(r) = A(r) − ∇χ, (12)

where c′ is a constant and χ (r) is a scalar field [17]. These
transformations preserve the electromagnetic fields and all
physical observables.

With regard to the quantities we consider in this paper, the
particle density is gauge invariant, but the wave function and
paramagnetic current density are not. After a change of gauge,
the wave function undergoes a unitary transformation, which
is given by [18]

ψ ′(r) = e[iχ(r)]ψ(r). (13)

The paramagnetic current density transforms according to [17]

j′p(r) = jp(r) + ρ(r)∇χ. (14)

Thus, when considering changes in the vector potential, we
must be aware of the effect of gauge transformations on
the physical quantities we are considering. Our metrics are
constructed to provide nontrivial information that is physically
relevant; they are based in fact on conservation laws. It is
paramount then that they are also gauge invariant. The issue of
ensuring that the wave-function metric is gauge invariant has
been discussed in Ref. [5]; we provide a formal review of the
approach in Appendix A. In this paper we wish to discuss
gauge invariance with respect to the paramagnetic current
density metric.

Gauge invariance for the paramagnetic current density metric

To consider the gauge properties of Djp⊥ (jp1 ,jp2 ), first of
all we require that jp1 (r) and jp2 (r) are within the same gauge.
Then, applying the gauge transformation (14), we obtain

Djp⊥ (j′p1
,j′p2

) =
∫ ∣∣{r × [

j′p1
(r) − j′p2

(r)
]}

z

∣∣dr,

=
∫ ∣∣(r × {

jp1 (r) − jp2 (r)

+ [ρ1(r) − ρ2(r)]∇χ
})

z

∣∣dr. (15)

Equation (15) states that, in general, the paramagnetic current
density distance defined by Eq. (10) is modified by a gauge
transformation. This seems to contradict the fact that we
base our metrics on conservation laws, which must be gauge
invariant. In order to reconcile this apparent contradiction let

1We follow the same convention as Ref. [5], where wave functions
are normalized to the particle number N .

us explore more closely which quantities are gauge variant and
which are the ones that must be conserved.

With reference to Eq. (11), the measurable physical quantity
that must be conserved by gauge transformations is m, which,
in the gauge chosen, corresponds to the component L̂z of the
angular momentum. However, it is crucial to note that L̂z is
not (nor need be) gauge invariant.

In fact, the operator L̂z is defined as

L̂z =
N∑

i=1

[ri × p̂i]z, (16)

where p̂ is the canonical linear momentum p̂ = −i∇. Al-
though r is gauge invariant, p̂ is gauge variant and therefore so
is L̂z. In the following we wish to extend Eq. (10) so that the
metric associated with the conservation of m is indeed gauge
invariant.

We consider a system for which there exists at least one
gauge such that [L̂z,Ĥ ] = 0, with Ĥ the system Hamiltonian.
We name this the reference gauge and refer to its vector
potential as Aref(r) and to its paramagnetic current density
as jpref (r). In this reference gauge the set {m} corresponds to
the eigenvalues of L̂z and both equalities in the relation (11)
hold. The set {m} is then a constant of motion and in this gauge
it represents the z component of the angular momentum.

We now focus on the generic gauge corresponding to a
generic vector potential A(r). In this generic gauge, the first
equality of Eq. (11) holds, but the second equality holds only
if L̂z is a constant of motion in this gauge. Here we consider
the quantity

j̃p(r) ≡ jp(r) − ρ(r)∇χref (17)

and the operator

L̃z ≡
N∑

i=1

[r × (p̂ − ∇χref)]z, (18)

where ∇χref is defined by A = Aref − ∇χref . We note that
j̃p(r) is gauge invariant, as, from Eq. (14),

j̃p(r) ≡ jpref (r) (19)

always. It follows that∫
[r × j̃p(r)]zdr = m (20)

independently of the gauge. Furthermore, by using the defi-
nition (17), where ρ(r) = ∫ |ψ(r,r2 . . . rN )|2dr2 . . . drN , and
the first equality of Eq. (11), which holds regardless of whether
or not L̂z is a constant of motion, we obtain∫

[r × j̃p(r)]zdr = 〈ψ |L̂z|ψ〉 −
∫

[r × ρ(r)∇χref]zdr

= 〈ψ |L̂z|ψ〉 − 〈ψ |(r × ∇χref)z|ψ〉
= 〈ψ |L̃z|ψ〉. (21)

This demonstrates that Eq. (18) defines the operator associated
to the conservation law (20) independently of the gauge. In
particular, comparison of Eqs. (20) and (21) shows that indeed
L̃z is the operator whose eigenvalues are {m} independently
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of the gauge.2 Here L̃z reduces to L̂z in the reference gauge
and in all gauges where L̂z is a constant of motion, as should
be expected. This is because the limited set of gauges for
which [L̂z,Ĥ ] = 0 holds, is the same within which both L̂z and
[r × jp(r)]

z
are unaffected by gauge transformations. These

gauges correspond to vector potentials of the form

A(r) = [xα + yβ,yα − xβ,γ ], (22)

where α, β, and γ are all arbitrary functions of (x2 + y2,z).
These vector potentials are linked by gauge transformations of
the form χ (x2 + y2,z). Demonstration of these statements is
quite long and the details are given in Appendix B. Using the
conservation law (20), we derive the metric

Dj̃p⊥

(
j̃p1 ,j̃p2

) =
∫ ∣∣{r × [

j̃p1 (r) − j̃p2 (r)
]∣∣

z

}
dr (23)

for the gauge invariant current density j̃p(r).

IV. METRIC ANALYSIS OF GROUND STATES
FOR VARYING MAGNETIC FIELDS

In the presence of a magnetic field the metric spaces for
ground-state wave functions, particle densities and paramag-
netic current densities are characterized by a “band structure”
[8]. This is significant as identification and characterization of
ground-state properties is very important in several contexts
but far from obvious. This “band structure” originates from the
conservation law involving the paramagnetic current density
jp. In jp metric space, when considering variations in the
scalar potential [8], the “band structure” is formed by spherical
segments of allowed and forbidden distances on the concentric
spheres, at least for the systems analyzed. The specific arc
length of these segments varies depending on the radius |m|
of the sphere. Here we wish to investigate how this “band
structure” responds to changes in the magnetic field.

