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Influence of the plasma environment on atomic structure using an ion-sphere model
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Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor
the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are
compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model,
several applications are considered. In order to check the consistency of the modifications brought here to
extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (CATS) code in
its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (FAC). The
ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated
using the FAC and CATS codes and fairly agree. For the intercombination resonance line in Fe22+, the plasma
effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration
Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007)]. Last, the present model is compared to
experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature
and density in agreement with the MARIA code.
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I. INTRODUCTION

Many atomic structure codes are available to obtain
an accurate description of energy levels and transitions,
employing such methods as Hartree-Fock, Dirac-Fock, or
parametric potentials. However, these codes typically do not
include plasma-environment effects. These are often taken
into account after the fact, within a kinetics (or collisional-
radiative) code by way of energy shifts computed from various
semiclassical formulas, the most popular being that of Stewart
and Pyatt [1]. To circumvent this limitation, we have in earlier
works [2–4] shown that plasma effects may be included in
the Flexible Atomic Code (FAC) [5] within the ion-sphere
formalism (ISF). However, our previous work relied only
either on this code or on a direct integration of the Schrödinger
radial equation in the H-like case, and the comparison with the
existing literature using ISF was limited to ions with a single
bound electron.

The goal of the present work is to generalize this approach
in three directions. First, our earlier work relied on a Maxwell-
Boltzmann statistics to describe the free electrons, which is not
correct when their density is high or when their temperature
is low. Therefore, we provide an analysis of the improvement
brought by the use of Fermi-Dirac statistics. Second, we have
now included the plasma environment effect within the ISF in
the Los Alamos CATS (Cowan ATomic Structure) code [6,7]
based on Cowan’s work [8]. It is instructive to compare
results from FAC and CATS since they rely on somewhat
different hypotheses. FAC is a fully relativistic code based
on the fit of free parameters in the potential and on a local
approximation of the exchange interaction based on standard
Dirac-Fock-Slater method. CATS relies on a semirelativistic
self-consistent potential using a nonlocal Hartree-Fock (HF)
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or local Hartree-Fock-Slater (HFS) description for exchange.
Since we are using the semirelativistic option in this work,
we will use the HFR acronym to denote the HF calculations.
Finally, this paper presents comparisons of results obtained
with FAC, CATS, and other codes from the literature (MCDF,
SOBOLEV/MARIA) for complex ions, while in our previous work
comparisons mostly dealt with the hydrogen-like case.

The Debye-Hückel model [9,10] is one of the most
commonly used formalisms to take into account the plasma
effects in atomic structure calculations. However, the validity
of this approach is questionable, as mentioned, for example,
by Nguyen et al. [11] and Iglesias and Lee [12]. Indeed, the
Debye-Hückel model is valid when the correlation time of
the ion is much longer than the lifetime of excited atomic
states. So this perturbative approach is, at best, limited to
weakly coupled plasmas and is not relevant for the modeling of
high-density plasmas considered in this work. If we set aside
the Debye-Hückel model, the first significant effort to account
for the plasma environment effect was made through the
Thomas-Fermi approach [13]. The next important step is due
to Rozsnyai [14], who computed energy levels and analyzed
the equation of state in a dense plasma using a relativistic
Thomas-Fermi approach. Since then, several approaches have
been developed, which are mostly related to the Kohn-Sham
density-functional theory.

In the ion-sphere model, the ion is enclosed in a spherically
symmetric cell that contains the exact number of electrons
to ensure neutrality. Such models define an electron-density
distribution that obeys self-consistency equations or a simpler
hypothesis such as uniform density. In its simplest form,
assuming exact cancellation of the free-electron and other
ion densities beyond the Wigner-Seitz sphere, the ion-sphere
model has been extensively used (see Refs. [14–20], to name
just a few) to obtain energy levels and transition rates of ions
in plasmas. In other variants, the ion is immersed in an infinite
polarizable medium, also called jellium. Asymptotically, the
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positive and negative charges cancel each other out to form
a neutral background. The high-temperature limit of such
models is the popular Debye-Hückel theory [9,21,22]. A
recent approach of this type is the variational average atom
in quantum plasma by Blenski and Piron [23,24].

