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It is an established fact that entanglement is a resource. Sharing an entangled state leads to nonlocal correlations
and to violations of Bell inequalities. Such nonlocal correlations illustrate the advantage of quantum resources
over classical resources. In this paper, we quantitatively study Bell inequalities with 2 × n inputs. As found
in Gisin et al. [Int. J. Quantum. Inform. 05, 525 (2007)], quantum mechanical correlations cannot reach the
algebraic bound for such inequalities. Here we uncover the heart of this effect, which we call the fraction of
determinism. We show that any quantum statistics with two parties and 2 × n inputs exhibit a nonzero fraction of
determinism, and we supply a quantitative bound for it. We then apply it to provide an explicit universal upper
bound for Bell inequalities with 2 × n inputs. As our main mathematical tool, we introduce and prove a reverse
triangle inequality, stating in a quantitative way that if some states are far away from a given state, then their
mixture is also. The inequality is crucial in deriving the lower bound for the fraction of determinism, but is also
of interest on its own.
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I. INTRODUCTION

Since Bell’s paper [1], entanglement has been studied
and explored in depth. Entanglement has been used in many
information-processing applications in which it either yields
an advantage over the classical setting, e.g., in communication
complexity [2], or where a classical counterpart simply doesn’t
exist, e.g., in quantum key distribution (QKD) [3], its device
independent variant (DIQKD) [4], teleportation, superdense
coding [5], or pseudotelepathy (PT) [6,7].

Although quantum theory allows for violations of Bell
inequalities, in certain cases the violations cannot reach their
maximum algebraic value. Tsirelson was the first to find upper
bounds on the Bell values for quantum theory [8] and to relate
them to Grothendieck’s inequality. A significant amount of
work has been done to explain why quantum mechanics does
not lead to “algebraic” violations of Bell inequalities [9,10].
In Ref. [11], Wehner and Oppenheim argued that the trade-off
between the so-called steerability and uncertainty determines
how nonlocal a theory is. In Ref. [12], Cleve et al. gave an
upper bound for the winning probability for XOR games in the
quantum setting; their bound depends on the classical winning
probability and Grothendieck’s constant. (Note that the XOR
game is a so-called nonlocal game, and Bell inequalities can
be alternatively formulated as classical bounds on winning
probabilities of nonlocal games [13,14].)

The approach to bound quantum violations via a
Grothendieck-type constant KG is now quite common and
reasonably well understood. It leads to estimates for the Bell
values β that are of the form βqm � KGβloc [15]. In this work
we develop a different strategy, where the quantum Bell value
of a given inequality depends on the difference between its
optimal algebraic value βalg and its optimal classical value
βloc.

Specifically, we study quantitatively Bell inequalities with
2 × n inputs and give a universal bound on quantum Bell
values of these inequalities. To find such a bound for 2 × n

Bell inequalities, we introduce the notion of the fraction of
determinism (FOD) and show that the FOD is nonzero and
depends only on the number of outcomes of each party (but
not on n nor on the dimension of the underlying Hilbert space).
Next, we ascertain that the presence of the FOD in quantum
theory limits quantum Bell values. Our paper is inspired by
Gisin et al. [16], where it is shown that there are some Bell
inequalities (two-party pseudotelepathy games), for which
quantum resources achieve the algebraic violation. They show
that to achieve such violations, each party needs to have at
least three input settings. In other words, there is no 2 × n

Bell inequality for which quantum theory attains the algebraic
violation. Here we uncover the heart of this effect—the fraction
of determinism—and are able to give a quantitative bound
for it.

While looking for a lower bound for the FOD, we proved
a fundamental property of quantum states which is interesting
on its own. Namely, if ρ1 and ρ2 are far from σ , then any
convex mixture of them is also far from σ . More precisely,
if �1 = ‖ρ1 − σ‖ � 2 − ε and �2 = ‖ρ2 − σ‖ � 2 − ε for
some ε � 0, then, for all p ∈ [0,1],

� = ‖pρ1 + (1 − p)ρ2 − σ‖1 � 2 − O(
√

ε), (1)

where ‖ρ‖ def= Tr
√

ρ†ρ is the trace norm. Since the inequal-
ity (1) bounds the trace distance between σ and the mixture
ρ = pρ1 + (1 − p)ρ2 from below (see Fig. 1), we refer to it as
a “reverse triangle inequality” (RTI). Interestingly, it turns out
that for classical states (i.e., probability densities, which can
be represented as commuting density matrices) one can find
the lower bound of � with the defect term linear in ε, while
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FIG. 1. (Color online) Pictorial representation of different
bounds of ‖σ − ρ‖. The triangle inequality gives an upper bound
2 − ε, whereas reverse triangle inequalities give lower bounds
2 − 2

√
2ε for general quantum states and 2 − 2ε for classical (or

commuting) states.

for noncommuting quantum states one cannot, in general, have
dependence better than O(

√
ε).