A. Model systems

We focus on two atomiclike model systems with uniform,
time-independent magnetic fields B = ωccẑ applied, where c

is the speed of light. Both systems consist of two electrons
in harmonic confinement but with different electron-electron
interactions. One system, known as the magnetic Hooke’s
atom, has a two-body Coulomb interaction [9,19], whereas
in the other electrons interact via an inverse square interaction
(ISI), the relative strength of which can be varied through
an interaction parameter α [20]. The Hamiltonians for these
systems are

ĤHA =
2∑

i=1

{
1

2

[
p̂i + 1

c
A(ri)

]2

+ 1

2
ω2

0r
2
i

}
+ 1

|r2 − r1| (24)

2We note that L̃z is related to the gauge invariant z component
of the moment of mechanical momentum K̂z = L̂z + [r × A(r)]z as
L̃z = K̂z − (r × Aref )z, but that K̂z would not be a constant of motion
in all gauges, that is, its eigenvalues are generally different from {m}.
Likewise j̃p does not coincide with the gauge-invariant total current
density j(r) = jp(r) + ρA(r).

and

ĤISI =
2∑

i=1

{
1

2

[
p̂i + 1

c
A(ri)

]2

+ 1

2
ω2

0r
2
i

}
+ α

(r1 − r2)2 .

(25)
Here A = 1

2 (B × r) in the symmetric gauge, which is of the
form of Eq. (22). Following Ref. [17], we neglect spin terms in
the Hamiltonians to concentrate on the features of the orbital
currents. For the ISI system, we can solve the time-independent
Schrödinger equation exactly for all frequencies and values of
m and α. However, for Hooke’s atom, analytical solutions
only exist for a discrete set of frequencies. In order to give
us freedom over the frequencies we choose, we solve the
Schrödinger equation with the method in Ref. [21], which
allows us to numerically determine the solution with high
precision for all frequencies.

We generate families of ground states by varying the
magnetic field via the cyclotron frequency ωc while holding
the confinement frequency ω0 and all other parameters in the
Hamiltonian constant. For each ωc value we calculate the wave
function, particle density, and paramagnetic current density.
Within each family, one value of ωc (and hence m) is selected
as a reference (ωcref and mref , respectively), with the appropriate
metrics used to find the distance between the physical functions
at the reference and all of the other states in the family. We
choose the reference so that most of the available distance
range is explored for both increasing and decreasing ωc.

Figure 2 shows that, for both of our systems, the value of m

for which the energy is lowest decreases from zero through
the negative integers as ωc increases. Consequently, when
studying ground states, we must consider states on different
spheres in the paramagnetic current density metric space. We
also note that there are “transition frequencies”, i.e., values
of ωc where the energy is equal for two consecutive values
of m. These are the crossings of the energy curves in Fig. 2.
Therefore, when varying ωc it is necessary to change the value
of m at the transition frequencies in order to continue analyzing
ground states. Additionally, when m = 0, jp(r) = 0 for all r.
Hence, we take only negative values of m to ensure we consider
ground states with nonzero paramagnetic current densities.

B. Ground states’ band structure and relevance to current
density-functional theory

An important research area where properties of ground
states are central is DFT. This theory has produced widely
used tools for realistic calculations of properties of many-body
systems, such as band structures of metals and semicon-
ductors, crystal structures of solids, and characterization of
nanostructures [22,23]. Density-functional theory is founded
upon the Hohenberg-Kohn (HK) theorem [24], which states
that there is a one-to-one mapping between ground-state wave
functions and ground-state particle densities. There are various
forms of DFT that extend the application of the theory to a
greater range of systems. Current-density-functional theory is
the extension of standard DFT to include systems subject to
external magnetic fields [17]. There is a HK-like theorem at
the core of CDFT that states that a one-to-one mapping exists
between the ground-state wave function ψ and, taken together,
the particle density ρ(r) and the paramagnetic current density
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FIG. 2. (Color online) Energy plotted against the cyclotron fre-
quency for several values of m for (a) Hooke’s atom and (b) the ISI
system. The confinement frequency and interaction strength are held
constant. Arrows indicate where the value of m for the ground-state
changes.

jp(r) (the CDFT HK theorem) [17]. This additional complexity
of the CDFT HK theorem with respect to the original HK
theorem is due to the fact that systems with magnetic fields
are characterized not only by a scalar potential (the external
potential), but also by the vector potential connected to the
magnetic field [17]. In Ref. [8] we started examining the CDFT
HK mapping by looking at the effect of varying the scalar
potential, i.e., the external confining potential; here we wish to
complete this analysis by looking at the effect on the mapping
of varying the vector potential, i.e., the magnetic field.

We start by comparing the distances between wave
functions, their related particle densities, and their related
paramagnetic current densities. Figure 3 shows plots of the
relationships between the various distances considered, with
each point referring to a particular value of ωc. Let us
consider first the plots of particle density distance against
wave-function distance [Figs. 3(a)–3(d)]. As observed in
Ref. [8], metric-space regions corresponding to ground states
present a “band structure”, where points associated with the
same value of |m| are grouped into distinct segments, i.e.,
bands. However, in contrast to the “band structure” observed
in Ref. [8] [sketched in Fig. 4(a)], when varying the vector
potential we obtain a series of “overlapping bands”, where
the minimum wave-function and minimum particle density
distances for one value of |m| are smaller than the maximum

distances for the previous value of |m|. This implies that
there is an overlap between the projections of the bands
on the metric-space sphere representing the densities, as
sketched in Fig. 4(b) (similarly for the projection on the
sphere representing the wave functions). Though overlapping,
this “band structure” still results in discontinuities in the
relationship between Dρ and Dψ when the value of m changes.
Unlike when varying ω0 [8], by varying the magnetic field
we do not observe any forbidden distances, so we cannot
identify forbidden regions for ground states by considering
the particle density and wave-function metric spaces alone. In
the range of distances explored here, nearby wave functions
are mapped onto nearby particle densities and distant wave
functions are mapped onto distant particle densities. However,
in contrast to Ref. [8], the mapping is only piecewise linear:
When acting on the vector potential, as ωc is swept through
each transition frequency, ground states and their particle
densities abruptly revert to be closer to the reference state,
while an almost linear mapping is maintained within two
consecutive transition frequencies. The segments created in
this way do not overlap, as, at each transition frequency, the
ball related to the particle density and centered at the reference
density shrinks proportionally more than the corresponding
ball related to the wave function. Also, in contrast with
Ref. [8], the two families of ground states corresponding to
|m| < |mref| and |m| > |mref| describe distinct paths in metric
space [e.g., compare Figs. 3(a) and 3(b)], with the size of
the bands greater for |m| < |mref| compared to |m| > |mref|.
For all of these reasons the CDFT HK mapping between
wave functions and related particle densities acquires added
complexity when varying the vector potential compared to
varying the scalar potential [compare Figs. 2(a) and 2(b) in
Ref. [8] with Figs. 3(a)–3(d)].

