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Investigating the ultimate accuracy of Doppler-broadening thermometry
by means of a global fitting procedure
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Doppler-limited, high-precision, molecular spectroscopy in the linear regime of interaction may refine our
knowledge of the Boltzmann constant. To this end, the global uncertainty in the retrieval of the Doppler width
should be reduced down to 1 part over 106, which is a rather challenging target. So far, Doppler-broadening
thermometry has been mostly limited by the uncertainty associated to the line shape model that is adopted for
the nonlinear least-squares fits of experimental spectra. In this paper, we deeply investigate this issue by using a
very realistic and sophisticated model, known as partially correlated speed-dependent Keilson-Storer profile, to
reproduce near-infrared water spectra. A global approach has been developed to fit a large number of numerically
simulated spectra, testing a variety of simplified line-shape models. It turns out that the most appropriate model
is the speed-dependent hard-collision profile. We demonstrate that the Doppler width can be determined with
relative precision and accuracy, respectively, of 0.42 and 0.75 part per million.
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I. INTRODUCTION

Doppler-broadening thermometry (DBT) is a relatively
new approach of primary gas thermometry, which consists in
retrieving the Doppler width (�νD) from the highly accurate
observation of the profile of a given atomic or molecular
line in a gas sample at the thermodynamic equilibrium [1,2].
If implemented at the temperature of the triple point of
water (namely, T = 273.16 K), pursuing the highest levels
of precision and accuracy for laser absorption spectroscopy in
the linear regime of interaction, DBT can provide an optical
determination of the Boltzmann constant (kB), by inverting the
following equation:

�νD = ν0

c

√
2 ln 2

kBT

M
, (1)

where ν0 is the line center frequency, c is the speed of light, and
M is the molecular mass. Therefore, DBT allows one to link
the thermodynamic temperature to an absolute frequency (ν0)
and a frequency interval (�νD). In its best implementation,
DBT has measured kB with a global uncertainty of 24 parts
over 106 by extrapolating the Doppler width from the shape
of a H2

18O transition at 1.4 μm [3]. In order to contribute to
the new definition of unit kelvin, but also for being recognized
as a useful tool for the realization of the future international
temperature scale, DBT has to approach the target accuracy of
1 part per million (ppm) [4]. The Voigt function is the most
used line profile in molecular spectroscopy. It derives from
a simplified description of the collisional processes among
the molecules, taking into account only those collisions that
provide a dephasing of the molecular dipole and assuming
that the collisional parameters are independent of the absorber
velocity. Recent experiments have shown that the Voigt model
is not sufficient to describe the physical situation of self-
colliding molecules (namely, collisions between molecules
of the same species), even in the Doppler regime [5,6]. The
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net effect due to the velocity-changing collisions and speed
dependence of collisional parameters is a line narrowing
that should be considered by adopting sophisticated line
shape models involving some characteristic parameters, whose
values are not known with the necessary accuracy. Lemarchand
et al., in their mid-infrared implementation of DBT on
ammonia, proposed to determine the collisional parameters
for the selected line by doing spectral recordings at relatively
high pressures (from 2 up to 25 Pa) in a single-pass isothermal
cell [7]; then, the Boltzmann constant is determined from
absorption spectra in a multipass cell at low pressures (variable
between 0.1 and 2.5 Pa), taking advantage from the knowledge
of the narrowing parameters. In their strategy, the Doppler
width is fixed at the expected value when analyzing the
high-pressure spectra, while it is a variable quantity in the fits of
experimental low-pressure profiles. So doing, the French group
has demonstrated that the relative uncertainty on kB associated
to the line-shape model can be as small as 1.8 ppm [7]. In
this paper, we propose a radically different approach based
upon the use of a global fitting procedure, which allows one
to fit a number of spectra across a given pressure range,
sharing some free parameters such as the Doppler width,
the velocity-changing collision parameter, and the quantities
m and n entering into the speed dependence of collisional
broadening and shifting, respectively. The procedure was
applied to a large number of numerically simulated spectra,
as generated by using the partially correlated speed-dependent
Keilson-Storer model. Recent studies have demonstrated that
this latter is a very realistic model to describe H2 O line profiles
in the near-infrared region [8,9]. In such a model, velocity
changes are modeled by using the Keilson-Storer collision
kernel with two characteristic parameters, which were deduced
in Ref. [8] from classical molecular dynamics simulations.
Comparisons between simulated spectra and measurements for
several lines in the near-infrared at various pressures showed
excellent agreements, thus demonstrating the validity of the
model [8,9]. Unfortunately, due to its complexity and large
computational cost, the profiles with Keilson-Storer collision
kernel model cannot be implemented into a fitting routine. In
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this article, a variety of semiclassical models, characterized by
a simplified collision kernel, were selected and tested with the
aim of understanding which of them is capable of providing
the best precision and accuracy in Doppler width retrievals. It
turns out that the best performance is obtained by the speed-
dependent hard-collision profile, which can lead to a sub-ppm
precision and accuracy in the retrieval of the Doppler width.
Therefore, our study demonstrates that the knowledge of
collisional parameters is not an indispensable prerequisite for
low-uncertainty DBT, provided that a global fitting approach is
adopted. This makes DBT measurements more robust, reliable,
self-consistent, and coherent, since it does not require any
preliminary knowledge about collisional parameters.

