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Berry phases and profiles of line wings and rainbow satellites induced by optical collisions

R. Ciuryło and J. Szudy
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland

W. E. Baylis
Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

(Received 12 April 2015; published 8 September 2015)

The concept of Berry phase is included in an analysis of the intensity distribution in far wings of pressure-
broadened spectral lines emitted or absorbed by atoms placed in an external cone-rotating electric field. Particular
attention is focused on frequency regions where rainbow satellite bands appear. A classical-path treatment
that employs the time-dependent Schrödinger equation is used to derive an expression for the line shape,
and it uses a dipole transition moment calculated with quasimolecular wave functions given by the Berry
version of the adiabatic approximation. It is found that in the presence of an external rotating electric field, the
intensity distribution in far wings can be expressed in terms of the universal line shape function of the unified
Franck-Condon theory once energy shifts due to Stark and Berry effects are taken into account. We show that
the influence of Berry phase in the profiles of the far wings can be manifested either in the form of deviations
of observed profiles from the quasistatic distribution or the appearance of additional features in the vicinity of
the maximum of the rainbow satellite band. As an example, the modification of the rainbow satellite at 162.3 nm
in the red wing of the self-broadened Lyman-α line of hydrogen, caused by an external rotating electric field, is
considered.
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I. INTRODUCTION

Matveev and Musakhanov [1,2] have analyzed the appear-
ance of the geometric Berry phase for an atom placed in an
external electric field F(t) rotating with period τ around a
cone about the laboratory axis z at fixed polar angle ϑ and
constant angular velocity ωF = dϕ/dt = 2π/τ . It is known
[3,4] that in the limit of slow rotation on a closed path such
that after the time t = τ the electric field F(τ ) returns to its
original value F(0), the atomic wave function |φm〉 acquires a
geometric phase [3–5]

γm(τ ) = −m
F (τ ), (1)

where


F (τ ) = 2π (1 − cos ϑ) (2)

is the solid angle subtended by the cone, and m is the
quantum number of the angular momentum projection onto
the quantization axis. From a spectroscopic point of view

γm(τ )

τ
= −m
F (τ )

τ
= −m(1 − cos ϑ)ωF = δm (3)

is a measure of the shift δm of the energy of the level |φm〉 in
angular frequency units caused by the time rate of change of
Berry phase [6]. Thus in case of transitions between two levels
whose m values differ by �m, there will be a contribution to
the transition frequency of �m
F (τ )/τ . This means that in the
cone-rotating field one can expect the appearance of a “Berry
splitting” of spectral lines that superimposes on that due to the
linear (for hydrogenlike atoms) or quadratic Stark effect caused
by the electric field which in the rotating reference frame
(x ′,y ′,z′) is assumed here to be constant (F = |F | = const)
and directed along the z′ axis.

Starting from the zero-approximation wave functions of the
hydrogen atom in parabolic coordinates and using the rotation

matrix D̂(ωF t,ϑ,0) for the Euler angles (ωF t,ϑ,0) the authors
of Refs. [1,2] derived a formula for intensities and spectral
positions of various Berry components. To our knowledge,
however, the Berry splitting of the type predicted by them
has not yet been observed, and their formula has not been
verified experimentally. Nevertheless, in a recent paper by
Difallah et al. [7] the Berry splitting of optical lines has been
taken into account in their calculations of profiles of the Stark-
broadened Lyman-α line emitted from a plasma subjected to a
rotating electric field. Results of their calculations, which were
performed in the framework of an adiabatic approximation,
seem to indicate the importance of the effect caused by Berry
phase, at least for the core region of the Lyman-α line.

In the present work, unlike Ref. [7], we are concerned
with the shapes of far wings of pressure-broadened lines
of atoms placed with perturbing particles in a cone-rotating
external electric field [8,9]. The main goal of this paper is
to assess consequences of the inclusion of the energy-level
shifts due to Berry phase into an analysis of the intensity
distribution in the far wings, particularly in those frequency
regions where rainbow satellite bands appear. Our discussion
is based on a simplified model and as such it has rather a
qualitative character. First of all, we try to answer the question
whether or not Berry phases play any role in the formation of
pressure-broadened spectral line shapes. A positive answer
to this question seems to follow from an analysis due to
Zygelman [10], who demonstrated the appearance of the
geometric phase in the context of collision problems involving
bound and free diatomic systems. Moreover, he suggested that
the effects of geometric phase should be seen on the profiles
of collision-broadened spectral lines found in a gas at low
temperatures. This was based on an analysis of corrections to
the interatomic potentials caused by the coupling of the relative
nuclear motion with a non-Abelian gauge field. However,
pressure broadening theory was not invoked in Zygelman’s
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analysis, and the effect of an external rotating electric field
was not considered.

II. BERRY SPLITTINGS

In our model the radiating atom is taken to be fixed at the
center of a macroscopic container placed in an external cone-
rotating electric field F(t) of constant magnitude F = |F| =
const, and we investigate the broadening due to the interaction
with all N perturbing atoms present in the container. Let R ≡
{R1,R2, . . . ,RN } be the set of coordinates of the perturbers,
and r a set of coordinates of the electrons of the radiating atom.
We consider the case of an isolated spectral line corresponding
to the transition between a single initial state ni and a single
final state nf in the unperturbed radiator, i.e., when all Ri −→
∞ (i = 1,2, . . . ,N ) and the field vanishes (F = 0). The
spectral position of this line is determined by the “unperturbed”
frequency ω0 = (E0

i − E0
f )/�, where E0

i and E0
f denote

energies of the unperturbed initial and final atomic states |ϕ0
ni
〉

and |ϕ0
nf

〉, respectively. Following Jabłoński [11] and Baranger
[12], we treat the assembly of one radiating atom and N

perturbers here as a huge (N + 1)-atom quasimolecule driven
by a time-dependent Hamiltonian Ĥ (t) = Ĥ (r,F(t),R(t)). A
characteristic quasimolecular feature is the replacement of the
fixed energy level of each atomic state |ϕ0

ni
〉 and |ϕ0

nf
〉 with

an energy surface whose value varies with the instantaneous
perturber configuration. The transitions between these surfaces
are the source of pressure broadening phenomena.

We assume that the electric field F(t) varies adiabatically
with time and returns to its initial value at time t = τ .
This means that the quasimolecule undergoes adiabatic cyclic
evolution around a closed path F(t) in parameter space. The
parameters R(t), on the other hand, generally display the
translational motion of perturbers and vary over the range
0 < |R| < ∞.