In Figs. 3(e)–3(h) we consider paramagnetic current density
distance against wave-function distance. Here we find once
more an overlapping “band structure” for wave-function
distances; however, a “band structure” with regions of allowed
(bands) and forbidden (gaps) distances is observed for para-
magnetic current density distances. In contrast with the one
sketched in Fig. 4(a), in this case each band resides on a
different sphere according to the value of |m| (the radius of
the sphere). Transition frequencies are points of discontinuity
for both paramagnetic current density and wave-function
distances. As for Figs. 3(a)–3(d), the curves for increasing
and decreasing ωc (and hence |m|) do not overlap, with larger
bands for small values of |m|. Finally, Figs. 3(i)–3(l) present
the plots of paramagnetic current density distance against
particle density distance. These exhibit behavior similar to
that in Figs. 3(e)–3(h).

The overlapping “band structures” observed in Fig. 3
demonstrate that mappings between some of the distances
considered here are multivalued. This multivalued mapping
does not represent a contradiction of the CDFT HK theorem
as it is entirely possible to have distinct functions at the same
distance away from a reference. In particular, in terms of the
“onion-shell” geometry, all states situated at the same polar
angle and on the same sphere will have the same distance
from the reference state.

In Fig. 5 the wave-function and paramagnetic current
density distances are plotted against ωc for both systems,
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FIG. 3. Plots of distances for Hooke’s atom with reference state ω0 = 0.5, ωc = 5.238, and mref = −5 (top two rows) and for the ISI system
with reference state ω0 = 0.6, ωc = 5.36, α = 5, and mref = −10 (bottom two rows): (a)–(d) particle density distance against wave-function
distance, (e)–(h) paramagnetic current density distance against wave-function distance, and (i)–(l) paramagnetic current density distance against
particle density distance. The reference frequency is taken halfway between the two transition frequencies related to mref .

enabling the “band structures” for individual functions to
be analyzed. We note that, as observed in Fig. 3, there is a
decrease in the wave-function distance at transitions [Figs. 5(a)
and 5(b)], but an increase in the paramagnetic current density
distance [Figs. 5(c) and 5(d)]. These features give rise
to overlapping-band and band-gap structures, respectively.
The other major feature is that, when varying ωc, there is
nonmonotonic behavior within bands corresponding to values
of m close to mref (see insets). For both wave functions and
paramagnetic current densities, we observe that immediately
after each transition frequency, the distances initially decrease
to a minimum for that particular band before increasing to the
maximum for the band. This occurs at the transition frequency
to the next band. This behavior is more pronounced for wave
functions than for paramagnetic current densities. As stated,

the nonmonotonicity is not in contradiction with the HK-like
theorem of CDFT, but shows a richer behavior with respect
to what was observed in Ref. [8] when varying the scalar
(confining) potential.

We point out that the “band structure” in metric space
for paramagnetic current density is fundamentally different
from the ones for particle density and wave function, as the
former develops on different spheres, one band for each sphere,
while the latter are within a single sphere where they may
display overlapping-band or band-gap structures (see Fig. 4).
All these band structures originate from the conservation
law characterizing the paramagnetic current density and the
features of the metric spaces for wave functions and particle
densities are a direct consequence of the mapping of jp(r)
onto ψ(r) and onto ρ(r). In this sense the “band structure”
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FIG. 4. (Color online) Sketches of “band structures” consisting
of (a) “bands” and “gaps” and (b) “overlapping bands” in particle
density metric space for three consecutive bands, where a different
patterning corresponds to a different value of m. The reference state
is at the north pole.

features of the metric spaces for wave functions and particle
densities could be seen merely as the projections done by
these mappings of the “band structure” characterizing the
paramagnetic current density.

Finally, we wish to concentrate on the implications of our
findings for CDFT. Current-density-functional theory requires
that both ρ and jp are taken together to ensure a one-to-one
mapping to the wave function. The metric analysis allows us to
provide evidence for an important aspect of this mapping, that
is, to understand when the inclusion of jp in the mapping be-
comes really crucial for the one-to-one correspondence to hold.

We present in Fig. 6 the ratio Djp⊥ /Dρ against Dψ for
both Hooke’s atom and the ISI system. From the data it
is immediately clear that, in metric space, to a good level
of approximation, Djp⊥ = const × Dρ as long as m = mref .
This constant is the same for ωc > ωcref and ωc < ωcref . These
findings suggest that, at least for the systems at hand, as long
as we remain on the same sphere in the paramagnetic current
density metric space, jp and ρ carry very similar information
and the role of jp in the core mapping of CDFT is secondary.
The situation becomes very different for ground states with
m = mref . In this case the ratio Djp⊥ /Dρ is far from constant
and Fig. 6 clearly shows that the information contents of jp
and ρ are both necessary to define the state. Similar results are
obtained when keeping the magnetic field fixed but varying
the confinement ω0 of the systems (not shown).

The characterization of this difference in the role of jp and ρ

in the CDFT core mapping constitutes one of the main results
of the paper. To support it, we will analyze in the next section
the behavior of states where m is kept equal to mref at all values
of ωc.