II. LINE-SHAPE THEORY

The profile S(ω) of a spectral line is given by the Fourier
transform of the dipole correlation function, �(t):

S(ω) = 1

π
Re

∫ ∞

0
dt �(t) e−iωt . (2)

Within the classical approach given by Rautian and So-
bel’man [10], the dipole correlation function can be evaluated
by integrating the dipole distribution function F (t,v), over all
possible absorbers’ velocities, v, as follows:

�(t) =
∫

d3v F (t,v). (3)

Combining Eqs. (2) and (3), the line-shape function can be
written as

S(ω) = Re
∫

d3vF(ω,v), (4)

where F(ω,v) is the Fourier transform of dipole distribution
function, which has the meaning of a complex line-shape
function for the group of molecules with velocity v. In turn,
F(ω,v) satisfies the Boltzmann kinetic equation that, in the
k − ω space, can be written as

1

π
F (0,v) = −i(ω − ω0 − k · v)F(ω,v) − ŜcollF(ω,v), (5)

where ω0 is the rest transition frequency and k is the wave
vector of the absorbed light with magnitude k = ω0/c. We
assume that the initial dipole distribution function is the
Maxwell-Boltzmann function:

F (0,v) = fm(v) =
(

1

πv2
m

)3/2

exp

(
− v2

v2
m

)
, (6)

where vm = √
2kBT /mA is the most probable speed of

absorbing molecules with mass mA and v = |v|. If we assume
that the velocity-changing collisions and dephasing collisions
are correlated then the collision operator Ŝ can be split in three
operators:

Ŝcoll = ŜD + ŜVC + ŜVCD, (7)

where ŜD is the purely dephasing collision operator, ŜVC is
the purely velocity-changing collision operator and ŜVCD is
the collision operator that takes into account the physical
correlation between the two types of collisions, namely, the
occurrence of collisions that jointly provide a variation of

molecular velocity and a dephasing of the molecular dipole.
In the impact approximation, the dephasing collision operator
can be decomposed into its real and imaginary parts as
follows [11]:

ŜDF(ω,v) = −[�D(v) + i�D(v)]F(ω,v), (8)

�D(v) and �D(v) being the collisional width and shift,
respectively. The velocity-changing collision operator ŜVC is
defined as follows:

ŜVCF(ω,v) = −
∫

d3v′A(v′ ← v)F(ω,v)

+
∫

d3v′A(v ← v′)F(ω,v′). (9)

It is clear that the form of ŜVC is determined by the collisional
kernel A(v ← v′), which gives the rate of molecules
transferred into the cell at v from the cell centered at v′. We
now consider two models for the collisional kernel, providing
different forms for the collision operators ŜVC and ŜVCD.