This paper is organized as follows: In Sec. II we briefly
recall the basic equations of the ion-sphere model with an
emphasis on the Fermi-Dirac approach. In Sec. III we present
the numerical implementation of the Thomas-Fermi approach
in the HFS and HFR paths of the CATS code. In Sec. IV we
compare energies obtained with a Thomas-Fermi approach
using the Maxwell-Boltzmann and Fermi-Dirac distributions.
In the same part we present three comparisons of several ions.
First, we compare FAC and CATS results for the aluminum-ion
ground state. Then we compare our results with an independent
calculation using the uniform electron gas model (UEGM)
with a MCDF code [18]. The last ion studied is He-like
titanium, for which a published experiment [25] exhibits a
plasma density effect on the He-α line. We end this manuscript
with concluding remarks.

Atomic units are used throughout.

II. ION-SPHERE MODEL

The general category of ion-sphere models includes models
that assume a neutral cell containing a central ion surrounded
by its environment. Moreover, one assumes that the free-
electron density exactly cancels the ion density beyond the
ion-sphere radius. In this approach the plasma potential is
calculated using the Poisson equation. The difference between
the various ion-sphere models lies in the way the density of free
electrons is determined. We present here the Thomas-Fermi
(TF) approach using a Fermi-Dirac distribution.

A. Thomas-Fermi approaches

The Thomas-Fermi model has already been discussed in a
series of papers [3,11,13,17,26,27]. We briefly recall the main
equations of the ion-sphere model. The neutrality assumed
inside the ion-sphere sphere with radius R0 is defined by

4πR3
0Ne

/
3 = Zf , (1)

where Ne is the average free-electron density and Zf is the
number of free electrons. The free-electron density outside of
the sphere is

ne(r) = 0, r � R0. (2)

In order to comply with the definition of the average electron
density Ne, one imposes the condition

4π

∫ R0

0
dr r2ne(r) = Zf . (3)

In the CATS and FAC codes, the free-electron density ne(r) can
follow three distributions: a uniform density, the Maxwell-
Boltzmann distribution, or the Fermi-Dirac distribution. The
case of a uniform density and Maxwell-Boltzmann distribution
have been discussed in [2,3] only for FAC. In the following
section we present the implementation of the Fermi-Dirac
distribution in CATS and FAC.

B. Fermi-Dirac distribution

If the free electrons are degenerate, the use of the Fermi-
Dirac distribution is preferable. In that case the free-electron
density is

ne(r) = 1

π2

∫ ∞

p0(r)
dp

p2

e( p2

2 +V (r)−μ)/kTe + 1
, (4)

where μ is the chemical potential, p0(r) = [−2V (r)]1/2 in the
case of an attractive potential, and V (r) is

V (r) =
{

−Z
r + Vee(r) + Vpl(r) + Vrelat(r) r � R0,

0 r > R0,
(5)

where Vee accounts for all interactions between bound elec-
trons, including nucleus screening by bound electrons and the
exchange interaction. The term Vrelat represents the relativistic
corrections; we note that this term is absent from the FAC code
since it is a fully relativistic code. The difference between the
Maxwell-Boltzmann approach and Fermi-Dirac distribution
lies in the presence of the chemical potential μ. This parameter
is determined by the neutrality condition.