Suppose that the initial state |
ni
(t)〉 of the quasimolecule

evolves according to the Schrödinger equation

Ĥ (t)
∣∣
ni

(t)
〉 = i�

d

dt

∣∣
ni
(t)

〉
, (4)

and similarly for the final state |
nf
(t)〉. Let |φni

(r,F,R)〉 and
|φnf

(r,F,R)〉 be the eigenfunction solutions of

Ĥ (r,F,R)
∣∣φni

(r,F,R)
〉 = Wni

(F,R)
∣∣φni

(r,F,R)
〉

(5)

with eigenenergy Wni
(F,R) for the initial state and Wnf

(F,R)
for the final state.

As shown by Berry [13], in the adiabatic approximation the
solutions of Eq. (4) can be written

∣∣
ni
(t)

〉 = exp

{
− i

�

∫ t

0
dt ′Wni

(F(t ′),R(t ′))
}

× exp
{
iγni

(t)
}∣∣φni

(r,F(t),R(t))
〉

(6)

and similarly for |
nf
(t)〉. The first exponential in Eq. (6) is

the familiar dynamic phase factor. The extra phases γni
and γnf

are Berry phases that become physically important for cyclic
evolution. In our case such an evolution is related to the circuit
described by the external electric field F as it rotates from
t = 0 to t = τ . Inserting Eq. (6) into Eq. (4) and using Eq. (5)

yields the fundamental formula for the Berry phase [13–15]

γni
(t) = i

∫ t

0
dt ′

〈
φni

(F(t ′))
∣∣ d

dt ′
∣∣φni

(F(t ′))
〉
, (7)

and similarly for γnf
(t). Here we have suppressed the explicit

dependence on the electron positions r and the perturber coor-
dinates R(t). Note that generally the perturbers surrounding the
radiating atom do not move along closed paths, and therefore
the time dependence of R(t) does not contribute consistently
to energy shifts like those induced by cyclic motion as in the
Berry phase.

To justify the neglect of contributions to the Berry phase
coming from open-ended paths of perturbers, one usually
invokes the Born-Fock gauge transformation for a given path in
the R space such that the corresponding vector gauge potential

A(R) = i〈φn(r,F,R)|∇R|φn(r,F,R)〉,
vanishes. Several researches have noted [16–18], however,
that this choice of gauge is not always possible globally, so
that Berry phase may also appear in a noncyclic evolution.
However, the Born-Fock gauge can cause the transformed
vector potential to vanish if the curl of A(R) is zero. In the
present work we are concerned specifically with the wings and
satellite features at the Lyman-α line of hydrogen associated
with the free-free transitions between the X 1�+

g and B 1�+
g

molecular states. For these two states the quantum number �

of the projection of the electronic orbital angular momentum
along the interatomic axis is equal to zero. Zygelman [10] has
shown that for the � states (� = 0) of diatomic molecules
the only nonvanishing term of the vector gauge potential is
its radial component, and thus the curl of A(R) vanishes at
all R. This means that in this case, the vector potential can
be eliminated by the Born-Fock gauge transformation, and the
contributions to the Berry phase effects coming from paths in R
space do not occur on spectral line profiles associated with the
� − � transitions. Nevertheless, in principle they can occur
for spectral transitions involving molecular states with � 	= 0,
and these cases require further more detailed study.

More generally, however, the neglect of the time depen-
dence of the perturber coordinates R(t) is justified in the
quasistatic approximation used here to describe the far wings
of a line profile, because the autocorrelation time there is so
short that the change in Ri(t) for i = 1,2, . . . ,N during that
time is negligible.

If we express the electric field F(t) = F(ϑ,ϕ) as a function
of spherical angles ϑ = ϑ(t) and ϕ = ϕ(t) = ωF t , then the
wave functions at time t are connected with those in the rotating
reference frame aligned with F, where ϑ = 0 and ϕ = 0, by
the rotational transformation∣∣φni

(F(t))
〉 ≡ ∣∣φni

(ϑ,ϕ,F )
〉 = Û (t)

∣∣φni
(0,0,F )

〉
, (8)

where

Û (t) = exp

(
− i

�
l̂zϕ

)
exp

(
− i

�
l̂yϑ

)
(9)

with l̂y and l̂z being the operators for the projection of the
angular momentum onto the y and z axes, respectively.

Without the external field, the unperturbed wave functions
|φ0

n〉 of a hydrogenlike atom with the nucleus of charge Ze are
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eigenstates |n,l,m〉 of energy E0
n, orbital angular momentum

l, and its projection m on the z axis. Here we confine ourselves
to the cases of low Z hydrogenic atoms, for which we can
neglect the fine-structure term in the Hamiltonian. The spin
of the electron is therefore not important to our discussion.
Of course, for higher Z, this simplification fails and the fine-
structure splitting of the n = 2 level must be taken into account
[19]. In the presence of the rotating electric field F(t) directed
along the z′ axis, the perturbation operator eFz′ gives rise
to the Stark splitting among the levels of energy E0

n. In the
rotating reference frame the electric field is constant. First-
order perturbation theory gives the energies En2−n1,m

n (F ) of
the Stark sublevels: [20]

En2−n1,m
n (F ) = E0

n + �En2−n1,m
n (F ), (10)

where the shift in energy is

�En2−n1,m
n (F ) = 3a0e

2Z
Fn(n2 − n1).

Here n1 and n2 are parabolic quantum numbers related to the
principal quantum number n by n = n1 + n2 + m + 1.

The change in the perturbation Hamiltonian eFz′ due to the
cone precession of the external electric field can be found by
applying (ϑ,ϕ)-dependent rotations [14]. One obtains then for
the Berry phase γm(t) at time t

γm(t) = 1

τ
γm(τ )t, (11)

where γm(τ ) is given by Eq. (1) and represents the total Berry
phase corresponding to a closed path with F(τ ) = F(0). Thus
the Berry phase at time t can be written

γm(t) = −m
F (t), (12)

where


F (t) = (1 − cos ϑ)ωF t. (13)

The time derivative γ̇m(t) satisfies

γ̇m(t) = 1

τ
γm(τ ) = δm (14)

in accordance with Eq. (3), and �δm is the energy shift of the
level |φm〉 due to the Berry phase effect.

The adiabatic energies Wni
(F,R) and Wnf

(F,R) defined by
Eq. (5) can then be expressed as

Wni
(F,R) = E0

ni
+ �Eαi

ni
(F ) + V αi

ni
(R), (15)

and

Wnf
(F,R) = E0

nf
+ �E

αf

nf
(F ) + V

αf

nf
(R), (16)

where αi and αf label the quantum numbers (l,m) or (n1,n2,m)
that characterize the Stark and Berry sublevels of the initial
and final states. Here V αi

ni
(R) and V

αf

nf
(R) are the adiabatic

potentials describing the interaction between perturbers and
the radiating atom in its initial and final state, respectively.