The second fundamental property which we use here
follows from nonsignalling—impossibility of instantaneous
communication. Namely, by performing a measurement on one
site of the entangled state, one can create only those ensembles
which give rise to the same density matrix—the reduced state
of the entangled state. This implies that if we consider two
such ensembles, there must be at least two elements (one from
one ensemble, and the other from the second ensemble) that
are not perfectly distinguishable. It has been apparently not
studied to what extent they have to be indistinguishable. Here,
by using the reverse triangle inequality, we are able to give a
robust quantitative bound (Corollary 1), which is independent
of the dimension of the underlying Hilbert space. We shall use
it further to give a lower bound for the FOD, which in turn will
allow us to upper-bound quantum violations for all 2 × n Bell
inequalities.

The paper is organized as follows. In Sec. II, we introduce
necessary definitions and the role of the FOD. In Secs. III
and IV, we present, respectively, a summary of our main results
and sketches of their derivations. The special case when Bob
has two inputs with binary outcomes is analyzed in Sec. V.
For this case, we have explicitly calculated bounds for the
FOD and for the classical fraction. Finally, we conclude our
work in Sec. VII. Details of most proofs are relegated to the
Appendixes.

II. PRELIMINARIES

A. Definitions

Box. Consider two distant parties, Alice and Bob (A
and B), sharing a physical system. Each of them perform
measurements labeled as x ∈ {x1,...xnA

} and y ∈ {y1,...ynB
},

respectively; we will refer to such a setup as having “nA × nB

input settings” or “measurement settings,” or simply “nA × nB

inputs.” The outcomes of Alice and Bob are labeled as a

and b, respectively. A box is defined as a family of joint
probability distributions p(a,b|x,y), i.e., P = {p(a,b|x,y)}.
By a nonsignalling box (NS box) we mean a box which satisfies

the following conditions:

p(b|y) =
|x|∑

a=1

p(a,b|x,y)

=
|x ′ |∑
a=1

p(a,b|x ′,y) ∀b,x,x ′ and y,

(2)

p(a|x) =
|y|∑

b=1

p(a,b|x,y)

=
|y ′ |∑
b=1

p(a,b|x,y ′) ∀a,x,y ′ and y,

where by |z| we denote number of outcomes an observable z

takes. A local box (or classical box) is defined as a box where
joint probabilities can be expressed as

p(a,b|x,y) =
∫

�

q(λ)p(a|x,λ)p(b|y,λ)dλ, (3)

where the hidden variable λ is distributed according to some
probability density q(λ). Such boxes satisfy, by definition
(see below), every Bell inequality. We say that a box P is
a quantum box (QM box) if the conditional probabilities can
be realized as p(a,b|x,y) = Tr(Mx

a ⊗ N
y

b ρAB), where ρAB is
a shared quantum state between parties A and B, and Mx

a

and N
y

b are measurements for A and B, respectively (that is,
for each inputs x and y, {Mx

a }|x|
a=1 and {Ny

b }|y|
b=1 are POVMs,

i.e., families of positive operators satisfying
∑

a Mx
a = I and∑

b N
y

b = I ). In this work, we only consider NS boxes. Notice
that since the nonsignalling conditions are linear constraints,
they define a polytope (NS polytope). Local boxes and QM
boxes belong to this polytope.

Bell inequalities. Let S = {sx,y

a,b } be a real vector and P =
{p(a,b|x,y)} be a box. The condition,

S·P :=
∑

x,y,a,b

s
x,y

a,b p(a,b|x,y) � β, (4)

is called a Bell inequality if it is satisfied by any local box
P [13].