Assuming a change of variable p ≡ (2kTex)1/2, the density
becomes

ne(r) = 4√
π

(
kTe

2π

)3/2 ∫ ∞

x0

dx
x1/2

ex−x0−μ/kTe + 1
, (6)

where x0 = −V (r)/kTe. Finally, we can write Eq. (6) as

ne(r) = 2λ−3
th F1/2

(
−V (r)

kTe

+ μ

kTe

, − V (r)

kTe

)
. (7)

The function F1/2(x,y) is called the incomplete Fermi-Dirac
integral, and λth is the de Broglie thermal wavelength defined
by

λth =
(

2π

kTe

)1/2

. (8)

The last equation required to obtain the plasma potential and
the electron density is the Poisson equation, which can be
written in integral form as

Vpl(r) = 4π

(
1

r

∫ r

0
ds s2ne(s) +

∫ R0

r

ds s ne(s)

)
. (9)

Two iterative loops have to be done in this case: one to obtain
the chemical potential μ, which is an internal loop, and the
other one (external loop) to obtain the correct density due to
the sphere neutrality. The numerical procedure is detailed in
Sec. III B.

III. ATOMIC STRUCTURE CALCULATIONS INCLUDING
THE PLASMA POTENTIAL

We present in this section the modifications that were made
in the CATS and FAC codes, which in their standard versions
do not take into account the plasma environment. Using the
modified form of these codes, we obtain energy levels, wave
functions, and radiative rates that take into account the plasma
environment within the ion-sphere model.
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A. Implementation of plasma density effects in CATS and FAC

The CATS code is used to generate solutions of the
Schrödinger equation with relativistic corrections. Since the
plasma potential is spherically symmetric, it is only necessary
to modify the radial equation:

d2Rn,l

d2r
+ 2

(
En,l − V (r) − l(l + 1)

2r2

)
Rn,l = 0, (10)

where n is the principal quantum number, l is the orbital
quantum number, En,l is the energy eigenvalue, and Rn,l is the
radial wave function. The total potential acting on the electron
is

V (r) = −Z

r
+ Vpl + Vee + Vrelat. (11)

We note that the CATS code does not report the orbital binding
energy as the actual eigenvalue of Eq. (10). Instead, the binding
energies are calculated by constructing the appropriately
averaged value of the kinetic, nuclear, and electron-electron
terms [see, for example, Eq. (6.13) of Cowan [8]]. The goal
of this procedure is to obtain more accurate energies when
the local-exchange (HFS) approximation is used. When the
nonlocal (HFR) approach is used, this procedure reproduces
the eigenvalues from Eq. (10).

We have to mention an important point concerning the
asymptotic behavior for the active electron. The expected
asymptotic charge experienced by an active electron should
be (Z − Nb + 1) when the plasma effects are not considered.
However, when dealing with the local-exchange approxima-
tion employed in the HFS method, the asymptotic behavior
is (Z − Nb). In the ion-sphere approach the active electron
experiences a (Z − Nb + 1 + Zf ) = 1 charge outside the ion
sphere, which is not consistent with the HFS method. To solve
this problem, the Latter tail cutoff [8,28] is applied only to
the HFS potential, rather than to the sum of the HFS and the
plasma potentials.

Concerning FAC, the implementation of the Fermi-Dirac
approach is similar to that described above for the HFS method.

B. Plasma potential with a Fermi-Dirac distribution
of free electrons

To start the first iteration, we use a uniform density
distribution of free electrons and deduce the plasma potential;
this iteration produces the UEGM potential denoted by V (0).
For the first guess of the chemical potential, labeled μ(0), we
use the value of an ideal gas at high temperature, i.e.,

μ(0) = kTe ln

(
3Zf λ3

th

8πR3
0

)
. (12)

We recall that an internal and external loop are necessary. We
denote the external loop with the index i and the internal loop
with the index k. The internal loop is used to calculate the
chemical potential μ(i,k) and the external loop for the density
n(i)

e (r).
To determine the next ith value of μ, we use a Newton

iterative method. We calculate the free charge Z
i,k
f for iteration

(i,k) according to

8πλ
−3

th

∫ R0

0
dr r2F1/2

(
−V (i)(r)

kTe

+ μ(i,k)

kTe

, − V (i)(r)

kTe

)