An important issue in the approach under consideration is
that the rotation of the external electric field must be slow
in the time scale of the quantum system, i.e. adiabatic with
respect to transitions between sublevels for different m. To
find the criterion for adiabaticity we follow Berry’s work [13]
and note that in the adiabatic limit the system remains in

an eigenstate of the instantaneous Hamiltonian. This means
that the quantum number m of the projection of the angular
momentum onto the axis z′ does not change during the rotation
of this axis. Thus for the adiabatic approach to be valid, the
period τ = 2π/ωF of the rotation must be greater than the
characteristic time �/�Eαi

ni
. For the Lyman-series lines, the

criterion to be fulfilled by the strength F and angular frequency
ωF of an external adiabatically cone-rotating electric field is

ωF <
3πa0en(n2 − n1)

Z�
F. (17)

This criterion resembles that put forward a long time ago by
Klein and Margenau [21] on the basis of Spitzer’s work [22] for
the case of adiabatic collisions. It is also close to a “quasistatic”
criterion given by Peyrusse [19]. An alternative criterion was
proposed by Matveev and Musakhanov [1,2], who consider
the wave function |
 ′(t)〉 in a rotating reference frame that
is related to the wave function |
(t)〉 in a fixed reference
frame by |
 ′(t)〉 = U+(t)|
(t)〉 in accordance with Eq. (9).
Their condition for the adiabatic approximation is reduced to
the requirement that the “magnetic” interaction i�U̇+(t)U (t)
induced by the rotation be small, i.e.,∣∣〈φni,αi

∣∣�U̇+(t)U (t)
∣∣φni,αi

〉∣∣ 
 ∣∣�Eαi

ni

∣∣. (18)

Estimations presented in Refs. [1] and [2] indicate that this
criterion is equivalent to that given by Eq. (17).

III. INCLUSION OF BERRY PHASE INTO LINE
SHAPE FORMULA

Following Anderson [23] and Sobelman [24] the intensity
distribution Ini ,nf

(ω) of the collisionally broadened spectral
line corresponding to the |φni

〉 → |φnf
〉 electric-dipole transi-

tion is given by

Ini ,nf
(ω) = 1

2π

〈∣∣∣∣
∫ ∞

+∞
dt erni ,nf

(t)e−iωt

∣∣∣∣
2〉

Av

, (19)

where the symbol 〈· · · 〉Av denotes the average over collisions,
and

erni ,nf
(t) = e

〈

ni

(t)
∣∣r̂∣∣
nf

(t)
〉

(20)

is the electric-dipole transition moment of the (N + 1)-atomic
quasimolecule consisting of an optically active atom and N

neutral perturbers. At perturber densities sufficiently low that
essentially only binary collisions occur, the wings of spectral
lines are described by the intensity distribution radiated when
only one perturber is present [25–27]. This corresponds to
the one-perturber approximation in which the wave functions
|
ni

(t)〉 and |
nf
(t)〉 are assumed to be given by the adiabatic

formulas, Eq. (6), where now R denotes the coordinates of the
single perturber (N = 1).

In the presence of an external cone-rotating electric field,
the initial |φni

〉 and final |φnf
〉 electronic states split into

several Stark and Berry components labeled by the indices
αi and αf . We denote these wave functions below simply by
|φαi

〉 and |φαf
〉. They are calculated in the rotating reference

frame (x ′,y ′,z′), whereas the intensity distribution in Eq. (19)
is the spectrum measured in the laboratory with its fixed
coordinates. Using the Wigner rotation functions D

j

m,m′ (ϕ,ϑ,0)
one can express the line shape in terms of the spherical
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components erm′ of the dipole transition moment. Since we
consider here the cases of spectral lines of the Lyman -series
of low-Z hydrogenlike atoms, the upper states correspond to
the value l = 1 of the quantum number for the orbital angular
momentum, while the lower state is the ground state (n = 1)
with l = 0. Following Matveev and Musakhanov [1,2] and
making use of Eqs. (6), (15), (16), and (20), the intensity
distribution in Eq. (19) can then be written

Ini ,nf
(ω) = 1

G

∑
αi ,m,m′

∣∣d1
m,m′

∣∣2∣∣〈φαi

∣∣erm′
∣∣φαf

〉∣∣2
J
(
ξαi ,αf

)
,

(21)
where

G =
∑

αi ,m,m′

∣∣d1
m,m′

∣∣2∣∣〈φαi

∣∣erm′
∣∣φαf

〉∣∣2
(22)

is the normalization factor, and d1
m,m′ = D1

m,m′ (0,ϑ,0) are
the Wigner rotation functions for the matrix elements of
the spherical components of the dipole transition moment
erm′ with er0 = ez′, and er±1 = ∓e(x ′ ± y ′)/

√
2. In Eq. (21)

the function J (ξαi ,αf
) describes the shape of the αi → αf

components of the ni → nf spectral line and is defined by

J
(
ξαi ,αf

) = 1

2π

〈∣∣A(
ξαi ,αf

)∣∣2〉
Av, (23)

where

A
(
ξαi ,αf

) =
∫ +∞

−∞
dt exp

{ − i�αi,αf
(t)

}
, (24)

and

�αi,αf
(t) = ξαi ,αf

t − 1

�

∫ t

0
dt ′�Vαi,αf

(t ′). (25)

Here

ξαi ,αf
= ω − �αi,αf

(26)

denotes the frequency displacement relative to the frequency
�αi,αf

defined as

�αi,αf
= ω0 + �ωF

αi,αf
+ (

δαf
− δαi

)
, (27)

where

�ωF
αi,αf

= 1

�

[
�Eαf

(F ) − �Eαi
(F )

]
. (28)

The discrete frequency �αi,αf
gives the spectral position of the

component αi → αf formed by the Stark and Berry splitting
of the ni → nf transition in the external cone-rotating electric
field. In the absence of the field we have �αi,αf

= ω0.
In the following we adopt the classical-path approximation

with trajectories determined by the interaction potential
surface of the initial state. The symbol 〈· · · 〉Av in Eq. (23)
denotes then the average over impact parameters ρ and initial
energies Ei = μv2/2 of their relative motion, where μ is the
reduced mass. Equation (23) can then be reexpressed in the
form

J
(
ξαi ,αf

) =
∫ ∞

0
dEif (Ei)

∫ ∞

0
dρ ρ

∣∣A(
ξαi ,αf

)∣∣2
, (29)

where f (Ei) is the Maxwellian distribution of initial energies.