A. Keilson-Storer model

The collisional kernel proposed by Keilson and Storer (KS)
is given by [12]

A(v ← v′) = νVCAKS(v ← v′; α)

= νVC

(
1

π (1 − α2)v2
m

)3/2

exp

[
− (v − αv′)2

(1 − α2)v2
m

]
,

(10)

where νVC is the frequency of velocity-changing collisions
and α is the memory parameter that must obey the inequality
0 � α < 1, in order to give A(v ← v′) real and to drive the
distribution to equilibrium. The properties of the KS kernel are
discussed by Snider in Ref. [13]. Here we limit the discussion
to the main features. Obviously, the KS kernel is normalized
as any other probability distribution function. Therefore, the
following equation holds:∫

d3v AKS(v ← v′; α) = 1. (11)

The memory parameter α is related to the average change
of the velocity caused by a single collision, namely, 〈v′〉 =
α〈v〉, v′ and v being the velocity after and before a collision,
respectively. Therefore, α = 0 means that after each collision
the velocity is completely uncorrelated with respect to the
velocity before the collision. On the other hand, the limit α →
1 can be treated as a Brownian motion, whereas an individual
collision has a negligible effect on the velocity but collectively
they are significant. Finally, it can be shown that the KS kernel
has no effect on the Maxwell-Boltzmann velocity distribution,
since the following equation holds:∫

d3v′ AKS(v ← v′; α) fm(v′) = fm(v). (12)

Substituting Eq. (10) into Eq. (9), it can be shown that the
velocity-changing collision operator becomes

ŜVCF(ω,v) = −νVCF(ω,v)

+ νVC

∫
d3v′AKS(v ← v′; α)F(ω,v′). (13)
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The collision operator ŜVCD, which takes into account the
partial correlation between velocity-changing and dephasing
collisions, can be written as [14]

ŜVCDF(ω,v)

= −[�VD(v) + i�VD(v)]F(ω,v) − {νVCD

− [�VD(v) + i�VD(v)]}

×
[
F(ω,v)−

∫
d3v′AKS(v ← v′; α)F(ω,v′)

]
, (14)

where �VD(v) and �VD(v) represent the pressure width
and shifting caused by VCD-type collisions and νVCD is
the associated frequency. Assuming �(v) = �D(v) + �VD(v),
and �(v) = �D(v) + �VD(v), we can define the parameter
η = �VD(v)/�(v) = �VD(v)/�(v) that is the fraction of
collisional broadening and shifting provided from ŜVCD.

Therefore, combining the contributions of the collision
operators given by Eqs. (8), (13), and (14), the kinetic
Boltzmann equation becomes

1

π
fm(v) = [�(v) + ν̃(v)]F(ω,v)

− i[ω − ω0 − k · v − �(v)]F(ω,v)

− ν̃(v)
∫

d3v′AKS(v ← v′; α)F(ω,v′), (15)

where ν̃(v) = (νVC + νVCD) − η[�(v) + i�(v)] is the effec-
tive speed-dependent velocity-changing collision frequency.
Moreover, the quantity νVC + νVCD, which is the total fre-
quency of velocity-changing collision, may be connected to
the diffusion coefficient D for the active species in a buffer
gas by [12]

D = kBT

2πmA(νVC + νVCD)(1 − α)
. (16)

Therefore, the diffusion collision frequency is related to
the total velocity-changing collision frequency by means of
the expression νdiff = (νVC + νVCD)(1 − α). The solution of
Eq. (15), combined with Eq. (4), leads to the partially corre-
lated speed-dependent Keilson-Storer profile (pCSDKSP).

In order to solve Eq. (15), we have adopted the iterative
method proposed by Nienhuis [15,16] with some variations,
as shown by Wcislo et al. [17]. In this approach, the
exact solution of the kinetic equation is given by F(ω,v) =
limn→∞ F (n)(ω,v), where the distribution F (n)(ω,v) can be
obtained from F (n−1)(ω,v) using the relationship

F (n)(ω,v) = L(ω,v) ×
[

1

π
fm(v) + ν̃(v)

×
∫

d3v′AKS(v ← v′; α)F (n−1)(ω,v′)
]
, (17)

where

L(ω,v) = 1

�(v) + ν̃(v) − i[ω − ω0 − k · v − �(v)]
. (18)

The initial distribution function F (0)(ω,v) determines the
rapidity of convergence, but it has no influence on the final
result. In this work, we set F (0)(ω,v) = 0. This iterative

scheme works very well as long as the following condition
is satisfied:∣∣∣∣ν̃(v)

∫
d3v′AKS(v ← v′; α)L(ω,v)