V. EXCITED STATES

Although an understanding of the ground state is important
for studying systems subject to magnetic fields, it is often
necessary to go beyond ground states, for example, when
studying rapidly varying fields or spintronic devices that
operate with excited states. With the metrics at hand, we
investigate excited states and consider distances between
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FIG. 5. For Hooke’s atom (top) and the ISI system (bottom), (a) and (b) wave-function distance and (c) and (d) paramagnetic current
density distance are plotted against ωc. The behavior around the reference frequency is shown in each inset. The reference states are ω0 = 0.5,
ωcref = 5.238, and mref = −5 for Hooke’s atom and ω0 = 0.6, ωcref = 5.36, α = 5, and mref = −10 for the ISI system.
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FIG. 6. Plots of the ratio of paramagnetic current density distance
to particle density distance against wave-function distance for (a)
Hooke’s atom with reference state ω0 = 0.5, ωcref = 5.238, and
mref = −5 and (b) the ISI system with reference state ω0 = 0.6,
ωcref = 5.36, α = 5, and mref = −10.

families of states corresponding to fixed values of m.3 For
each value of m we will construct a family of states by varying
ωc (ω0 and α kept constant) and calculating the corresponding
wave functions, particle densities, and paramagnetic current
densities. As for ground states, we choose m < 0. With
respect to Fig. 2, this corresponds to following single energy
curves smoothly, i.e., without switching to a different curve
at crossings, as done instead for the ground-state case. Each
family of states will then lie on a particular sphere in the
paramagnetic current density metric space. As the states
considered are not necessarily ground states (see Fig. 2), there
is no one-to-one mapping between the wave function and
particle and paramagnetic current densities, but, these being
fundamental quantities that characterize the system, we will
still explore their relationships. Additionally, the study of these
quantities allows us to corroborate the findings related to Fig. 6.

Figure 7 shows the relationship between each pair of
distances for six different values of m. For any pair of distances
here discussed, we find a monotonic relationship that is linear
in the short- to intermediate-distance regime, before one of

3The center-of-mass quantum number M is held constant at zero
throughout this analysis.

the two functions rises more sharply to its maximum (see
also Fig. 8). The mapping between the physical functions is
such that nearby functions a (e.g., the wave functions) are
mapped onto nearby functions b (e.g., the paramagnetic current
densities) and distant functions a are mapped onto distant
functions b. Crucially, as opposed to ground states, distances
do not form any kind of metric-space “band structure”,
confirming the origin of band structures as the changes
in m.

Looking at wave-function distances against particle density
distances in Figs. 7(a) and 7(b) and contrasting with Figs. 3(a)–
3(d), we observe that the curves for increasing and decreasing
ωc and all values of |m| collapse onto one another. This hints at
a universal behavior of the mapping between particle density
and wave function when all the physical quantities describing
the system remain on the same sphere in the related metric
space while a physical parameter is smoothly changed.

When considering paramagnetic current density distance
against wave-function distance in Figs. 7(c) and 7(d), although
the curves for increasing and decreasing ωc collapse onto
one another, the curves for different values of m are distinct,
particularly when |m| is low. For lower values of |m| the linear
region extends across a larger range of distances. There is also
a relatively small increase in the gradient at greater distances
for low |m|. The curves in Figs. 7(c) and 7(d) all start and end
at the same points. With the rescaling for Djp⊥ used in Fig. 7,
the curves tend to a limiting curve with increasing values of
|m|. In Fig. 8 we show the relationship between wave-function
distance and paramagnetic current density distance for the
ISI system without rescaling Djp⊥ . Here the curves for each
value of |m| intersect only at the origin and each has a
unique maximum of 2|m| for the paramagnetic current density
distance. We observe that the gradient of the initial linear
region increases with |m|. Figure 9 shows, for the ISI system,
that the gradient in this region increases linearly with |m|,
Djp⊥ ≈ k|m|Dψ , with 0 � k � 1, and is approximately equal
for both decreasing and increasing ωc. Similar results are
obtained for Hooke’s atom (not shown). These results imply
that when rescaled as in Fig. 7, the initial slope of the curves
will always be below 45◦, a result also observed in Ref. [5]
for the case in which different spheres in the wave-function
metric-space geometry were considered.

When considering paramagnetic current density distance
against particle density distance [Figs. 7(e) and 7(f)] we see
that, as for Djp⊥ vs Dψ , with the rescaling of Fig. 7 there
are distinct curves for each value of m that converge onto a
single curve as |m| increases. As opposed to Djp⊥ vs Dψ , the
extent of the linear behavior of these curves is increasing as
|m| increases.

The behavior of the curves observed in Fig. 7 reflects
the “onion-shell” geometry. For wave functions and particle
densities the sphere radius is associated with the number
of particles in the system, which is fixed for the systems
considered. Thus, regardless of the value of |m|, wave
functions and particle densities always lie on the same sphere in
their respective metric spaces. The fact that the related curves
still superimpose for changing |m| seems to imply that the
value of |m| has no relevant effect on the curves representing
the relative change of ψ and ρ for changing parameters, at least
as long as they remain on the same sphere. In paramagnetic
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FIG. 7. Plots of (a) and (b) particle density distance against wave-function distance, (c) and (d) paramagnetic current density distance against
wave-function distance, and (e) and (f) paramagnetic current density distance against particle density distance for m = −1,−2,−3,−8,−9,−10.
The reference states for each value of m are ω0 = 0.1 and ωcref = 30.0 for Hooke’s atom (top) and ω0 = 0.1, ωcref = 5.0, and α = 5 for the ISI
system (bottom). Closed symbols represent decreasing ωc and open symbols represent increasing ωc.

current density metric space, the spheres’ radii are related
to |m|, so paramagnetic current densities are on the surface
of different spheres each time we consider a different value
of |m|. As a result we see that the curves’ shape is affected
and they do not collapse onto each other. A similar universal
behavior within each sphere and, by contrast, the breaking of
this universality when different spheres were considered was
also observed in Ref. [5], where different values of N , and
hence different spheres, for both wave functions and particle
densities were considered. This seems to suggest that different
behavior for the mappings should be expected when curves on
different spheres in the metric spaces are involved.
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FIG. 8. Plot of paramagnetic current density distance against
wave-function distance for m = −1,−2,−3,−8,−9,−10 for the ISI
system. We take the state with ω0 = 0.1, ωcref = 5.0, and α = 5 as
a reference for each value of m and consider distances across the
surface of each individual sphere.