IV. FAR WINGS

Now we focus our attention on the behavior of A(ξαi ,αf
),

Eq. (24), at large values of ξαi ,αf
, i.e., for frequencies in the far

wings of the ni → nf transition. At large ξαi ,αf
, the rapidly

oscillating integrand in Eq. (24) contributes significantly to
A(ξαi ,αf

) mainly in regions of stationary phase, i.e., near points
tC at which the first time derivative is zero:

�̇αi ,αf
(tC) = 0. (30)

According to Eq. (25) these stationary-phase points are
solutions of the equation

�ξαi ,αf
= �Vαi,αf

(RC), (31)

where RC = R(tC) denotes the interatomic separation at time
tC . In the absence of a rotating external electric field, i.e., when
both the Stark (�ωF

αi,αf
) and Berry (δαi

and δαf
) displacements

vanish, Eq. (31) becomes

�(ω − ω0) = �Vαi,αf

(
R0

C

)
. (32)

In line-broadening theories based on the Franck-Condon prin-
ciple, this equation defines the Condon points R0

C identified as
positions at which, according to the classical formulation of the
principle, transitions occur [8,9,11,28]. Such an identification
is certainly appropriate when R0

C or RC are real. However,
solutions of Eq. (30) or (31) may be complex. As the saddle
points of �αi,αf

(t) they can also contribute to the intensity
distribution at line wings [8,9,28]. By comparing Eqs. (31)
and (32) we conclude that RC are the ordinary Condon points
once the energy shifts caused by Berry phase and Stark effects
are taken into account.

A. Effect of Berry phase on the quasistatic profile

If the phase function �αi,αf
(t) is approximated by a

quadratic expansion around tC , then after substitution into
Eq. (24) one obtains from Eq. (29) the quasistatic formula
for the profile JQS(ξαi ,αf

) of the αi → αf component of the
ni → nf spectral line: [26,27]

JQS
(
ξαi ,αf

) = 4πR2
C∣∣�V ′

αi ,αf
(RC)

∣∣ exp

(
−Vαi

(RC)

kBT

)
, (33)

where �V ′
αi ,αf

(RC) ≡ (d�Vαi,αf
/dR)

RC
, kB is the Boltzmann

constant, and T is the temperature.
Suppose, for example, that the interatomic interactions in

the region of interest take the van der Waals form �Vαi,αf
(R) =

��C
i,f

6 R−6, where �C
i,f

6 denotes the difference of van der
Waals constants for the initial and final states. Equation (33)
yields [for Vαi

(RC) 
 kBT ]

JQS
(
ξαi ,αf

) ≡ J BC
QS

(
ξαi ,αf

) = 2π

3

∣∣�C
i,f

6

∣∣1/2∣∣ξαi ,αf

∣∣−3/2
.

(34)

Here the superscript “BC” relates to Condon points RC

determined on the basis of Eq. (31), i.e., when the Berry phase
effect is taken into account. In the absence of the external
rotating field we have ξαi ,αf

= ω − ω0, and then Eq. (34)
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becomes

JQS(ξαi ,αf
) ≡ JC

QS(ω − ω0) = 2π

3

∣∣�C
i,f

6

∣∣1/2|ω − ω0|−3/2,

(35)

where the superscript “C” refers to the Condon points R0
C as

defined by Eq. (32). This is Kuhn’s familiar “3/2 relation” for
the shape of the wing of a spectral line broadened due to van
der Waals forces, and it was supported by his observation of the
wing of the mercury resonance line (253.7 nm) perturbed by
argon [29], and by Minkowski [30] with the wings of sodium
D lines perturbed by argon, as well as by other researchers
[27,31].

A comparison of Eqs. (34) and (35) leads to the conclusion
that in systems for which the van der Waals potential may
be applied, the far wings of pressure-broadened spectral lines
emitted or absorbed by a gas placed in an external rotating
electric field should include the appearance of the Berry phase
effect in collisionally perturbed optical spectra. The ratio of
the “Berry-Condon-Kuhn” quasistatic distribution, Eq. (34),
to the ordinary “Condon-Kuhn” quasistatic distribution,
Eq. (35), is

J BC
QS (ξαi ,αf

)

JC
QS(ω − ω0)

= |ω − ω0|3/2∣∣ω − ω0 − �ωF
αi,αf

− (
δαi

− δαf

)∣∣3/2 .

(36)
In accordance with Eq. (27) the values of this ratio depend on
the strength F and the angular frequency ωF of the rotating
electric field as well as on the angle ϑ .

B. Effects of Berry phase on rainbow satellite bands

The general form of the quasistatic distribution, Eq. (33),
gives infinite intensity at frequency displacements ξS

αi ,αf

satisfying

�ξS
αi ,αf

= �Vαi,αf
(RS), (37)

where RS is the distance between the radiating atom and the
perturber at which the difference potential has an extremum.
As the Condon point RC approaches a position RS , the
derivative in the denominator of Eq. (33) vanishes and the
quasistatic distribution becomes singular. These quasistatic
singularities, which occur wherever the forces acting on the
radiating atom in its initial and final state are equal, are
usually designated “classical rainbow satellites” because of
their analogy to the classical theory of the formation of
rainbows by light scattering [25].

As follows from Eqs. (25), (30), and (37), in the presence
of an external rotating electric field the spectral (“Berry-
Condon”) position ωBC

S of the classical rainbow singularity
is given by

ωBC
S = ω0 + 1

�
�Vαi,αf

(RS) + �ωF
αi,αf

+ δαf
− δαi

. (38)

Without the external field, when both the Stark and the
Berry shifts disappear, the rainbow singularity occurs at the
“Condon” frequency ωC

S given by

ωC
S = ω0 + 1

�
�Vαi,αf

(RS). (39)

A comparison of Eqs. (38) and (39) shows that in the presence
of the cone-rotating electric field, the Berry phases result in
a shift in the position of the classical rainbow satellite with
respect to that produced in the absence of that field.

Suppose �Vαi,αf
(R) has a minimum value −�ε at R =

RS (with ε > 0). Then in the vicinity of RS , the function
�Vαi,αf

(R) may be approximated by a quadratic expansion:

�Vαi,αf
(R) ≈ −�ε + 1

2
�V ′′

αi ,αf
(RS)[R − RS]2, (40)

where �V ′′
αi ,αf

(RS) is positive since �Vαi,αf
(RS) = −�ε is a

minimum. According to Eq. (31) the Condon points

RC = RS ±
[

2�
(
ξαi ,αf

+ ε
)

�V ′′
αi ,αf

(RS)

]1/2

(41)

are real if ξαi ,αf
> −ε ≡ ξS

αi ,αf
. In this case the rainbow

singularity appears in the red wing of the spectral line. Beyond
the classical rainbow frequency, i.e., for ξαi ,αf

< −ε, solutions
of Eq. (31) are a complex conjugate pair of Condon points

RC = RS ± i

[
2�

(∣∣ξαi ,αf

∣∣ − ε
)

�V ′′
αi ,αf

(RS)

]1/2

. (42)

As shown first by Sando and Wormhoudt [28] the contribution
to the intensity distribution from complex points of stationary
phase falls off exponentially with increasing separation of RC

from the real R axis.