∣∣∣∣ < 1, (19)

so that F (n)(ω,v) may be approximated by a limited number
of steps. This is certainly the case in the far wings but near
the line center ω0 the contribution of �(v) + ν̃(v) is crucial.
In fact, in the Doppler limit (�av < 0.1kvm, being �av the
average collisional width over absorber speed), the iterative
scheme reported in Eq. (17) fails. To ensure the stability of the
iterative perturbation process and to control its convergence
we have implemented the new iterative approach of Wcislo
et al. in Ref. [17]. In the kinetic Boltzmann equation, Eq. (5),
a nonphysical parameter, �n, has been introduced as follows:

1

π
F (0,v) = �n − i(ω − ω0 − k · v)F(ω,v)

− (�n + Ŝcoll)F(ω,v). (20)

Now, with a simple algebraic manipulation, we obtain a
modified iterative scheme:

F (n)(ω,v) = 1

�n − i[ω − ω0 − k · v]
×

{
1

π
fm(v)

+ [�n − �(v) − ν̃(v) − i�(v)]F (n−1)(ω,v)

+ ν̃(v)
∫

d3v′AKS(v ← v′; α)F (n−1)(ω,v′)
}
.

(21)

The stability and convergence is guaranteed by the fact that
the size of the term,∫

d3v′ AKS(v ← v′; α)

�n − i[ω − ω0 − k · v]
, (22)

is regulated by the fixed value of �n.
From a computational point of view, the three-dimensional

integration over the space of velocity of Eqs. (15) and (21) can
be reduced to two dimensions using cylindrical coordinates
(vr,vz,φ) in which the z axis is parallel to the wave vector k; this
choice makes the distribution function F(ω,v) independent
from the angle φ. Therefore, we obtain that d3v can be
substituted by 2πvr dvz dvr , where vz is the component of
v on the z axis, vr is the projection of v on the radial plane,
and v = √

v2
r + v2

z .

B. Rautian-Sobel’man model

A closed solution of the Boltzmann transport equation,
Eq. (5), is obtained adopting the velocity-changing collisional
operator ŜVC proposed by Rautian and Sobel’man [10] and
generalized by Ciurylo et al. in Ref. [14], in the case of sta-
tistical correlation between velocity-changing and dephasing
collisions as follows:

ŜVCF(ω,v) = −νVC[εÂH + (1 − ε)ÂS]F(ω,v),

ŜVCDF(ω,v) = −{νVCD − η[�(v) + i�(v)]} (23)

× [εÂH + (1 − ε)ÂS]F(ω,v).

Here, the η parameter is identical to that defined in the
previous section. This approach assumes that a fraction ε of
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the velocity-changing collisions is hard, in which the velocities
are completely uncorrelated, while the remaining part (1 − ε)
is soft. The hard and soft collision operators, ÂH and ÂS , can
be written as [14]:

ÂHF(ω,v) = F(ω,v) − fm(v)
∫

d3v′F(ω,v′),

(24)

ÂSF(ω,v) = −∇v(vF(ω,v)) − kBT

mA

∇2
vF(ω,v).

In the dimensionless variables τ = ωDt , x = v/vm,
u = (ω − ω0)/ωD, g(x) = (�av/ωD)B(xvm,m), d(x) =
(�av/ωD)B(xvm,n), being �av the average collisional shift
over absorber speed, zdiff = νdiff/ωD , ωD = kvm being the
Doppler width (half width at 1/e of the maximum), the
solution of the Boltzmann transport equation provides the
partially correlated speed-dependent hard- and soft-collision
profile (pCSDHSCP):

SpCSDHSCP(ω) = Re

[
G(u)

1 − πH (u)

]
, (25)

where G(u) and H (u) are the Fourier Transform of K1(τ ) and
K2(τ ), respectively:

G(u) = 4

π3/2

∫ ∞

0
dτK1(τ )eiuτ , (26a)

H (u) = 4

π3/2

∫ ∞

0
dτK2(τ )eiuτ . (26b)

The K’s function are given by:

K1(τ ) =
∫ ∞

0
dx J (x,τ ), (27a)

K2(τ ) =
∫ ∞

0
dx h(x)J (x,τ ), (27b)

where J (x,τ ):

J (x,τ ) = x2e−x2
sinc[x(1 − e−s(x)τ )/s(x)]