Finally, Fig. 10 combines all distances for each system
in a single plot. Importantly, this figure shows that for
small to medium wave-function distances Djp⊥ /Dρ ∼ const,
where the constant depends on |m|, so this ratio is, to a
good approximation, independent over variations of the wave
function for relatively close wave functions. In this respect,
for relatively close wave functions this suggests that the
mappings between current density and wave function and
between particle density and wave function are very similar,
as long as the family of states follows the evolution of the
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FIG. 9. Plot of the ratio of paramagnetic current density distance
to wave-function distance against |m| for the ISI system. The
reference for each value of m is ω0 = 0.1, ωcref = 5.0, and α = 5 and
the gradient is taken at ωc = 4.5 for decreasing frequencies and ωc =
6.0 for increasing frequencies, i.e., the frequencies corresponding to
the closest points to ωcref for both decreasing and increasing ωc in
Fig. 8.
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FIG. 10. Plots of the ratio of paramagnetic current density
distance to particle density distance against wave-function distance
for (a) Hooke’s atom, with reference state ω0 = 0.1, ωcref = 30.0,
and (b) the ISI system, with reference state ω0 = 0.1, ωcref = 5.0, and
α = 5. Closed symbols represent decreasing ωc and open symbols
represent increasing ωc.

same energy eigenstate as driven by the varying parameter
(see Fig. 2).

VI. CONCLUSION

The metric-space approach to quantum mechanics has
enabled us to illustrate the role of the vector potential in
systems subject to external magnetic fields, with particular
reference to the fundamental concepts of CDFT. Importantly,
we have also furthered the theoretical framework of the
metric-space approach to quantum mechanics by discussing
the key point of gauge invariance for the “natural” metrics
proposed and in particular demonstrating the gauge-invariant
metric for the paramagnetic current density, which is not a
gauge-invariant quantity per se.

The presence of the vector potential in the Hamiltonian
leads to the inclusion of the paramagnetic current density
in the core mapping of CDFT. By considering the metric
for the paramagnetic current density together with that for
the particle density, we were able to investigate the relative
contribution to this core mapping from each of these two

quantities, for the systems at hand. When m is held constant and
paramagnetic current and particle densities belong to the same
metric-space sphere as their reference state, we observed that
the ratio Djp⊥ /Dρ is approximately constant, suggesting that
ρ and jp contribute similar information. However, this simple
relation dramatically breaks down when considering states
with m = mref and hence states spanning different spheres in
paramagnetic current density metric space. This suggests that
the presence of jp in the core mapping of CDFT becomes
crucial in this case.

By varying the vector potential, we uncovered different
aspects of the “band structure” in ground-state metric spaces,
in particular the presence of overlapping bands, which enriches
the band-gap structures already observed when varying the
scalar potential. Our analysis suggests that, in general, the
presence of bands in metric space can be expected when
considering a family of states for which one of the fundamental
physical functions spans more than one sphere in its metric
space. For ground states, the onset of the “band structure” is
the signature of energy levels’ crossings obtained by varying a
parameter in the Hamiltonian (the magnetic field in the present
case).

We also applied the metric-space approach to quantum
mechanics beyond ground states. When considering families
of states characterized by fixed values of m, it was found
that the mappings between wave functions, particle densities,
and paramagnetic current densities are monotonic and almost
linear, without “band structures”, confirming that each band is
characterized by a specific value of m. The curves Dψ versus
Dρ superimpose for all values of m, but not so when Djp⊥
is involved. This is consistent with the fact that a different
m represents different spheres in the “onion-shell” geometry
related to jp.

Finally, when considering the ratio Djp⊥ /Dρ for these fixed-
m families, the relationship Djp⊥ /Dρ ≈ const was observed
to persist up to intermediate distances and for all of the
values of m that were explored. At least for the systems at
hand, this suggests that, within the same sphere and up to
quite different states, particle density and wave function still
suffice to contribute most of the information on the physical
system.
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APPENDIX A: GAUGE INVARIANCE
FOR THE WAVE-FUNCTION METRIC

Gauge transformations affect wave functions by intro-
ducing a constant global phase factor [see Eq. (13)]. Wave
functions differing by this phase factor describe the same
physics; in fact, the solutions of the Schrödinger equation
are only defined up to a global phase factor. To have
physically meaningful metrics, it is therefore important to
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define equivalence classes such that the metric assigns zero
distance to wave functions differing only by a global phase
factor.

An equivalence class for an element x ∈ X is defined as [25]

[x] = {x ′ ∈ X : x ∼ x ′}, (A1)

where ∼ is the equivalence relation. Each element of the set
X belongs to a single equivalence class [25].

In order to account for an equivalence relation between el-
ements x ∼ x ′, we follow a general procedure for introducing
equivalence relations into a metric space (X,D). We define the
function [26]

DR(x,y) = inf

{
k∑

i=1

D(pi,qi) : p1 = x,qk = y,k ∈ N

}
,

(A2)

where the infimum is taken over all choices of {pi} and {qi}
such that pi+1 ∼ qi . This implies that if x ∼ y, DR(x,y) =
D(x,x) + D(y,y) = 0 even if D(x,y) = 0 [26]. This function
is a semimetric (or pseudometric) on the set X, known as the
quotient semimetric. A semimetric is a distance function that
obeys all of the axioms of a metric except that it allows zero
distance between nonidentical elements as well as identical
ones.

For wave functions, the metric derived from the conser-
vation law before accounting for the equivalence of wave
functions differing by a global phase is [5,27]

D̃ψ (ψ1,ψ2) =
[∫

|ψ1 − ψ2|2dr1 · · · drN

]1/2

. (A3)

For this in general we have that D̃ψ (ψ,eiφψ) = 0. If in
Eq. (A2) we take k = 2, we find

Dψ (ψ1,ψ2) = inf{D̃ψ (ψ1,ψ
′) + D̃ψ (ψ2,ψ2)}

= inf{D̃ψ (ψ1,ψ
′)},

where ψ ′ = eiφψ2 ∼ ψ2 and we have used the positivity
axiom of the metric. The choice of ψ ′ that will minimize
the value of the semimetric is determined by the phase factor,
hence

Dψ (ψ1,ψ2) = min
φ

{D̃ψ (ψ1,e
iφψ2)}. (A4)

With this semimetric space ({ψ},Dψ ), we can recover a metric
space in a natural way, by “gluing” equivalent elements to
form a set of equivalence classes. By considering the set of
equivalence classes, rather than the set of all wave functions,
all wave functions differing only by a global phase factor are
identified with one another. Thus, for wave functions, the set
of equivalent wave functions with Dψ is a metric space, with
the metric defined between each of the equivalence classes,
as required [25]. The metric Dψ defined from Eq. (A4) is the
same as the metric defined in Refs. [5,27] and can be expressed
in the form of Eq. (8).