= Z
i,k
f . (13)

We suppose, at the next iteration on k, the value Z
i,k+1
f that we

obtain is the exact free charge Zf , i.e.,

8πλ
−3

th

∫ R0

0
dr r2F1/2

(
−V (i)(r)

kTe

+ μ(i,k + 1)

kTe

, − V (i)(r)

kTe

)
= Zf . (14)

To obtain the expression for μ(i,k + 1), we assume that the
variation of F1/2(x,y) can be approximated by the first-order
discretization

F1/2(xk+1,y) − F1/2(xk,y) = (xk+1 − xk)
∂

∂x
F1/2(x,y)

∣∣∣∣
x=xk

.

(15)

Therefore, we obtain the new chemical potential μ(i,k + 1)
via the following expression:

[μ(i,k + 1) − μ(i,k)]
∫ R0

0
dr r2 ∂

∂x

×F1/2

(
−V (i)(r)

kTe

+ μ(i,k)

kTe

, − V (i)(r)

kTe

)

= kTeλ
3
th

8π

(
Zf − Z

i,k
f

)
. (16)

The partial derivative of the Fermi-Dirac integral can be
calculated by

∂

∂x
Fj (x,y) = 1

�(j + 1)

yj

ey−x + 1
+ Fj−1(x,y). (17)

For the computation of the Fermi-Dirac integral, we use the
algorithm developed by Goano [29]. The internal loop has con-
verged when the required accuracy |μ(i,k + 1) − μ(i,k)| < ε

is reached. The default value of ε is 10−12. Once the chemical
potential is obtained, the process to obtain the density ne(r)
and the potential V

(i)
pl (r) is

V (i)(r) = −Z

r
+ Vee(r) + Vrelat(r) + V

(i)
pl (r), (18)

n(i)
e (r) = 2λ−3

th F1/2

(
−V (i)(r)

kTe

+ μ(i,k + 1)

kTe

, − V (i)(r)

kTe

)
,

(19)

Zf = 4π

∫ R0

0
dr r2n(i)

e (r), (20)

V
(i+1)

pl (r) = 4π

(
1

r

∫ r

0
ds s2n(i)

e (s) +
∫ R0

r

ds s n(i)
e (s)

)
,

(21)

where μ(i,k + 1) is the converged value of the chemical
potential at the ith step of the outer iteration. The convergence
is controlled by monitoring the variation of the density on the
ion-sphere sphere |n(i)

e (R0) − n(i−1)
e (R0)|, ending the iterations
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TABLE I. Energy shift (in eV) for the 1s level of H-like neon at
an average electron density of Ne = 1024 cm−3 from CATS (HFS).

Temperature Maxwell-Boltzmann Fermi-Dirac

1 eV 193.85 185.58
100 eV 167.72 167.39
1000 eV 154.31 154.31

when this difference falls below a given tolerance ε. We found
that ε = 10−8 in atomic units produced the self-consistent
potential with a fair accuracy and that the procedure converged
in most cases in less than 12 iterations. This part of the
procedure is identical to the one presented previously for the
case of a Maxwell-Boltzmann distribution [3].

We point out that in the CATS and FAC codes the ion-sphere
radius R0 does not typically correspond to a specific point on
the integration mesh. In the Appendix we show that a linear
interpolation is sufficient to address this issue.

IV. RESULTS

A. Maxwell-Boltzmann vs Fermi-Dirac

The difference between Maxwell-Boltzmann and Fermi-
Dirac statistics is illustrated in Fig. 1, where we have plotted
the numerical results for the plasma potential for the case of
H-like neon at 1 eV and Ne = 1024 cm−3. In this case, the
degeneracy factor γ = Neλ

3
th is 331, and the plasma coupling

parameter [30] is � = Z2/(R0kTe) = 1115.9, making the free
electrons degenerate and resulting in curves that do not overlap.