× exp{−[2s(x)τ − 3+4e−s(x)τ−e−2s(x)τ ]/[4s(x)2]}
× exp{−[h(x) + g(x) + id(x)]τ }. (28)

Finally, h(x) and s(x) are the effective frequency of hard and
soft collisions, respectively, modified by a partial correlation
between dephasing and velocity-changing collisions:

h(x) = ε{zdiff − η[g(x) + id(x)]}, (29a)

s(x) = (1 − ε){zdiff − η[g(x) + id(x)]}. (29b)

We underline that setting η = 0 we obtain the speed-
dependent Rautian-Sobelman profile [10]. Furthermore, the
corresponding partially correlated speed-dependent hard-
collision profile (pCSDHCP), proposed by Pine in Ref. [18],
is obtained setting ε = 1. Finally, the uncorrelated speed-
dependent hard-collision profile (SDHCP) [19] and speed-
dependent soft-collision profile [11] can be obtained setting
η = 0 with ε = 1 and ε = 0, respectively.

C. Speed dependence of collisional parameters

In the formalism developed by Berman and Pickett [20,21]
the collisional parameters are supposed to have a power-law
dependence on the relative speed of the absorber-perturber
system, with an exponent determined by the molecular inter-
action potential, which in turn is approximated by an inverse
power form, namely, V (r) ∝ 1/rq . The statistical average over
the relative speeds provide the following expression for the
collisional width and shift [22]:

�(v) = �av

(1 + μ)m/2
M

[
−m

2
,
3

2
, − μ

(
v

vm

)2]
= �av B(v,m),

(30)

�(v) = �av

(1 + μ)n/2
M

[
− n

2
,
3

2
, − μ

(
v

vm

)2]
= �av B(v,n),

μ = mp

mA

, m = q − 3

q − 1
, n = − 3

q − 1
(31)

Here, M(a,b,z) is the confluent hypergeometric function,
mp is the perturber mass, while �av and �av show a linear
dependence on the pressure, namely, �av = γav p, �av =
δav p.

III. SIMULATED ABSORPTION SPECTRA BY MEANS
OF THE pCSDKSP

The light absorption in a gaseous sample is ruled by the
well-known Lambert-Beer law:

P (ω) = P0 exp[−A · S(ω)], (32)

where A represents the integrated absorbance, P0 the inci-
dent power (which can be frequency dependent), P (ω) the
transmitted power at the angular frequency ω, and S(ω)
the line shape function. The iterative scheme of Eqs. (15)
and (21) was implemented under the MATLAB environment.
The stopping criterion, adopted for all the calculated spectra,
is given by |S(n)(ω) − S(n−1)(ω)| < 10−16. The double integral
was calculated by means of the Boole integration rule. More
particularly, the integral over vz was done using 2409 points
in the interval between −5vm and 5vm, while the integral over
vr was done using 1205 points in the range from 0 to 5vm. The
comparison between speed-dependent hard-collision profiles
as calculated using the iterative method, setting α = 0, and
the more conventional approach of Eq. (25) with η = 0 and
ε = 1, using comparable numbers of points in the speed grid,
shows a maximum relative deviation (at the peak absorption) of
about 6 × 10−7 at any pressures (namely, for a �av/ωD ratio
between 0.0026 and 0.1225). The spectroscopic parameters
were set at the values reported in the literature [5,28]. Similarly,
the Doppler width was fixed at the value of 342.9598 MHz
that is retrieved for T = 273.16 K and k = 2πν̃0, where
ν̃0 = 7199.1032 cm−1 is the wave number of the 44,1 →
44,0 vibration-rotation transition of the H2