APPENDIX B: DETERMINING THE GAUGES
WHERE Lz IS A CONSTANT OF MOTION

In order to be a constant of motion, the z component of
the angular momentum L̂z = −i[r × ∇]z must commute with

the Hamiltonian. Given that a vector potential is present, we
consider the Pauli Hamiltonian

Ĥ = −1

2
∇2 − i

2
(A · ∇ + ∇ · A) + 1

2
A2 + V (r), (B1)

with V (r) such that [V (r),L̂z] = 0. The Hamiltonian (B1) does
not necessarily commute with L̂z for a particular A(r), because
L̂z is gauge variant. For instance, L̂z commutes with the
Hamiltonian (B1) in the symmetric gauge A = [y,−x,0] and
does not commute with it in the Landau gauge A = [0,−x,0].
We wish to determine the general set of vector potentials where
[Ĥ ,L̂z] = 0.4

1. Simplifying the commutator

The commutator we wish to evaluate is

[Ĥ ,L̂z]ψ = − i

[
A · ∇

(
x

∂ψ

∂y

)
− A · ∇

(
y

∂ψ

∂x

)

−x
∂

∂y
(A · ∇ψ)+y

∂

∂x
(A · ∇ψ)+∇ ·

(
Ax

∂ψ

∂y

)

−∇ ·
(

Ay
∂ψ

∂x

)
−x

∂

∂y
∇ · (Aψ)+y

∂

∂x
∇ · (Aψ)

]

+ A2x
∂ψ

∂y
−A2y

∂ψ

∂x
−x

∂

∂y
(A2ψ) + y

∂

∂x
(A2ψ),

(B2)

where we have used that [− 1
2∇2 + V (r),L̂z] = 0. We wish to

impose the condition [Ĥ ,L̂z] = 0 and then solve the commu-
tator to obtain the vector potential A(r). After performing the
vector operations and simplifying, Eq. (B2) reduces to

− i

[(
2Ax

∂ψ

∂y
− 2Ay

∂ψ

∂x

)

−2x

(
∂ψ

∂x

∂Ax

∂y
+ ∂ψ

∂y

∂Ay

∂y
+ ∂ψ

∂z

∂Az

∂y

)

+2y

(
∂ψ

∂x

∂Ax

∂x
+ ∂ψ

∂y

∂Ay

∂x
+ ∂ψ

∂z

∂Az

∂x

)

−xψ
∂

∂y

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)

+yψ
∂

∂x

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)]

− xψ
∂A2

∂y
+ yψ

∂A2

∂x
= 0. (B3)

In order to progress with the solution of this equation, we first
consider the case where ψ,

∂ψ

∂x
,
∂ψ

∂y
, and ∂ψ

∂z
are all independent

of each other. This choice allows us to decompose Eq. (B3)
into a set of simultaneous equations, which we can then solve.
The solution of these equations will provide properties of the
general set of vector potentials where [Ĥ ,L̂z] = 0. Using these
properties, we will then solve Eq. (B3) for A(r) using a general
wave function.

4In the case where we have many-body interactions, we only
consider the case [U (ri ,rj ),L̂z] = 0, as is the case for the Coulomb
interaction.
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With our choice of trial wave function, we write the set of
simultaneous equations

ix
∂

∂y

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
− x

∂A2

∂y

− iy
∂

∂x

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
+ y

∂A2

∂x
= 0, (B4)

Ay + x
∂Ax

∂y
− y

∂Ax

∂x
= 0, (B5)

Ax − x
∂Ay

∂y
+ y

∂Ay

∂x
= 0, (B6)

y
∂Az

∂x
− x

∂Az

∂y
= 0. (B7)

We concentrate first on Eqs. (B5)–(B7), a set of three equations
for the three unknowns Ax , Ay , and Az. Firstly, we consider
Eq. (B7): In order to solve this partial differential equation
(PDE), we use the method of characteristics [28].

The method of characteristics requires the visualization
of Eq. (B7) in four-dimensional coordinates (x,y,z,u). By
considering the solution surface u = Az(x,y,z), we can write

Az(x,y,z) − u = 0.

For any surface S a normal vector to the surface is given by ∇S.
Thus, the vector [ ∂Az

∂x
,
∂Az

∂y
,
∂Az

∂z
,−1] is normal to the solution

surface. We now write the PDE (B7) as a scalar product

[y,−x,0,0] ·
[
∂Az

∂x
,
∂Az

∂y
,
∂Az

∂z
,−1

]
= 0.

Since the scalar product of these two vectors is zero, they must
be orthogonal. Given also that the vector [ ∂Az

∂x
,
∂Az

∂y
,
∂Az

∂z
,−1]

is normal to the surface, this tells us that the vector field
[y,−x,0,0] is tangent to the surface at every point, providing a
geometrical interpretation of the PDE. Thus, any curve within
the surface Az(x,y,z) − u = 0 that has the vector [y,−x,0,0]
as a tangent at every point must lie entirely within the surface.
Such curves are called characteristic curves [28]. Any curve
can be described by a parameter t and the tangent of such
a curve r(t) is given by the derivative with respect to this
parameter r′(t). Therefore, the tangent of a characteristic curve
r(t) = [x(t),y(t),z(t),Az(t)] is given by the vector

r′(t) =
[
dx

dt
,
dy

dt
,
dz

dt
,
dAz

dt

]
.

This vector is therefore proportional to the tangent vector
[y,−x,0,0] for this characteristic curve, allowing us to
construct the equations

dx

dt
= y, (B8)

dy

dt
= −x, (B9)

dz

dt
= 0, (B10)

dAz

dt
= 0. (B11)

These are the characteristic equations of the PDE (B7).

Solving this set of ordinary differential equations (ODEs)
yields the solution of the original PDE (B7), since

dAz

dt
= dx

dt

∂Az

∂x
+ dy

dt

∂Az

∂y
+ dz

dt

∂Az

∂z

= y
∂Az

∂x
− x

∂Az

∂y
= 0.

By eliminating the parameter t in Eqs. (B8)–(B11), we can
reduce the set of ODEs to three equations

dy

dx
= −x

y
, (B12)

dz

dx
= 0, (B13)

dAz

dx
= 0. (B14)

We now note that the constant of integration in Eq. (B14)
has a functional dependence on the solutions to Eqs. (B12)
and (B13). This is because the ODEs are solved along charac-
teristic curves: The constants of integration are constant along a
particular characteristic, but can vary between characteristics.
The solutions to Eqs. (B12) and (B13) are

x2 + y2 = a, z = b, (B15)

respectively, where a and b are the constants of integration.
Thus, the solution for Az is

Az = γ (x2 + y2,z), (B16)

where γ is an arbitrary function.