1. Airy function approximation

Due to its divergence at ωBC
S or ωC

S , i.e., when RC or R0
C

approaches RS , the quasistatic distribution, Eq. (33), becomes
unrealistic and predicts an infinite spike in the spectrum there
instead of a continuous satellite maximum located in the line
wings. To avoid the divergence problem we adopt an extended
stationary phase method in which the phase function �αi,αf

(t)
in Eq. (24) is approximated by a cubic expansion around tC .
Then A(ξαi ,αf

) in Eq. (24) can be expressed in terms of the
regular homogenous Airy function. Using arguments identical
to those applied in the unified Franck-Condon (UFC) line
shape treatment [8,9], and employing a method due to Sando
and Wormhoudt [28] to perform the Maxwellian averaging in
Eq. (29), we find

J
(
ξαi ,αf

) = 48�πR2
C∣∣�V ′

αi ,αf
(RC)

∣∣ ∣∣zαi ,αf

∣∣1/2

×L
(
zαi ,αf

)
exp

[
−Vαi

(RC)

kBT

]
. (43)

Here

zαi ,αf
= 1

2

(
μ

kBT

)1/3
(

�V ′
αi ,αf

(RC)

�

)2∣∣∣∣∣
�V ′′

αi ,αf
(RC)

�

∣∣∣∣∣
−4/3

(44)
is a dimensionless parameter that plays the role of a reduced
frequency displacement, and

L
(
zαi ,αf

) =
∫ ∞

0
dx x−2Ai2( − zαi ,αf

x
)

exp(−x−3) (45)
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is the universal line-shape function of the UFC theory [8]. It
should be emphasized, however, that all quantities here relate
to the Condon point RC and not to R0

C as in the original
version of the UFC treatment. In accordance with Eq. (21) the
resulting intensity distribution in the far wing of the ni → nf

line emitted or absorbed by hydrogenlike atoms placed in a
rotating electric field can be written

J
(
ξαi ,αf

) = 24�π

G

∑
αi ,m,m′

∣∣d1
m,m′ (ϑ)

∣∣2∣∣〈φαi

∣∣erm′
∣∣φαf

〉∣∣2

× R2
C

∣∣zαi ,αf
π

∣∣1/2∣∣�V ′
αi ,αf

(RC)
∣∣ L

(
zαi ,αf

)
exp

[
−Vαi

(RC)

kBT

]
,

(46)

where the normalization factor G is given by Eq. (22).
For real values of RC , Eq. (41), the parameters zαi ,αf

are
always positive. For them, the general formula, Eq. (43), can
be substantially simplified when the stationary phase points
are located in the vicinity of the classical turning point, where
Ei = Vαi

(RC). As shown in Ref. [8], the dominant contribution
to the integral in Eq. (45) then comes from large values of
zαi ,αf

x and this yields asymptotically the quasistatic formula,
Eq. (33). Obviously it is singular for zαi ,αf

= 0, i.e., for Condon
points located at extrema of the difference potential (RC →
RS). In the vicinity of RS we can use the quadratic expansion,
Eq. (40), where �V ′′

αi ,αf
(RS) is assumed to be positive. This is

justified for red rainbow satellites which are due to a minimum
in �Vαi,αf

(RS). Using Eqs. (40), (41), and (43), one can show
that for frequencies in the quasistatic part of the red wing
of the αi → αf component of the ni → nf spectral line, the
parameter zαi ,αf

is positive and can be written

zαi ,αf
=

[
�μ

kBT �V ′′
αi ,αf

(RS)

]1/3(
ξαi ,αf

+ ε
)
. (47)

On the other hand, outside the classical rainbow frequency
(for ξαi ,αf

< −ε) the intensity distribution is still determined
by the universal function L(zαi ,αf

), but now with a negative
parameter zαi ,αf

:

zαi ,αf
= −

[
�μ

kBT �V ′′
αi ,αf

(RS)

]1/3(∣∣ξαi ,αf

∣∣ − ε
)
. (48)

As shown in Ref. [8] for large values of −zαi ,αf
, Eq. (43)

yields in the asymptotic limit the exponentially decreasing
“antistatic” profile which is smaller than the quasistatic one
by the factor exp[−121/3|zαi ,αf

|]/√3. As in the quasistatic
case, the antistatic one is also singular for zαi ,αf

= 0. The
UFC profile of the rainbow satellite band given by Eq. (43)
has no singularities at all, but its maximum does not occur at
the classical rainbow satellite position zαi ,αf

= 0, but rather
at zmax

αi ,αf
= 0.328 814. This means that the maximum of the

rainbow satellite band is located in the classically accessible
region of interatomic separations, i.e., at real Condon points
RC for which the parameters zαi ,αf

are positive. Its spectral
position ξmax can be determined from the condition

ξmax + ε = 0.328 814

(
kBT �V ′′

αi ,αf
(RS)

�μ

)1/3

. (49)

Thus, in accordance with Eq. (26), in the presence of the
external rotating electric field, the frequency ωBC

max at which the
maximum of the rainbow satellite peak occurs is

ωBC
max = ωC

max + �ωF
αi,αf

+ (
δαf

− δαi

)
, (50)

where

ωC
max = ωC

S + 0.328 814

(
kBT �V ′′

αi ,αf
(RS)

�μ

)1/3

(51)

is the frequency at which the maximum of this satellite is
located in the absence of the rotating electric field, with ωC

S the
frequency of the rainbow singularity in the absence of the field
as defined in Eq. (39). As follows from the above equations,
the nonzero value of the difference ωBC

max − ωC
max may serve as

an evidence for the appearance of the Berry phase effect in
collisionally perturbed optical spectra.

2. Effect of Berry phase on the red rainbow satellite of Lyman-α

The classic example of a rainbow satellite is an absorp-
tion feature located at wavelength λS = 162.3 nm (ωS =
2πc/λS = 1.161 × 1016 rad s−1) or at wave number 1/λS =
61 610 cm−1 in the red wing of the self-broadened Lyman-α
line at wavelength λ0 = 121.6 nm (ω0 = 2πc/λ0 = 1.549 ×
1016 rad s−1) or at wave number 1/λS = 82 230 cm−1 of
hydrogen [8]. This satellite can occur in absorption when two
ground-state (n = 1) hydrogen atoms approach in the X 1�+

g

state, absorb light, and undergo a transition to the B 1�+
u state

corresponding to the resonance state (n = 2) of atomic H. Fully
quantum-mechanical calculations of potential curves by Kołos
and Wolniewicz [32] showed that the difference potential
�V2,1(R) for the X 1�+

g − B1�+
u transitions has a minimum

at RS = 4.1 bohr, giving rise to a rainbow singularity at 162.3
nm. The shape of this satellite was the subject of several
theoretical treatments starting from the pioneering work by
Sando and Wormhoudt [28], followed by an extensive study
due to Allard et al. [33]. However, the effect of Berry phase
was not invoked in these papers.