18O ν1 + ν3 band.
This is the line on which the most accurate spectroscopic
determination of the Boltzmann constant was performed [3].
The collisional-broadening coefficient γav was fixed at the
value of 105 kHz/Pa with a hypergeometric speed dependence
characterized by m = 0.5 [see Eq. (31)], according to recent
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findings [5]. The speed dependence of pressure shift was not
considered. The memory parameter, α, was set at the value of
0.17, as recently calculated by Ngo et al. in Ref. [8] by means of
classical molecular dynamics simulations on self-colliding wa-
ter molecules. The diffusion frequency is determined from the
experimental value of the water self-diffusion coefficient, as
reported in Ref. [23], after proper scaling with the temperature
(D = 1.93 cm2 s−1 Pa), thus providing a diffusion frequency
per unit pressure, βdiff, of 12.076 kHz/Pa. Finally, the choice of
the correlation parameter, η, was done so as to have a positive
effective velocity-changing collision frequency, which means
η � νdiff/[(1 − α)�av]. In our simulations we set η = 0.1. A
variety of pCSDKSPs in the pressure range between 10 to
467 Pa were calculated. Each spectrum consists of 3000 points
in a frequency range of 3 GHz. A random noise was added to
the simulated spectra to reproduce the experimental situation
of Ref. [3] (signal-to-noise ratio, S/N , of about 10 000,
measured on the maximum transmitted signal). For each of
the ten selected pressure values, 100 spectra were simulated.

IV. GLOBAL FITTING PROCEDURE

The multispectrum fitting procedure (MSFP) was devel-
oped in order to analyze simultaneously absorption spectra
across the entire pressure range, following the pioneering
work of Benner et al. [24]. In this approach physical relations
between spectroscopic parameters are incorporated in a global
function, χ2

G(X,Y,W; pG). Here, the matrices X, Y, and
W, whose size is N × M , represent experimental data and
statistical weights, N being the number of points for each
spectrum and M the number of spectra corresponding to
different pressures. More specifically, yij is the transmitted
signal of the j th spectrum at the laser frequency xij , while its
uncertainty is 1/

√
wij . The parameters’ vector, pG, consists

of elements of two different types: Those shared among
different spectra, such as the pressure broadening and shifting
coefficients, the correlation parameter, the velocity-changing
collision frequency per unit pressure (β), and those that are
characteristic of individual spectra, namely, the integrated
absorbance, Aj , and the baseline parameters, P0j and P1j .
It is worth noting that, even though the simulated spectra
had a constant baseline as a function of the frequency, a
slope parameter (P1j ) was considered in the fitting procedure.
Obviously, the size of pG depends on the number of spectra
entering into the global analysis and it is reduced when
simplified line shape models are used. We implemented the
MSFP over 10 spectra at different pressure values, adopting
the following models: SDHCP, pCSDHCP, and pCSDHSCP.
In the simplest case of the SDHCP model, the total number
of free parameters is 37, of which 7 are shared among the
spectra: ω0, γav , ωD, δav , m, n, and β. Instead, for the
most sophisticated case, given by the pCSDHSCP, we have
9 shared parameters, adding η and ε to those listed above,
for a total of 39 free parameters. The MSFP procedure
was implemented under the MATLAB environment, using a
Levenberg-Marquardt algorithm for the minimization of the
global χ -square, thus providing the best estimate of pG. For a
more detailed description of the global fitting approach, also
regarding the calculation of the statistical uncertainty of the
retrieved parameters, the reader is referred to Ref. [25].

V. RESULTS AND DISCUSSION

The simulated spectra were globally analyzed by means
of the MSFP. A variety of semiclassical models were imple-
mented and tested in the global fitting procedure. As a first
step, we tested the speed-dependent Voigt model. As expected,
the results were significantly away from the set point, being
51 ppm smaller.