Fraction of determinism (FOD). Let P be a nonsignalling
box. Consider representations of P as a convex combination
P = (1 − c)X + cD, where X is an NS box and D is a
deterministic box (i.e., a box, for which all the conditional
probabilities are either 0 or 1). The fraction of determinism of
P is then defined as the maximal possible weight of D in such
representations, i.e.,

FOD := max
D,X

{c | P = (1 − c)X + cD}. (5)

Classical fraction (CF). For a nonsignalling box P ,
we similarly consider representations of P as a convex
combination P = (1 − ∑

i ci)X + ∑
i ciDi , where X is an NS

box and Di’s are deterministic boxes. The classical fraction
of P is then defined as the maximal combined weight of
deterministic boxes in decompositions of the above form, i.e.,

CF := max
{Di },X

{∑
i

ci |P =
(

1 −
∑

i

ci

)
X +

∑
i

ciDi

}
. (6)
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Notice that the set of local boxes is a polytope (local polytope),
whose vertices are the deterministic boxes. Equivalently, local
boxes are exactly convex combinations of deterministic boxes.
Consequently, an alternative definition of CF is via a formula
analogous to (5), with the admissible decompositions being
now P = (1 − c)X + cL, where L is any local (or classical)
box. A similar quantity was introduced in Ref. [17], where
they call it “local fraction.”

Note that the FOD, the CF, and the cost of nonlocality
cnl [18] satisfy the following relations:

FOD � CF = 1 − cnl. (7)

While the FOD may be strictly smaller than the CF, it is easy
to see that if the CF is nonzero, so is the FOD.

B. The role of the fraction of determinism

In the classical theory, the FOD is never zero. This
is because—as noted above—every local box is a convex
combination of deterministic boxes and some coefficients in
that representation must be clearly nonzero. On the other hand,
PR boxes [9] are completely noiseless and have zero fraction of
determinism. This follows from the fact that they are vertices of
the NS polytope and hence cannot be expressed as a nontrivial
mixture of NS boxes; since they are not local themselves, their
classical fraction is zero and, a fortiori, their FOD is also zero.

In quantum theory, the set of boxes is larger than the local
polytope. In particular, there exist quantum boxes with zero
fraction of determinism [16]. However, as will be explained
in the next section, this phenomenon cannot materialize for
quantum boxes with 2 × n measurement settings. In turn, a
nonzero FOD for a particular box, or for a class of boxes, limits
the corresponding Bell values β and, in particular, prevents an
algebraic violation. Indeed, for a given S, let

βdet = βS
det := max{S·D | D is a deterministic box}, (8)

and

βalg = βS
alg := max{S·X | X is an NS box}, (9)

be, respectively, the optimal deterministic and algebraic β

values for the inequality associated with S. Note that in (8) we
would obtain the same value if we optimized over all classical
boxes; this is because a linear function on a compact convex
set (the local polytope) attains its maximum on extreme points
(the deterministic boxes). In other words, βdet = βloc; in what
follows the two quantities will be used interchangeably.

Having defined the needed concepts, we present next a
crucial observation.

Observation 1: Let P be an NS box such that c =
FOD(P ) > 0. Then any Bell expression β(P ) := S·P is upper
bounded by

β(P ) = S·P � βalg − c(βalg − βdet). (10)

Proof. The proof is straightforward. We can decompose box
P as P = cD + (1 − c)X, where D is a deterministic box and
X is an NS box. Therefore,

S·P = c S·D + (1 − c)S·X � c βdet + (1 − c) βalg. (11)

�

This observation implies that if there is any violation at
all (i.e., if βalg > βdet), then the β value corresponding to P

is strictly smaller than βalg. Note that essentially the same
argument gives an identical bound with c = CF(P ).

III. SUMMARY OF THE RESULTS

In this section we give a universal lower bound on the FOD
for the 2 × n inputs quantum scenario, depending only on the
number of outcomes of both parties. As explained above, such
an estimate implies an upper bound for all corresponding Bell
inequalities in terms of the classical and the algebraic β values
of each inequality. A summary of our main results is as follows.

Theorem 1: For an arbitrary QM box with nB = 2 and
nA = n, i.e., 2 × n inputs, the fraction of determinism is
bounded as follows:

FOD � 71 − 17
√

17

16k(l − 1)l1 l2
≈ 0.0567

k(l − 1)l1 l2
, (12)

where k = max{|x1|,...|xn|}, l1 = |y1|, l2 = |y2|, and l =
max{l1,l2}.