The Stark effect caused by a rotating electric field on the
Lyman-α line was first theoretically analyzed by Ishimura [34]
and then by Lisitsa [35], but with no relation to the Berry-phase
problem. On the other hand, Choi et al. [36] have presented
a theoretical observation of Berry phase induced in excited
hydrogenic atoms when they are placed in a slowly rotating
uniform electric field whose direction may be adjusted adia-
batically. Ishimura and Lisitsa have shown that in the general
case (for arbitrary values ωF of the rotating field frequency) the
resonance level (n = 2) of hydrogen splits into nine sublevels.
However, for small ωF their treatments give four sublevels
as in the case of a Stark effect by a static field. The case of
static field corresponds to that in the rotating reference frame
when the electric field is constant, and there are four Stark
sublevels for n = 2. In terms of parabolic quantum numbers
n1 and n2 these sublevels, designated as φ

n2−n1,m
n=2 , are as follows

[37]: (1) φ
−1,0
2 = (|200〉 − |210〉)/√2 with the Stark displace-

ment �ω
−1,0
2 (F ) = �E

−1,0
2 /� = −3ea0F/(Z�), (2) φ

1,0
2 =

(|200〉 + |210〉)/√2 with the Stark displacement �ω
1,0
2 (F ) =

�E
1,0
2 /� = 3ea0F/(Z�), and two sublevels with the zero
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FIG. 1. Schematic diagram of the Stark and Berry phase effects
on the Lyman-α line.

Stark displacement: (3) φ
0,1
2 = |211〉 with �E

0,1
2 = 0 and (4)

φ
0,−1
2 = |21 − 1〉 with �E

0,−1
2 = 0.

The states φ
−1,0
2 , φ

1,0
2 , φ

0,1
2 , and φ

0,−1
2 are chosen in the

present work as the basis states. The ground state (n = 1) of
the hydrogenlike atom is not affected by the external electric

field. It is evident from Eqs. (12) and (13) that for the ground
state of a hydrogenlike atom placed in an external rotating
electric field, the Berry phase does not appear: γ1(t) = 0. In
the resonance state (n = 2), it can appear for the sublevels
φ

0,−1
2 and φ

0,1
2 with m = ±1 and it becomes γ

0,−1
2 (t) = 
F (t)

and γ
0,1
2 (t) = −
F (t), respectively. For the sublevels φ

±1,0
2

corresponding to m = 0, the Berry phases vanish [γ ±1,0
2 (t) =

0]. Thus, in accordance with Eq. (14), for the sublevel φ
0,−1
2

the Berry shift δ
0,−1
2 amounts to δ = (1 − cos ϑ)ωF , whereas

for the sublevel φ
0,1
2 it is δ

0,1
2 = −δ. No Berry shift is expected

for the sublevels φ
1,0
2 and φ

−1,0
2 . The schematic diagram of the

Stark and Berry phase effects on the Lyman-α line is shown
in Fig. 1, where ω±

S = ω0 ± �ω(F ), and ω±
B = ω0 ± δ.

In order to estimate the resultant profile IBC
2,1 (ω) of the

Lyman-α line, self-broadened by a gas placed in cone-rotating
electric field, we use Eq. (46), in which the matrix elements
of the spherical components er0 and er±1 of the electric
dipole moment are 〈100|er0|210〉 = eQ2,1/

√
3, 〈100|er0|21 ±

1〉 = −eQ2,1/
√

3, and 〈100|er0|200〉 = 〈100|er−|21 −1〉 =
〈100|er+|211〉 = 0. Here Q2,1 is the radial integral for the 2 →
1 transition in the hydrogenlike atom. The Wigner functions
in Eq. (46) are d1

00(ϑ) = cos ϑ , and d1
0−1(ϑ) = −d1

01(ϑ) =
(
√

2/2) sin ϑ . According to Eq. (22) the normalization factor
now becomes G = 1/6. Substitution of these expressions into
Eq. (46) yields [for Vαi

(RC) 
 kBT ]

IBC
2,1 (ω) = 24�π (eQ2,1)2 ×

{[
R2

+1,0|πz+1,0|1/2

|�V ′
21(R+1,0)| L(z+1,0) + R2

−1,0|πz−1,0|1/2

|�V ′
21(R−1,0)| L(z−1,0)

]
cos2 ϑ

+
[

R2
0,+1|πz0,+1|1/2

|�V ′
21(R0,+1)| L(z0,+1) + R2

0,−1|πz0,−1|1/2

|�V ′
21(R0,−1)| L(z0,−1)

]
sin2 ϑ

}
. (52)

Here the parameters z±1,0 and z0,±1 are given by Eq. (44), in
which the Condon points R±1,0 and R0,±1, in accordance with
Eq. (31), are solutions of

�ξ±1,0 = �V2,1(R±1,0), (53)

and

�ξ0,±1 = �V2,1(R0,±1) (54)

with

ξ±1,0 = ω − ω0 ± 3ea0

Z�
F, (55)

and

ξ0,±1 = ω − ω0 ± δ. (56)

Let us note that in the absence of the external electric
field (F = 0, ωF = 0), we have ξ±1,0 = ξ0,±1 = ω − ω0 and
z±1,0 = z0,±1 = zαi ,αf

, where zαi ,αf
is given by Eq. (44).

Then Eqs. (53) and (54) become identical to Eq. (31) with
R±1,0 = R0,±1 = R0

C . In such a case Eq. (52) reduces to
Eq. (43) which describes the intensity distribution in the wing
of a single (n = 2 ← n = 1) pressure-broadened Lyman-α
line.

3. Lennard-Jones difference potential and its quadratic expansion

To get more insight into the effect of Berry phase on the
intensity distribution near rainbow satellites, we consider now
a difference potential in the form of a Lennard-Jones (12-6)
function:

�Vαi,αf
(R) = �ε

[(
RS

R

)12

− 2

(
RS

R

)6
]
, (57)

where RS is the position of the minimum, at which
�Vαi,αf

(RS) = −�ε. The quasistatic rainbow singularity ap-
pears now on the red wing of a spectral line at the frequency
displacement ξS

αi ,αf
= −ε. Following Ref. [8] we adopt for

both real and complex Condon-point regions the quadratic
approximation, Eq. (40), to the Lennard-Jones function about
RS . The result is

�Vαi,αf
(R) ≈ −�ε

[
1 − 36

R2
S

(R − RS)2

]
. (58)

According to Eq. (30) for ξαi ,αf
> −ε, there are two real

Condon points

RC = RS ± RS

6

(
ξαi ,αf

ε
+ 1

)1/2

, (59)
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whereas for ξαi ,αf
< −ε there is one pair of complex Condon

points

RC = RS ± i
RS

6

(∣∣∣∣ξαi ,αf

ε

∣∣∣∣ − 1

)1/2

. (60)