2. Solving the simultaneous equations

We will now solve Eqs. (B5) and (B6) simultaneously. First,
we differentiate Eq. (B5) with respect to both x and y, which
gives

∂Ay

∂x
+ ∂Ax

∂y
+ x

∂2Ax

∂x∂y
− y

∂2Ax

∂x2
= 0, (B17)

∂Ay

∂y
+ x

∂2Ax

∂y2
− ∂Ax

∂x
− y

∂2Ax

∂x∂y
= 0, (B18)

respectively. We substitute these expressions for ∂Ay

∂x
and ∂Ay

∂y

into Eq. (B6) and obtain

Ax − x

(
−x

∂2Ax

∂y2
+ ∂Ax

∂x
+ y

∂2Ax

∂x∂y

)

+ y

(
−∂Ax

∂y
− x

∂2Ax

∂x∂y
+ y

∂2Ax

∂x2

)
= 0,

y2 ∂2Ax

∂x2
− 2xy

∂2Ax

∂x∂y
+ x2 ∂2Ax

∂y2
− x

∂Ax

∂x
− y

∂Ax

∂y
+ Ax = 0.

(B19)

We now have an equation containing only the unknown Ax

that we can solve.
We begin to solve this equation by using the method of

characteristics. For second-order PDEs, it is first necessary to
determine the type of the PDE, either hyperbolic, parabolic, or
elliptic. This is done by calculating the discriminant b2 − 4ac,
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where a, b, and c are the coefficients of ∂2Ax

∂x2 , ∂2Ax

∂x∂y
, and ∂2Ax

∂y2 ,
respectively. This will then allow us to perform an appropriate
change of variables from (x,y,z) to (ξ,η,z), where ξ and η are
the characteristics [29]. The discriminant is

b2 − 4ac = 4x2y2 − 4x2y2 = 0. (B20)

Therefore, the characteristic equation is parabolic and has one
repeated solution, which we take for ξ . The characteristic
equation is the ODE [29]

y2

(
dy

dx

)2

− 2xy
dy

dx
+ x2 = 0; (B21)

solving for dy

dx
gives

dy

dx
= −x

y
.

Hence, from Eq. (B15) we know that the first characteristic
is ξ = a = x2 + y2. Since there is only one root of the
characteristic equation, we have complete freedom in the
choice for η, provided that it is not the same as ξ . Given that
we know that the symmetric gauge satisfies the commutator
[Ĥ ,L̂z] = 0 and, specifically, that Ax = y is a solution for
Eq. (B19), we choose η = y. By using the chain rule, we find
the derivatives in Eq. (B19),

∂Ax

∂x
= 2x

∂Ax

∂ξ
,

∂Ax

∂y
= 2y

∂Ax

∂ξ
+ ∂Ax

∂η
,

∂2Ax

∂x2
= 4x2 ∂2Ax

∂ξ 2
+ 2

∂Ax

∂ξ
,

∂2Ax

∂y2
= 4y2 ∂2Ax

∂ξ 2
+ 4y

∂2Ax

∂ξ∂η
+ ∂2Ax

∂η2
+ 2

∂Ax

∂ξ
,

∂2Ax

∂x∂y
= 4xy

∂2Ax

∂ξ 2
+ 2x

∂2Ax

∂ξ∂η
.

Substituting into Eq. (B19) and simplifying, we get

x2 ∂2Ax

∂η2
− y

∂Ax

∂η
+ Ax = 0

and completing the change of variables gives

(ξ − η2)
∂2Ax

∂η2
− η

∂Ax

∂η
+ Ax = 0. (B22)

The next step of the solution is to perform a reduction of
order through the use of the known solution Ax = η [29]. The
reduction used is

Ax = uη,
∂Ax

∂η
= η

∂u

∂η
+ u,

∂2Ax

∂η2
= η

∂2u

∂η2
+ 2

∂u

∂η
,

which we substitute into Eq. (B22) to give

η(ξ − η2)
∂2u

∂η2
+ 2(ξ − η2)

∂u

∂η
− η2 ∂u

∂η
− uη + uη = 0,

η(ξ − η2)
∂2u

∂η2
+ (2ξ − 3η2)

∂u

∂η
= 0.

We now make the substitution v = ∂u
∂η

,

η(ξ − η2)
∂v

∂η
+ (2ξ − 3η2)v = 0. (B23)

This equation can now be solved separably,∫
1

v
dv =

∫ [
3η2 − 2ξ

η(ξ − η2)

]
dη.

We decompose the denominator through the use of partial
fractions, giving∫

1

v
dv = −

∫
2

η
dη +

∫
η

ξ − η2
dη,

from which we get

ln v = −2 ln η − 1

2
ln

∣∣ξ − η2
∣∣ + ln [α(ξ,z)],

v = α(ξ,z)

η2|ξ − η2|1/2
,

where α is an arbitrary function and we note that ξ − η2 =
x2 + y2 − y2 = x2 > 0, hence ξ − η2 is always positive.

Now that we have a solution to Eq. (B23), we must reverse
our substitutions to get a solution for Ax . First, we integrate v

to get u,

u = α(ξ,z)
∫

1

η2(ξ − η2)1/2
dη. (B24)

From standard integrals [30], we get

u = −α(ξ,z)

ξη
(ξ − η2)1/2 + β(ξ,z),

where β is another arbitrary function. Next we write Ax = uη,
obtaining

Ax = α(ξ,z)(ξ − η2)1/2 + ηβ(ξ,z), (B25)

where we absorb the factor of − 1
ξ

into α. Finally, we substitute
back from (ξ,η,z) to (x,y,z),

Ax = α(x2 + y2,z)(x2 + y2 − y2)1/2 + yβ(x2 + y2,z)

= xα(x2 + y2,z) + yβ(x2 + y2,z), (B26)

to give the solution for Ax . We find Ay from Eq. (B5),

Ay = y
∂Ax

∂x
− x

∂Ax

∂y

= y[α(x2 + y2,z) + 2x2α′(x2 + y2,z) + 2xyβ ′(x2 + y2,z)] − x[2xyα′(x2 + y2,z) + β(x2 + y2,z) + 2y2β ′(x2 + y2,z)]