To illustrate an application of Theorem 1, let us consider the
(essentially simplest possible) instance of 2 × 2 input settings
with binary outcomes, i.e., n = k = l = 2. In that case, the
bound (12) becomes

FOD � 7.08753 × 10−3. (13)

Using the estimate (13), we can find an upper bound on
quantum value of the CHSH inequality [13] which is

βCHSH
qm � 4 − 7.08753 × 10−3(4 − 2) � 3.98583, (14)

where we used (10) and the facts that βalg = 4 (attained on a
PR box) and βdet = 2.

In Sec. V, we will derive estimates for the FOD and the
CF in the particular case of 2 × n inputs with 2 × k outputs
without using our general theorem. When specified to k = 2,
the resulting bounds are

FOD � 0.10961

4
and CF � 0.11226

4
. (15)

Using these estimates, one can deduce from (10) bounds for
the CHSH scenario which are slightly better than (14), namely

βCHSH
qm � 4 − 0.10961 ∗ 2

4
� 3.94519, (16)

when using the FOD, and

βCHSH
qm � 4 − 0.11226 ∗ 2

4
� 3.94386, (17)

when using the CF. We realize that these are still weak bounds,
but the importance of this study lies in its generality: These
bounds are valid for any (appropriately scaled) Bell inequality
with 2 × n inputs.

To prove Theorem 1 we need the following fundamental
property of quantum states. We state it here as it may be of
independent interest.

Theorem 2 (reverse triangle inequality): Let ε � 0 and as-
sume that the states ρi,σ satisfy

‖ρi − σ‖ � 2 − ε (18)

for i = 1, . . . ,l. Then, for any probability distribution {pi}li=1,

032329-3



P. JOSHI et al. PHYSICAL REVIEW A 92, 032329 (2015)

(1) for any states ρi , σ satisfying (18)∥∥∥∥∥
l∑

i=1

piρi − σ

∥∥∥∥∥ � 2 − 2
√

lε, (19)

(2) for commuting states ρi , σ satisfying (18)∥∥∥∥∥
l∑

i=1

piρi − σ

∥∥∥∥∥ � 2 − lε, (20)

(3) there exist three noncommuting states ρ1,ρ2, and σ

satisfying (18) such that∥∥∥ρ1 + ρ2

2
− σ

∥∥∥ � 2 −
√

2ε. (21)

Remark. The third assertion says that when l = 2, 2 − √
2ε

is the best possible bound one can hope to achieve for general
states. Hence, one cannot have better lower bound in (19) than
2 − O(

√
ε).

In the following section we shall sketch a derivation of
Theorem 1 from Theorem 2. The proof of Theorem 2 and of
its generalization, Proposition 2, is given in Appendix A.

IV. FRACTION OF DETERMINISM IN QM

Our main objective in this section is to prove Theorem 1. To
do that, i.e., to lower-bound the FOD of a given box, essentially
requires one to look for deterministic structures in the box.
Among all possible deterministic structures, picking the one
with the maximal weight gives the value of the FOD of the
box. As a step in that direction, we note first a simple fact
following directly from the definition.

Observation 2: Consider a box P = {p(a,b|x,y)} with
inputs {x1, . . . ,xnA

} on Alice’s side and {y1, . . . ,ynB
} on Bob’s

side. Then the following two conditions are equivalent.
(1) We can find outcomes a(1), . . . ,a(nA), b(1), . . . ,b(nB )

such that

∀s,t p(a(s),b(t)|xs,yt ) � c. (22)

(2) FOD(P ) � c .

This is illustrated pictorially in Fig. 2(a) (when nB = |y1| =
|y2| = 2). Although this is an important observation, it does
not easily allow calculating explicit lower bounds for the FOD.
Therefore, we reformulate estimating the FOD of a QM box
as an optimization problem as follows.

Proposition 1: Consider a QM box with two inputs {y1,y2}
on Bob’s side and n inputs {x1, . . . ,xn} on Alice’s side.
Then (22) is satisfied with c = c0, where

c0 = inf
ξ,ξ ′

max
i,j

min
x

max
a

min
{
piTr

(
Mx

a ρi

)
,qj Tr

(
Mx

a σj

)}
. (23)

The infimum is taken here over all ensembles ξ = {(pi,ρi)}|y1|
i=1,

ξ ′ = {(qj ,σj )}|y2|
j=1 (where {pi} and {qj } are probability distri-

butions, and ρi and σj are states) satisfying∑
i

piρi =
∑

j

qjσj , (24)

and the first minimum over all inputs x ∈ {x1,...,xn} (with
{Mx

a } the corresponding POVM measurements).
Proof. The argument depends on showing that c0 defined

via (23) works as a bound in (22), which then allows us to
appeal to Observation 2.