The parameter zαi ,αf
can now be represented by

zαi ,αf
=

[
μR2

S

72kBT ε

]1/3(
ξαi ,αf

+ ε
)
, (61)

in both quasistatic and antistatic regions. Thus, in accordance
with Eqs. (21) and (43), in the limit Vαi

(RC) 
 kBT , the
resultant intensity distribution Ini ,nf

(ω) in the rainbow satellite
associated with red wing of the ni → nf spectral line of a
hydrogenlike atom can be written

IBC
ni ,nf

(ω) = 2πR2
CRS

G
√

ε

∑
α,m,m′

∣∣d1
m,m′

∣∣2

× ∣∣〈φαi

∣∣erm′
∣∣φαf

〉∣∣2

∣∣zαi ,αf
π

∣∣1/2∣∣ξαi ,αf
+ ε

∣∣1/2 L
(
zαi ,αf

)
,

(62)

or equivalently

IBC
ni ,nf

(ω) = 2π3/2R2
CRS

G
√

ε

(
μR2

S

72kBT ε

)1/6

×
∑

αi ,m,m′

∣∣d1
m,m′

∣∣2∣∣〈φαi

∣∣erm′
∣∣φαf

〉∣∣2
L

(
zαi ,αf

)
.

(63)

Since we are concerned here with the intensity distribution in
the vicinity of the maximum of the rainbow satellite, we can
assume that R2

CRS ≈ R3
S . This results from the fact that in the

neighbourhood of the extremum of �Vαi,αf
(R), the fitting of

a quadratic function to the Lennard-Jones potential yields

R2
C = R2

S

[
1 + 1

36

(
1 + ξαi ,αf

ε

)
± 1

3

√
1 + ξαi ,αf

ε

]
. (64)

Making use of the appropriate expressions for d1
m,m′ and

〈φαi
|erm′ |φαf

〉 for the n = 2 → n = 1 transition, Eq. (62) can
be transformed to

IBC
2,1 (ω) = B{[L(z+1,0) + L(z−1,0)] cos2 ϑ

+ [L(z0,+1) + L(z0,−1)] sin2 ϑ}, (65)

where

B = (eQ2,1)

√
π

ε
R3

S

(
μR2

S

72kBT ε

)1/6

. (66)

Here,

z±1,0 =
(

μR2
S

72kBT ε

)1/3(
ω − ω0 ± 3ea0

Z�
F + ε

)
, (67)

and

z0,±1 =
(

μR2
S

72kBT ε

)1/3

(ω − ω0 ± δ + ε). (68)

As seen from Eq. (65), the shape of the rainbow satellite band
observed in the presence of an external rotating electric field
depends on the strength of the field as well as on the angle
ϑ and on angular frequency ωF of the field rotation. Using
Eq. (64) we can correct for the fact that the Condon points do
not actually occur at the extremum position RS by multiplying
the quantity B in Eq. (66) by a factor on the order of [1 +
(ξαi ,αf

/ε + 1)/36].
Let us note that in the absence of the external electric field

(F = 0, ωF = 0, δ = 0), we have ξ±1,0 = ξ0,±1 = ω − ω0 and
z±1,0 = z0,±1 = z, where now

z =
(

μR2
S

72kBT ε

)1/3

(ω − ω0 + ε). (69)

Equation (65) becomes then

IBC
2,1 (ω) → IC

2,1(ω) = 2BL(z)

= 2(eQ2,1)

√
π

ε
R3

S

(
μR2

S

72kBT ε

)1/6

L(z).

(70)

This formula describes the intensity distribution produced in
the absence of the external rotating electric field. Its validity is
restricted to the frequency region in the vicinity of the rainbow
satellite maximum that corresponds to Condon points near the
position RS of the extremum in the difference potential.

As a measure of the magnitude of the effect caused on
the rainbow satellite by Berry phase due to external rotating
electric field, we can use the ratio IBC

2,1 (ω)/IC
2,1(ω) which, in

accordance with Eqs. (65) and (70), is

IBC
2,1 (ω)

IC
2,1(ω)

= 1

2L(z)
{[L(z+1,0) + L(z−1,0)] cos2 ϑ

+ [L(z0,+1) + L(z0,−1)] sin2 ϑ}. (71)

This means that a consequence of including Berry phase into
the adiabatic quasimolecular wave functions is that the ratio of
the intensity distribution observed in the presence of a rotating
electric field to that observed in its absence should differ from
one and be dependent on both the strength F of the field and
the angular frequency ωF of its rotation as well as on the
angle ϑ .

V. SUMMARY AND DISCUSSION

We have added the effect of Berry phase to the formalism of
adiabatic theories of pressure broadening to derive expressions
for the shape of rainbow satellites accompanying the far wings
of spectral lines emitted or absorbed by atoms placed in an
external cone-rotating electric field. We found that the intensity
distribution in far wings can be described in terms of the
universal line shape function of the UFC theory provided
the energy shifts due to Stark and Berry phase effects are
incorporated as defined by Eq. (31). The basic result is the
formula of Eq. (43), which shows that both the shapes and
the positions of maxima of rainbow satellite bands associated
with atomic lines radiated in the presence of a rotating electric
field depend on frequency shifts caused by the Stark effect
as well as the effects due to the Berry phase. The differences
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between the data observed in the presence of a rotating field
and those without that field provide a manifestation of the
effects of Berry phase in pressure-broadened atomic spectra.
As an example, we derived an expression for the shape of the
rainbow satellite band located at 162.3 nm in the red wing
of the self-broadened Lyman-α line of hydrogen, radiated in
the presence of an external rotating electric field. It consists
of four terms representing contributions to the intensity
distribution coming from transitions between the ground state
and corresponding Stark and Berry sublevels belonging to the
resonance state. Approximate estimations made for a Lennard-
Jones potential show that two quasistatic singularities induced
by the Berry phase as determined from the condition z0,±1 = 0
[see Eq. (68)] are located symmetrically on both sides of the
frequency ωC

S = ω0 − ε of the singularity in the absence of the
field. The first one is located in the short-wavelength region
of the rainbow satellite at frequency ωBC+

S = ωC
S + δ, and the

second one on the long-wavelength side at ωBC−
S = ωC

S − δ. In
accordance with Eq. (71), the Berry shift depends on the angle
ϑ and the angular frequency ωF . In particular, for ϑ = 60◦
this shift is δ = ωF /2. The two remaining singularities are
caused by the Stark shift and can be determined from the
condition z±1,0 = 0. They are situated symmetrically on both
sides of the frequency ωC

S and are shifted from it by a factor
�ω(F ) = ±3ea0F/�.