Since the memory parameter of the KS kernel was set to
α = 0.17 in the numerically simulated spectra, the physical
situation is expected to be close to the one of the hard-collision
model (namely, α = 0); as a consequence, we decided to
test the SDHCP and pCSDHCP models. Furthermore, we
implemented the pCSDHSCP, this latter model accounting
for both hard and soft collisions, as already explained in
Sec. II B. In Fig. 1, typical residuals are shown, resulting
from the application of the fitting routine with the three
line-shape models. In each case, the residuals do not show
any particular deviation between theory and experiment, their
root-mean-square (rms) values being roughly coincident with
the simulated noise level. A very small structure around
the line-center frequency is visible only for the pCSDHCP.
Obviously, the same level of agreement is not found when
applying the speed-dependent Voigt model, the rms value
being of the order of 1 mV. Despite the excellent results of
Fig. 1, as observed at any pressure, the physical difference
between velocity-changing collisional mechanisms, which is
captured by the adopted semiclassical models, as compared to
the Keilson-Storer model, provides some amount of inaccuracy
in the determination of the Doppler width. In fact, after the
global analysis of ten simulated spectra across the entire
pressure range, the relative deviation between retrieved and
expected Doppler widths, given by (ωDretr − ωD)/ωD, was
12.5, 14.7, and 24.0 ppm, respectively, for the SDHCP,
pCSDHCP, and pCSDHSCP. On the other hand, the relative
statistical uncertainty, defined as σD/ωDretr (where σD is the
internal error resulting from the MSFP procedure) was 6.7,
7.5, and 11.5 ppm, respectively. From these first results, it
seems clear that the best performance in terms of precision
and accuracy is ensured by the speed-dependent hard-collision
profile. Surprisingly, the pCSDHSCP model, which was
expected to better reproduce the physical situation of the
simulated spectra, provided the worst results. The explanation
must be sought in the strong statistical correlation between the
Doppler width and other shared parameters, namely, η, m, and
ε, as clearly evidenced in Fig. 2. From this plot, it appears
that the best performance is provided by the pCSDHCP.
Nevertheless, this latter model shows some limitations in the
residuals, as already discussed above. Furthermore, it provides
bad estimates for βdiff and η with no physical meaning, both
values being negative. Therefore, the SDHCP model has to
be preferred because of the most accurate performance in the
retrieval of the Doppler width, in conjunction to a reduced
number of free parameters and to the realistic value that is
returned for the velocity-changing collision frequency. The
results that will be discussed in the remaining part of this article
refer to the speed-dependent hard-collision model and are
aimed to investigate the ultimate performance of this profile.

The discrepancy in Doppler width retrieval resulting from
the global analysis of a restricted number of spectra (ten, in
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(a)

(b)

(c)

(d)

FIG. 1. (Color online) Results of the multispectrum fitting procedure performed on simulated spectra with a signal-to-noise ratio of 10 000,
using different semiclassical models: (a) Simulated absorption spectrum with pCSDKSP (dotted line) together with the best-fit resulting
with MSFP (full line); (b) speed-dependent hard-collision profile; (c) partially correlated speed-dependent hard-collision profile; (d) partially
correlated speed-dependent hard- and soft-collision profile. The upper plot shows the comparison between an example spectrum and its
interpolation with the SDHCP model.

the present situation) can be ascribed to two different reasons:
statistical fluctuation and model limitation. As for the first
source of discrepancy, we remind that the simulated spectra
exhibit a signal-to-noise ratio of 10 000; therefore, it is likely
that the global analysis of a small number of spectra provides
a shifted value for the Doppler width. On the other hand,
the SDHCP model is based upon a collision kernel that is
different from that of the pCSDKSP. Such a difference can

FIG. 2. (Color online) Statistical correlation index of Doppler
width with respect to the other spectroscopic parameters.

be a source of discrepancy, which can be named as model
discrepancy. The statistical discrepancy, in principle, can
be strongly reduced by analyzing a much larger number of
spectra. In Fig. 3, we report the obtained levels of accuracy
and precision in the determination of ωD as a function of the
number of repeated datasets that are sequentially analyzed. We
remind that each dataset consists of ten simulated spectra in
the pressure interval between 67 and 467 Pa. The ωD value
is given by the weighted mean of the values resulting from
the global analysis that is repeated over a given number of
datasets. Similarly, the statistical uncertainty is given by the
error of the weigthed mean. In each plot, the red line is obtained
from the MSFP procedure when it is applied to ten simulated
spectra without the addition of noise. It can be noted that the
weighted mean over 80 datasets gives a sub-ppm precision,
while the inaccuracy amounts to about 7 ppm, both being
very close to those obtained from simulated spectra without
noise.

A comparison between the results obtained from individual
and global fits is shown in Fig. 4. Each red point represents
a ωD value resulting from the application of the MSFP to a
dataset of ten simulated spectra, while each black point is
the weighted mean of the Doppler widths as retrieved from
the single spectrum fitting procedure (SSFP) applied to the ten
spectra of each dataset. In total, 100 points are plotted either for
the results of the MSFP or for the SSFP procedure, involving
the same number of simulated spectra (1000, in total). It is
worth noting that the standard deviation of ωD is 0.026 MHz
for the SSFP, while it amounts to 0.0021 MHz for the MSFP.
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(a)

(b)

FIG. 3. (Color online) Behavior of accuracy (a) and precision (b) of Doppler width estimation as function of the number of datasets. The
red-lines represent the values obtained from the MSFP of single dataset with no-noise spectra.