= yα(x2 + y2,z) − xβ(x2 + y2,z),
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giving us solutions for all three components. We will now verify that the solutions for Ax , Ay , and Az satisfy the remaining
equation (B4),

ix
∂

∂y

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
− x

∂A2

∂y
− iy

∂

∂x

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
+ y

∂A2

∂x

= ix
∂

∂y

(
2α + 2x2α′ + 2xyβ ′ + 2y2α′ − 2xyβ ′ + ∂γ

∂z

)
− iy

∂

∂x

(
2α + 2x2α′ + 2xyβ ′ + 2y2α′ − 2xyβ ′ + ∂γ

∂z

)

−x(4x2yαα′ + 2yβ2 + 4y3ββ ′ + 2yα2 + 4y3αα′ + 4x2yββ ′ + 4yγ γ ′)

+y(2xα2 + 4x3αα′ + 4xy2ββ ′ + 4xy2αα′ + 2xβ2 + 4x3ββ ′ + 4xγ γ ′)

= i

(
4xyα′ + 4x3yα′′ + 4xyα′ + 4xy3α′′ + 2xy

∂γ ′

∂z
− 4xyα′ − 4xyα′ − 4x3yα′′ − 4xy3α′′ − 2xy

∂γ ′

∂z

)
= 0,

where a prime denotes differentiation with respect to (x2 + y2). Therefore, the form of the vector potential required for
[Ĥ ,L̂z] = 0 is

A = [xα(x2 + y2,z) + yβ(x2 + y2,z),yα(x2 + y2,z) − xβ(x2 + y2,z),γ (x2 + y2,z)]. (B27)

This form of the vector potential satisfies the condition [Ĥ ,L̂z] = 0 for wave functions with ∂ψ

∂x
, ∂ψ

∂y
, and ∂ψ

∂z
all independent

of each other. Clearly, vector potentials that are not of the form of Eq. (B27) do not satisfy the condition. However, in order to
ensure that vector potentials of this form satisfy this condition for an arbitrary wave function, we use the properties of the vector
potentials to solve the original commutator (B3) for an arbitrary wave function. This gives

[Ĥ ,L̂z]ψ = −i

{
2(xα + yβ)

∂ψ

∂y
− 2(yα − xβ)

∂ψ

∂x
− 2x

[
(2xyα′ + β + 2y2β ′)

∂ψ

∂x
+ (α + 2y2α′ − 2xyβ ′)

∂ψ

∂y
+ 2yγ ′ ∂ψ

∂z

]

+2y

[
(α + 2x2α′ + 2xyβ ′)

∂ψ

∂x
+ (2xyα′ − β − 2x2β ′)

∂ψ

∂y
+ 2xγ ′ ∂ψ

∂z

]

−xψ
∂

∂y

(
2α + 2x2α′ + 2xyβ ′ + 2y2α′ − 2xyβ ′ + ∂γ

∂z

)

+yψ
∂

∂x

(
2α + 2x2α′ + 2xyβ ′ + 2y2α′ − 2xyβ ′ + ∂γ

∂z

)}

−xψ(4x2yαα′ + 2yβ2 + 4y3ββ ′ + 2yα2 + 4y3αα′ + 4x2yββ ′ + 4yγ γ ′)

+yψ(2xα2 + 4x3αα′ + 4xy2ββ ′ + 4xy2αα′ + 2xβ2 + 4x3ββ ′ + 4xγ γ ′).

This simplifies to

[Ĥ ,L̂z]ψ = ixψ
∂

∂y

(
2α + 2x2α′ + 2y2α′ + ∂γ

∂z

)
− iyψ

∂

∂x

(
2α + 2x2α′ + 2y2α′ + ∂γ

∂z

)

= i

(
4xyα′ + 4x3yα′′ + 4xyα′ + 4xy3α′′ + 2xy

∂γ ′

∂z
− 4xyα′ − 4xyα′ − 4x3yα′′ − 4xy3α′′ − 2xy

∂γ ′

∂z

)
= 0.

Thus, the vector potentials of the form (B27) fulfill the condition [Ĥ ,L̂z] = 0 and in these gauges L̂z is a constant of motion.

3. Gauge transformations between vector potentials for which Lz is a constant of motion

We now consider a gauge transformation between two gauges of the form (B27). A vector potential of this form gives the
magnetic field

B = ∇ × A

= ∇ × [xα + yβ,yα − xβ,γ ] =
[

2yγ ′ − y
∂α

∂z
+ x

∂β

∂z
,x

∂α

∂z
+ y

∂β

∂z
− 2xγ ′, 2xyα′ − β − 2x2β ′ − 2xyα′ − β − 2y2β ′

]

=
[

2yγ ′ − y
∂α

∂z
+ x

∂β

∂z
,x

∂α

∂z
+ y

∂β

∂z
− 2xγ ′, −2β − (2x2 + 2y2)β ′

]
.

Since any modification to β would affect the −2β term in the z component of B and B must be unchanged by gauge transformations,
β must be constant in a gauge transformation.
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A gauge transformation is given by A′ = A + ∇χ and takes
the form

∇χ = A′ − A,

= [x�α + y�β,y�α − x�β,�γ ]

= [x�α,y�α,�γ ], (B28)

using that �β must be zero. We obtain χ by integrating each
of the components of the vector (B28):∫

x�αdx = λ
(
x2 + y2,z

)
2

,

∫
y�αdy = μ

(
x2 + y2,z

)
2

,

∫
�γdz = ν(x2 + y2,z).

Clearly then, the scalar field χ must be a function of the form
χ (x2 + y2,z).

Finally, we demonstrate that [r × jp]
z

is unchanged by
gauge transformations between gauges of the form (B27).
The paramagnetic current density transforms according to
j′p = jp + ρ∇χ ,

[r × j′p]z = [r × (jp + ρ∇χ )]z

= [r × jp]z + [r × ρ∇χ ]z

= [r × jp]z + [r × ρ[x�α,y�α,�γ ]]z

= [r × jp]z + ρ[xy�α − xy�α]

= [r × jp]z.

So, when we are in any gauge of the form of Eq. (B27) and
when we transform between any of these gauges, both L̂z and
[r × jp]

z
are unaffected.
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