By definition, a quantum box is realized via POVMs {Mx
a }

(with x ∈ {x1, . . . ,xn}) on Alice’s side, two POVMs {Ny1
b ,N

y2
b′ }

on Bob’s side, and a shared quantum state ρAB . Depending
on Bob’s measurement choice (y1 or y2), an ensemble ξ0 =
{p(bi |y1),ρi}|y1|

i=1 or ξ ′
0 = {p(b′

j |y2),σj }|y2|
j=1 is created at Alice’s

site, where p(bi |y1) =: pi and p(b′
j |y2) =: qj are the marginal

conditional probabilities. In terms of these marginals, one can
express joint probabilities as follows:

p(a,bi |xy1) = piTr
(
Mx

a ρi

)
,

(25)
p(a,b′

j |xy2) = qj Tr
(
Mx

a σj

)
.

Note that these ensembles satisfy

TrB(ρAB) =
∑

i

p(bi |y1)ρi =
∑

j

p(b′
j |y2)σj , (26)

so that the condition in (24) holds. Now, for a fixed pair of
indices (i,j ) and an input x, pick an outcome a = a

(x)
ij such

Alice
y1 y2

0 1 0 1
(a)

x1

.

.

.
xn

a(1)

.

.

.

.

.
.

a(2)

.

.
a(s)

.
a(n)

x2

c c

D

Alice
y1 y2

0 1 0 1

x1

.

.

.
xn

a(1)

.

.

.

.
.

a(2)

.

.
a(s)

.

.
a(n)

x2

c c

c c

c c

(b)

FIG. 2. (Color online) Illustration of FOD. (a) The outcomes a(1), . . . ,a(n) satisfying (22). (These are the optimal outcomes referred to in
the proof of Propostion 5.) Note that here b(1) = 0 = b(2). (b) Deterministic box D: the rectangle is a deterministic box appearing with weight
c in the decomposition of P .
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that min{p(abi |xy1),p(ab′
j |xy2)} is maximal. Essentially, by

fixing a pair of indices (i,j ), we fix “one side” of (the support
of) a deterministic box. The optimal outputs {a(x)

ij } define “the
other side” [see Fig. 2(a)] and the smallest probability gives
the weight of that box. Optimizing over all pairs (i,j ) leads
to the choices of a(s) = a

(xs )
i0j0

, b(1) = bi0 , and b(2) = b′
j0

that
satisfy (22) with the constant given by (23), as needed. �

In order to be able to apply Proposition 1, we need to
supply an appropriate lower bound on the parameter c0 defined
by (23). To that end, let us analyze the optimization problem
implicit in (23). For given ξ,ξ ′,{Mx

a } and the selected i,j , it is
a priori conceivable that the two densities (25) are disjointly
supported (when considered as functions of a), and so any
choice of a will lead to the minimum of the two probabilities
being 0. Another way to describe such a situation is that the
POVM {Mx

a } can perfectly distinguish ρi from σj . However,
it is easy to see that this can only happen if the states ρi

and σj “live” on orthogonal subspaces of the underlying
Hilbert space or, equivalently, if ‖ρi − σj‖ = 2. Further, if this
unfortunate state of affairs persists for every pair i,j , it follows
that the mixtures

∑
i piρi and

∑
j qjσj themselves “live” on

orthogonal subspaces and hence can be perfectly distinguished
by {Mx

a }, which is of course impossible since they coincide
by (24). This shows that there is a choice of i (=i0),j (=j0),
and then of a (=a

xs

i0j0
), such that the objective function in the

optimization problem (23) is strictly positive. Note, however,
that these considerations do not yield yet any explicit lower
bound nor any hint of uniformity over ξ,ξ ′, and x.