The plasma potential with the Fermi-Dirac distribution is
weaker than the Maxwell-Boltzmann one. Taking into account
the Pauli principle reduces the free-electron concentration for
r � 0 and therefore the screening of the nuclear potential.
Accordingly, one must recall that the TF model, which
accounts for such polarization of the free electrons, leads to
a stronger plasma effect than the UEGM. We can draw an
analogy with the theory of atomic structure, which deals only
with bound electrons. In this latter case, the Pauli principle is
taken into account through the exchange interaction, for which
the contribution to the average energy of a configuration is
negative. Therefore, it seems reasonable to expect the same
influence when Fermi-Dirac statistics is used.

We provide a comparison of shifted energies for H-like
aluminum calculated with the CATS HFS option in Table I;
the HFR results are identical (not shown). We clearly see in

0.001 0.01 0.1 1
r/ R

0

4
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8

V
pl

(r
) 

 (
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u.
)

Fermi-Dirac
Maxwell-Boltzmann

FIG. 1. (Color online) Influence of different free-electron distri-
butions on the self-consistent plasma potential for H-like neon at
Te = 1 eV and Ne = 1024 cm−3. The electron distance to the nucleus
r is expressed in units of the ion-sphere radius R0 = 2.438a0. The
potential is obtained from CATS using the HFS path.

Table I that the binding energies decrease less with temperature
when the Fermi-Dirac distribution is used than when the
Maxwell-Boltzmann distribution is used. As explained above,
this behavior is a consequence of the free-electron degeneracy.

B. Results on energies

In a previous article [2], the energy shift due to the plasma
effect given by FAC has been verified for H-like ions using an
analytical formula. When dealing with more than one bound
electron, further numerical comparison is desirable. Therefore,
to check the results of our calculations we offer a comparison
between FAC and CATS (both HFS and HFR results).

1. Aluminum ions

The most relevant comparison is between FAC and CATS

using the HFS approximation because both rely on a local
potential for the exchange interaction. In Table II, we provide
the energy shift of the binding energies for different ground
states of the aluminum ions. As we can observe, the results
between all the codes are satisfying, especially between FAC

and CATS (HFS). The relative error is very small and reaches
the numerical precision of the codes (a maximum of five digits

TABLE II. Shift of the binding energies due to the plasma potential of Al ground-state ions at an average electron density of Ne = 1024 cm−3

and a temperature kTe = 100 eV with a Fermi-Dirac distribution. The plasma potential shifts the energies upward. Therefore, the binding
energies are reduced by the plasma effect.

Ground Binding energy shift (eV) Relative difference (%)

states FAC CATS (HFS) CATS (HFR) FAC vs HFS FAC vs HFR

1s2 193.330 193.286 193.299 0.025 0.016
1s22s1 173.975 173.895 173.885 0.046 0.052
1s22s2 160.869 160.727 160.744 0.088 0.077
1s22s22p1 148.427 148.460 148.661 0.022 0.158
1s22s22p2 134.120 134.193 134.338 0.055 0.16
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TABLE III. Shift of energies for the 1s2-1snp transitions in Al11+ due to the plasma potential at an average electron density of
Ne = 1023 cm−3 using the UEGM. The results from the work of Sil et al. [20] are taken from their relativistic calculations.

Energy shift (eV) Relative difference (%)

Transitions FAC CATS (HFR) [20] FAC vs CATS (HFR) FAC vs [20]

1s2-1s2p 0.1547 0.1544 0.1605 0.19 3.75
1s2-1s3p 1.0268 1.0262 1.0476 0.06 2.03
1s2-1s4p 3.5485 3.5520 3.6055 0.10 1.61
1s2-1s5p 9.8662 9.8966 9.7058 0.31 1.63

for energies). As expected, the agreement between FAC and
CATS (HFR) is not as good as that between FAC and CATS

(HFS) when increasing the number of bound electrons. This is
because the local-exchange approximation becomes less valid
with an increase in the number of bound electrons. However,
the agreement is still very good.