The theory described in the present work requires the
experimental verification. To this end a rotating electric field
with high angular frequency ωF (of the order of 1014 rad s−1)
sufficient to induce observable Berry and Stark effects is
needed. However, such fields are not common, and their
absence from experimental investigations explains the lack
of experimental verification of the theoretical treatments of
both the Stark effect on the Lyman-α line induced by rotating
electric field, due to Ishimura [34] and Lisitsa [35], and the
effect of Berry phase in hydrogenlike atoms placed in rotating
field, calculated by Choi et al. [36]. Nevertheless, as Matveev
and Musakhanov [1,2] have remarked, a cone-rotating field F
of constant magnitude can be generated by superimposing a
constant electric field F1 and the electric field F2 of a circularly
polarized maser or laser, whose beam is aligned with F1. The
resulting electric field F = F1 + F2 is cone rotating with the
angle ϑ = tan−1(F2/F1). To our knowledge, their proposal,
which is equivalent to the application of the dynamic Stark
effect for the case of a circularly polarized field, has not
yet been realized experimentally, at least in the Berry phase
context. It is noteworthy that Koryukina [38] performed a
theoretical analysis of the shift and splitting of energy levels
of rare-gas atoms caused by circularly polarized oscillating
electric fields of strength up to 10 kV/cm and frequency of
100 MHz that can be generated in high-frequency electrodeless
discharge lamps. However, the most promising way to produce
cone-rotating electric field with the aim of its application to
search the Berry phase effect on spectral line wings seems to
be the use of various maser or laser light sources for circularly
polarized radiation which are available at present (cf. e.g. [39]).

Of course the values of the strength F and angular frequency
ωF should be chosen so that the adiabatic criterion (18) is
fulfilled. For the hydrogen Lyman-α line this criterion is
ωF < 6πa0eF/�. This means that for ωF = 1014 rad/s, i.e.,
1.59 × 1013 Hz, the electric field strength should be F >

Fcr = 6.6 × 105 V/cm. Assuming that F = 7 × 105 V/cm
and using Eqs. (55) and (56), we obtain then for the angle
ϑ = 75◦ the values of the Berry shift δ = ±7.41 × 1013 rad/s
or δ = ±7.96 × 1012 Hz or δ = ±393 cm−1 and the Stark
shift �ω(F ) = ±1.69 × 1013 rad/s or ±2.69 × 1012 Hz or
±89.7 cm−1. Thus in this case the quasistatic singularities
due to the Berry phase and Stark effect are located at
±393.4 cm−1 and ±89.7 cm−1, respectively, on both sides of
the classical rainbow singularity frequency ωC

S corresponding
to 61 610 cm−1, i.e., 162.3 nm in wavelength scale. The
critical strength value Fcr = 6.6 × 105 V/cm corresponds to
a laser light intensity below 108 W/cm2 for which nonlinear
phenomena induced by the dynamic Stark effect, in particular
multiphoton effects, are still negligible.

If we assume the angular frequency of the rotation of the
external electric field to be ωF = 1013 rad/s, i.e., 1.59 × 1012

Hz, which corresponds to the use of circularly polarized
terahertz radiation, then the critical electric field strength
value is Fcr = 6.6 × 104 V/cm. For F = 7 × 104 V/cm and
ϑ = 75◦ we obtain from Eqs. (55)–(71) and (67),(68) the
values of the Berry shift δ = ±7.41 × 1012 rad/s or δ =
±39.3 cm−1 and the Stark shift �ω(F ) = ±1.69 × 1012 rad/s
±8.97 cm−1. This means that the additional intensity features
induced by the Berry and Stark effects in this case are located
near the maximum of the 162.3 nm rainbow satellite on both
sides of it. Although these values of δ and �ω(F ) are small
they can give rise to a marked modification of the resultant
profile in comparison with that produced in the absence of an
external field.

We should note that with an increase in the angular
frequency ωF , the critical value Fcr of the strength of rotating
electric field as well as the Berry and Stark shifts increase.
For instance, for ωF = 1015 rad/s, we have Fcr = 6.6 × 106

V/cm. Assuming that F = 7 × 106 V/cm and the angle
ϑ = 75◦ we get for the Berry shift the value ±3930 cm−1

and for the Stark shift ±897 cm−1. However, this value of the
electric field strength corresponds to an intensity of a laser
radiation at which nonlinear phenomena due to the dynamic
Stark effect may be important. Such large values of the critical
electric field strength might appear to be the main obstacle
in efforts to ascertain our theoretical results for the rainbow
satellite at the Lyman-α line by experiment. On the other hand,
it should be noted that the appearance of Berry phase can
also be manifested as a modification of the Kuhn quasistatic
distribution, Eqs. (34) and (35), in those cases where the
difference potential function �Vαi,αf

(R) has no extrema, i.e.,
when the rainbow satellites do not occur in the far wings.
Such a modification can be observed for smaller values of the
angular frequency ωF and smaller values of critical electric
field strength Fcr than those needed in experiments on rainbow
satellites.
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[18] D. Kult, J. Åberg, and E. Sjöquist, Noncyclic geometric changes
of quantum states, Phys. Rev. A 74, 022106 (2006).

[19] O. Peyrusse, Stark-profile calculations for spectral lines of
hydrogenic ions in plasmas submitted to a strong oscillating
electric field, Phys. Scr. 56, 371 (1997).

[20] H. Bethe and E. Salpeter, Quantum Mechanics of One- and
Two-Electron Atoms (Springer, Berlin, 1957).

[21] L. Klein and H. Margenau, Theory of pressure effects on alkali
doublet lines, J. Chem. Phys. 30, 1556 (1959).

[22] L. Spitzer, Impact broadening of spectral lines, Phys. Rev. 58,
348 (1940).

[23] P. W. Anderson, Pressure broadening in the microwave and infra-
red regions, Phys. Rev. 76, 647 (1949).

[24] I. I. Sobelman, Introduction to the Theory of Atomic Spectra
(Pergamon, Oxford, 1973).

[25] A. Royer, Semiclassical and classical spectrum in the adiabatic
theory of pressure broadening, Phys. Rev. A 4, 499 (1971).

[26] G. Peach, Theory of the pressure broadening and shift of spectral
lines, Adv. Phys. 30, 367 (1981).

[27] N. F. Allard and J. F. Kielkopf, The effect of neutral nonresonant
collisions in atomic spectral lines, Rev. Mod. Phys. 54, 1103
(1982).

[28] K. M. Sando and J. C. Wormhoudt, Semiclassical shape of
satellite band, Phys. Rev. A 7, 1889 (1973).

[29] H. Kuhn, Pressure broadening of spectral lines and van der Waals
forces, Proc. R. Soc. A 158, 212 (1937).
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