A version of the above reasoning is the gist of the argument
in Ref. [16]. In what follows we shall provide quantitative
statements elaborating on the points made above. The first
lemma asserts that if ‖ρ − σ‖ is noticeably smaller than 2,
then there is a limit on how well a POVM can distinguish ρ

and σ . More precisely, we have the following.
Lemma 1: Let ε � 0 and suppose that ‖ρ − σ‖ � 2 − ε.

Then, for any POVM {Ma}ka=1, there exists an outcome a0

such that

Tr
(
Ma0ρ

)
� ε

2k
and Tr

(
Ma0σ

)
� ε

2k
. (27)

The proof is—unsurprisingly—based on the Helstrom
formula [19], which relates distinguishability of quantum
states via POVMs to their trace distance. The details are
presented in Appendix B. The importance of the Lemma for
our results lies in the fact that it uncovers a deterministic
structure in every quantum box with 2 × n inputs.

Using Lemma 1, we can replace marginal conditional
probabilities Tr(Mx

a ρi) and Tr(Mx
a σj ) in (23) by ε (depending

on i and j ). Having done this, we can get rid of the optimization
over inputs and outputs of Alice, i.e., over a and over all
POVMs {Mx

a }. As a consequence, we have the following.
Observation 3: The quantity c0 of (23) satisfies c0 � c1

with

c1 = 1

2k
inf
ξ,ξ ′

max
i,j

(
(2 − ‖ρi − σj‖) min{pi,qj }

)
, (28)

where the infimum is taken over all ensembles ξ =
{(pi,ρi)}|y1|

i=1, ξ ′ = {(qj ,σj )}|y2|
j=1 satisfying∑

i

piρi =
∑

j

qjσj . (29)

Proof. Lemma 1 tells us that, for given ξ,ξ ′,i,j , and x,

max
a

min
{
piTr

(
Mx

a ρi

)
,qj Tr

(
Mx

a σj

)}
� min{pi,qj }εij

2k
, (30)

where εij = 2 − ‖ρi − σj‖. To conclude that c0 � c1, it
remains to notice that the left-hand side and the right-hand
side of (30) represent the expressions appearing, respectively,
in (23) and (28) (the definitions of c0 and c1), and that the
right-hand side doesn’t depend on x. �

Having simplified the FOD, we are ready for the crucial
step, which involves quantifying the limitations on the trace
distances ‖ρi − σj‖. Our aim is to estimate those distances
in terms of the number of Bob’s outcomes. Interestingly, this
leads to an important independent result, which is a purely
geometric property of quantum states, and which is stated as
Theorem 2. For our purposes, we need a slight generalization
of the first statement of the theorem.

Proposition 2: Assume that ε � 0 and that the states ρi,σj

satisfy ‖ρi − σj‖ � 2 − ε for all i ∈ {1,...,l1} and all j ∈
{1,...,l2}. Then, for any probability distributions {pi}l1i=1 and
{qj }l2j=1, ∥∥∥∥∥∥

l1∑
i=1

piρi −
l2∑

j=1

qjσj

∥∥∥∥∥∥ � 2 − 2
√

l1l2ε. (31)

Proposition 2 follows by essentially the same argument as
Theorem 2 (see Appendix A). Alternatively, a statement with
a little worse dependence on ε,l1,l2 in (31) can be formally
derived from Theorem 2 by applying it twice.

For facility of application, it is more convenient to restate
Proposition 2 in the contrapositive form. Note that, by
continuity, it doesn’t matter whether we state the results with
strict or nonstrict inequalities, as long as we are consistent.

Corollary 1: Let θ ∈ [0,2] and assume that two ensembles
{(pi,ρi)}l1i=1, {(qj ,σj )}l2j=1 satisfy∥∥∥∥∥∥

∑
i

piρi −
∑

j

qjσj

∥∥∥∥∥∥ � θ. (32)

Then there exist i0 and j0 such that

‖ρi0 − σj0‖ � 2 − ε, (33)

where

ε = 1

l1l2

(
2 − θ

2

)2

. (34)

We are now almost done: Choosing i = i0 and j = j0

in (28) yields a nonzero lower bound for c1, hence for c0.
However, it may still happen that, for the chosen pair of indices,
the probabilities pi0 , qj0 are very small. To guard against that
risk, we truncate the ensembles so that the minimal probability
is bounded away from zero. Such smaller ensembles do not
give rise to the same density matrix. However, their density
matrices will be still close, provided we did not truncate too
much. Here is a precise quantitative statement to that effect.