As a completely independent check, we also compare
our calculations of He-like aluminum with the work of Sil
et al. [20]. In their paper, they present configuration-average
energies for transitions of the type 1s2-1snp using the UEGM.
The main difference from the present work is that they require
the wave function to be zero at the ion-sphere radius. In
Table III, we compare the shift of those transition energies
obtained from FAC and CATS (HFR), using the UEGM, with
their relativistic results. We note that CATS is not a fully
relativistic code, but the HFR option includes the lowest-order
relativistic corrections [8]. Furthermore, for aluminum we do
not expect a strong relativistic effect. We can estimate that
the relativistic corrections are of the order of Z2α2 (∼1/100
for Al ions). The agreement of the plasma shift is good at a
density of Ne = 1023 cm−3 between FAC and CATS. However,
the agreement between our codes (FAC and CATS) and Sil et al.
is not as good, especially for the 1s2-1s2p transition. It is
difficult to find an explanation for this behavior. We do not
believe that the difference in the choice of boundary condition
has any influence on this specific transition. Indeed, at a given
density, the higher values of n are more sensitive to the plasma
effect, which leads to a stronger effect on the wave function.
Thus, the choice of boundary condition for the wave function
is expected to have the strongest effect for higher values of
n. We develop this point in the Sec. IV B 2. Therefore, we
expected that the disagreement in the shift would increase with
an increase in the principal quantum number n, contrary to the
observed trend in Table III. We note that at higher free-electron
densities, i.e., Ne = 1024 cm−3, the relative difference in the
energy shift for the 1s2-1s2p transition between FAC and the
work of Sil et al. is about 4.68%, while the relative difference

between FAC and CATS is only about 0.11%. So the discrepancy
between our shifts and those of Sil et al. increases with
density. Overall, the same quantitative agreement described for
aluminum is found for the other elements (carbon and argon)
that are present in Ref. [20]. Similar trends are also observed
for the transitions in H-like ions reported by Bhattacharyya
et al. [19].

2. Beryllium-like ions

We may also perform another comparison with the work
of Saha and Fritzsche [18], which uses a multiconfiguration
Dirac-Fock (MCDF) calculation within the ion-sphere model.
In their paper, the chosen ion-sphere model is the UEGM.
This model is suitable when the temperature is high enough to
assume a uniform density of free electron. In their ion-sphere
model an additional assumption is made about the wave
functions. They require the wave function to be zero on
the ion sphere. We believe that this assumption, although
of little consequence here, as will be discussed later, is not
suitable because it leads to unphysical behavior. Indeed, the
cancellation of the wave function on R0 is equivalent to an
infinite potential at the ion-sphere radius.

In the work of Saha and Fritzsche [18], the energy shift
caused by the plasma is given for the 2s2-2s2p 3P1 intercom-
bination line and the 2s2-2s2p 1P1 resonance line of beryllium-
like ions for different elements (O, Ne, Si, Ar, Fe, Mo). To lead
the comparison with their work, we have chosen the ion Fe22+.

We first focus our attention on the intercombination line.
As we observe in Table IV the agreement between the three
codes is satisfactory (less than a 1% difference). The agreement
between the codes and the NIST value [31] is of similar
quality. Usually, the plasma effect shifts the transition energies
downward for ions with few electrons, so it is noteworthy
that this case behaves differently. This issue was previously
discussed in [32], in which the terminology blueshift and red-
shift was applied to upward- and downward-shifted energies,

TABLE IV. Unperturbed energy (i.e., for Ne = 0) and plasma energy shift at various electron densities for the 2s2-2s2p 3P1 intercombination
line of Fe22+. Electron densities Ne are in cm−3. The plasma shift is computed using the UEGM. The MCDF calculations are from Saha and
Fritzsche [18]; the NIST data are from Kramida et al. [31].