Hence, the advantage of the global approach is clear: the gain in
precision, with respect to individual fits, is larger than a factor
of 10. The shift with respect to the expected value amounts to
+7 and −21 ppm, respectively, for the MSFP and the SSFP
procedure. Also in this, the advantage of the global approach
is evident.

FIG. 4. (Color online) Comparison between the single fitting
procedure (SFP) and multispectra fitting procedure (MSFP) in the
retrieved Doppler width. Both the procedure has been achieved on
100 datasets of 10 spectra for each one. The red dashed line represents
the weighted mean obtained with MSFP; the black line represents the
weighted mean with SFP. The green line represents the value that is
set in the numerical simulations.

To further investigate the accuracy problem, we repeated
the global analysis of simulated spectra changing the pressure
interval. In particular, the lower limit was kept constant (10 Pa)
while the upper limit was reduced from 470 Pa down to
100 Pa. Figure 5 shows the trends obtained for precision and
accuracy levels. It is interesting to note that the precision gets
slightly worse, while the determination of ωD results to be
more and more accurate. In particular, the pressure range
between 10 and 150 Pa for the simulated spectra gives a
precision of 0.42 ppm and a systematical deviation as small as
0.75 ppm.

(a)

(b)

FIG. 5. Behavior of (a) accuracy and (b) precision of Doppler
width as function of the maximum pressure involved in the MSFP.
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VI. CONCLUSIONS

In conclusion, our study clearly demonstrates that the
achievement of the ppm level for both the statistical uncertainty
and for the uncertainty associated to the line-shape model is a
realistic possibility of which DBT can really benefit for being
competitive with more consolidated techniques, like acoustic
gas thermometry [26]. To this end, the global fitting approach
appears to be an indispensable tool, also providing strong
elements for the selection of most appropriate line-shape
models. On the other hand, it allows one to use rather
sophisticated profiles even without the precise knowledge of
key parameters such as the pressure-broadening coefficient or
the velocity-changing collision frequency. Among the tested
models, the best performance in terms of precision and
accuracy in the retrieval of the Doppler width is obtained by the
speed-dependent hard-collision profile. Our study is limited
to 1000 simulated spectra, obtained by using the partially
correlated speed-dependent Keilson-Storer model to the best
of our knowledge, this latter turns out to be the most realistic
model for a pure water line in the infrared region, capable of
capturing the various collisional perturbations of the isolated
line. Unfortunately, we cannot quantify possible inaccuracies

(in the Doppler widths) coming from the capability of the
pCSDKSP to reproduce real water spectra. To this end, it
might be useful to repeat our study by using more sophisticated
kernels, such as the cusp kernels and their superpositions [27].
Also, a comparison between the profiles based upon the
Keilson-Storer kernel and the cusp kernels would be of great
importance. These possibilities are being considered for future
work. When it comes to the simplified models, we cannot
exclude that the pCSDHCP and pCSDHSCP models can
provide the same performance as compared to the SDHCP,
using a much larger number of spectra. The SDHCP model
gives a Doppler width with type A and B uncertainties of 0.42
and 0.75 ppm, respectively.
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S. Briaudeau, C. J. Bordé, and C. Chardonnet, Phys. Rev. Lett.
98, 250801 (2007).

[2] G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D.
Di Serafino, P. Laporta, and L. Gianfrani, Phys. Rev. Lett. 100,
200801 (2008).

[3] L. Moretti, A. Castrillo, E. Fasci, M. D. De Vizia, G. Casa, G.
Galzerano, A. Merlone, P. Laporta, and L. Gianfrani, Phys. Rev.
Lett. 111, 060803 (2013).

[4] M. J. T. Milton, R. Davis, and N. Fletcher, Metrologia 51, R21
(2014).

[5] M. D. De Vizia, F. Rohart, A. Castrillo, E. Fasci, L. Moretti, and
L. Gianfrani, Phys. Rev. A 83, 052506 (2011).

[6] M. Triki, C. Lemarchand, B. Darquié, P. L. T. Sow, V. Roncin,
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