FAC CATS (HFS) CATS (HFR) MCDF NIST

Unperturbed energy (eV) 47.1104 46.8781 47.1323 47.1181 47.0055
Plasma shift (eV)
Ne = 1023 0.013 31 0.013 83 0.013 81 0.013 27
Ne = 1024 0.1327 0.1347 0.1344 0.1327
Ne = 5×1024 0.6647 0.6712 0.6698 0.6647
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FIG. 2. (Color online) Radial wave functions for 1s22s2 and
1s22s2p 3P1 levels of Fe22+ at a density of Ne = 5×1024 cm−3

calculated with the UEGM. The electron distance to the nucleus r

is expressed in units of the ion-sphere sphere radius R0 = 1.921a0.
The wave functions have been computed from CATS (HFR).

respectively. The results from CATS are slightly different from
FAC and MCDF because it is a semirelativistic code, while the
results of FAC and the MCDF code of Saha and Fritzsche [18]
are very similar, despite the assumption of cancellation of
the wave function on the ion sphere in the latter calculations.
This agreement is good because, at the density presented in
Table IV, the wave functions have converged to zero at a
distance much less than the ion-sphere radius (R0 = 1.921a0).
Therefore, in this case, no difference should be expected
between the two models. In Fig. 2 we have plotted the set
of wave functions generated with CATS (HFR) that were used
to represent the 1s22s2 and 1s22s2p 3P1 levels, which supports
our argument.

Concerning the resonance line, the results shown in Table V
are not as good as those of the intercombination line. The
biggest disagreement is ∼ 3.7% between FAC and MCDF in
most of the cases.

For completeness, when studying elements with lower
values of Z, we note that the discrepancy between FAC and
MCDF increases. We find a 6.7% difference in the plasma
shift for O4+ ions between FAC and MCDF and 0.46% for
Mo38+. We emphasize that this behavior is observed only for
the resonance line. This discrepancy might be explained by
the fact that the wave functions of FAC may not converge to the
nonrelativistic wave functions. This type of nonconvergence

has been observed and discussed by Kim et al. [33] for
MCDF codes. However, we point out that in their paper the
discrepancy is observed for the intercombination line, while
in our case it concerns the resonance line. We do not discuss
this possibility in more detail here since it is beyond the scope
of this article.

3. He-α line for Titanium

In the last case, we compare our work with an experiment
published by Khattak et al. [25] on titanium. This experiment
was performed at the Rutherford Appleton Laboratory using
the terawatt short-pulse laser facility Astra. This work reported
a redshift of the Ti He-α line, which is the highest charge state
measured (the average charge of the plasma being Z∗ � 20).
In that paper the titanium foil was irradiated at optimum focus
and at an offset of 100 µm from the best focus. Therefore,
two He-α line shifts were reported. In the case of the optimum
focus, the reported line shift was 3.4 eV, while in the second
focus the measured line shift was 1.8 eV. The unshifted He-
α line was taken to be at 4749.73 eV in [25], as provided
by Beiersdorfer et al. [34]. A similar value of 4749.85 eV
was given by Chantler et al. [35]. We point out that the FAC

code provides an unshifted value of 4749.34 eV. The unshifted
value of CATS (HFR and HFS) is 4753.48 eV.

In order to evaluate the density and the temperature, two
simulations were carried out in Ref. [25]. The first simulation
was realized by the hydrodynamic code HYADES [36] and post-
processed with the collisional-radiative code SOBOLEV [37].
This simulation concluded that the plasma density exceeded
Ne = 1024 cm−3 with a temperature above 3000 eV in the case
of the optimum focus. In the second focus a temperature of
well below 1000 eV and density lower than Ne = 1024 cm−3

was suggested. The second simulation was performed with
the spectral simulation code MARIA [38]. For the optimum
focus, the prediction of MARIA is close to the first simulation.
For the second focus, the estimated range of temperature is
500–1000 eV, and the electron density is closer to 1023 cm−3

than 1024 cm−3.
From our numerical simulation with FAC using the ion-

sphere model (Fermi-Dirac distribution), a line shift of
3.4 eV for the He-α is obtained for an electron density of
4.2×1024 cm−3 with an electron temperature of 3000 eV.
The density and temperature used in our model are in good
agreement with those mentioned in the paper of Khattak
et al. [25]. For the second focus, a line shift of 1.8 eV is found
at an electron density of Ne = 1024 cm−3 with an electron
temperature of 587 eV. The temperature falls within the range

TABLE V. Unperturbed energy (i.e., for Ne = 0) and plasma energy shift at various electron densities for the 2s2-2s2p 1P1 resonance line
of Fe22+. See Table IV for details.

FAC CATS (HFS) CATS (HFR) MCDF NIST

Unperturbed energy (eV) 94.8552 92.4145 92.5428 93.848 93.2869
Plasma shift (eV)
Ne = 1023 0.011 93 0.012 56 0.012 54 0.012 39
Ne = 1024 0.119 41 0.121 85 0.121 61 0.123 86
Ne = 5×1024 0.597 70 0.606 56 0.605 43 0.620 77
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predicted by the code MARIA. However, our density is higher
than the one obtained with the code MARIA [38].

Concerning CATS (both HFR and HFS), we obtain very
similar results compared to FAC. A shift of 3.4 eV for the He-α
line is obtained for an electron density of Ne = 4.1×1024 cm−3

with an electron temperature of 3000 eV. For the second focus
the density and temperature used with CATS are exactly the
same as the ones obtained with FAC.

V. SUMMARY

Using a Thomas-Fermi description of the free-electron den-
sity, we have been able to describe plasma environment effects
within the Hartree-Fock and Hartree-Fock-Slater options of
the CATS code and within the parametric potential FAC code.
Calculations of the ground-state shift for the Al XII–Al VIII

ions have been performed with both codes and fairly agree.
Within the uniform electron gas model, the results from CATS

in the HF and HFS forms and FAC codes fairly agree with one
another and also agree with the MCDF values from Saha and
Fritzsche [18]. Finally, a comparison with experimental data
on titanium at the Astra terawatt laser facility [25] has led to
predictions of electron density and temperature in agreement
with another interpretation using the MARIA code [38]. In
the near future, we intend to apply the present ion-sphere
formalism to collisional-radiative modeling.
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APPENDIX: SENSITIVITY OF THE NUMERICAL GRID

We have implemented a method to modify the radial grid
of CATS so that a point in the grid will correspond to R0. By
default, the grid spacing of CATS is


r = αcZ. (A1)
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FIG. 3. (Color online) Difference between the plasma potential
obtained with the linear interpolation method and the case with R0

on the grid. The density used is Ne = 5.1829×1023 cm−3, and the
temperature kTe = 100 eV. The electron distance to the nucleus r is
expressed in units of the ion-sphere radius R0 = 3.2457a0.

where α is a fixed numerical with a default value of 0.0025.
The parameter cZ is given by

cZ = 1

4

(
2Z

9π2

)−1/3

, (A2)

where Z is the nuclear charge. When the ion-sphere potential
is taken into account, the variable α is adapted so that the
grid contains a point that corresponds to R0. If the grid does
not contain R0, the missing contribution associated with the
integrand between the grid point that immediately precedes R0

and R0 itself is obtained by linearly interpolating the integrand
between the two grid points that straddle R0. In most cases, the
interpolation method that uses the default grid is sufficiently
accurate. In Fig. 3 we plot the difference between the plasma
potential obtained with the linear interpolation method and the
case with R0 on the grid. In Fig. 3 we have selected the worst-
case scenario, where the ion-sphere radius is in the middle of
two points of the default grid. As can be seen, the difference
between the two cases is fairly small.

This small change in the plasma potential has a very small
impact on the level energy. For instance, in the case of the 1s2

ground state of He-like Al, the relative error in the energy is
1.344×10−6.
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