Lemma 2: Let E1 = {pi,ρi}l1i=1, E2 = {qj ,σj }l2j=1 be two
ensembles which give rise to the same density matrix. Given
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l̃1 � l1 and l̃2 � l2, we set

δ1 = 1 −
l̃1∑

i=1

pi, δ2 = 1 −
l̃2∑

j=1

qj , (35)

and define new ensembles,

Ẽ1 = {p̃i ,ρi}l̃1i=1, Ẽ2 = {q̃j ,σj }l̃2j=1, (36)

where p̃i = pi/(1 − δ1) and q̃j = qj/(1 − δ2). Then the en-
sembles Ẽ1,Ẽ2 satisfy∥∥∥∥∥∥

l̃1∑
i=1

p̃iρi −
l̃2∑

j=1

q̃j σj

∥∥∥∥∥∥ � 2 max{δ1,δ2}
1 − min{δ1,δ2} . (37)

Thus we can use the new ensembles (36) to show that there
exist a pair of states ρi0 and σj0 with ‖ρi0 − σj0‖ � 2 − ε,
and that at the same time the weights of the states satisfy
pi0 � pl̃1

, qj0 � ql̃2
. By adjusting l̃1 and l̃2 properly, we can

simultaneously secure bounds on both the weights and the
norm, and complete the proof of our main result.

Proof of Theorem 1. We start by recalling Observation 2,
which states that FOD � c if c satisfies (22). In Proposition 1,
we showed that a particular c = c0 satisfies (22), namely

c0 = inf
ξ,ξ ′

max
i,j

min
x

max
a

min
{
piTr

(
Mx

a ρi

)
,qj Tr

(
Mx

a σj

)}
. (38)

To simplify the optimization problem implicit in (38), another
lower bound for the FOD (c1 � c0) was obtained in Observa-
tion 3 by using Lemma 1, to wit,

c1 = 1

2k
inf
ξ,ξ ′

max
i,j

(
(2 − ‖ρi − σj‖) min{pi,qj }

)
, (39)

We now want to appeal to Corollary 1. However, the proba-
bilities pi and qj may a priori be very small for the chosen
pair of indices (i,j ) = (i0,j0). Hence, we first need to truncate
the ensembles appropriately following the scheme outlined
in Lemma 2. Assume that {pi} and {qj } are arranged in the
nonincreasing order and let μ � 2 be a parameter. Choose
the largest l̃1 and l̃2 such that pl̃1

� 1
(l−1)μ and ql̃2

� 1
(l−1)μ ,

where l = max{l1,l2}. (Note that l̃1 and l̃2 exist because of our
assumption μ � 2.) Then

δ1 =
l1∑

i=l̃1+1

pi < (l − 1) × 1

(l − 1)μ
= 1

μ
, (40)

and, similarly,

δ2 <
1

μ
. (41)

Lemma 2 yields now the following estimate on the truncated
ensemble:∥∥∥∥∥∥

l̃1∑
i=1

p̃iρi −
l̃2∑

j=1

q̃j σj

∥∥∥∥∥∥ <
2/μ

1 − 1/μ
= 2

μ − 1
. (42)

Consequently, it follows from Corollary 1 that there are indices
i0,j0 such that ∥∥ρi0 − σj0

∥∥ < 2 − ε, (43)

where

ε = 1

l1l2

(
μ − 2

μ − 1

)2

. (44)

Next, taking into account that for the ensembles in question,

pi0 � 1

(l − 1)μ
and qj0 � 1

(l − 1)μ
, (45)

Eq. (39) yields

c0 � c1 � 1

2k

ε

(l − 1)μ
. (46)

Finally, substituting the value of ε given by (44) into (46) and
recalling that μ � 2 was arbitrary, we are led to

FOD � 1

2k(l − 1)l1 l2
× max

μ�2

1

μ

(
μ − 2

μ − 1

)2

. (47)

To complete the proof, it remains to observe that the function

f (μ) = 1
μ

(μ−2
μ−1 )

2
attains its maximum—equal to 71−17

√
17

8 – at

μ0 = 5+√
17

2 . �
In the next section we will present a refinement of the above

argument when the party that has two allowed inputs has only
binary outcomes. For that case, we not only explicitly calculate
a (better) lower bound for the FOD, but we also find a lower
bound for the CF which is slightly larger than that for the FOD.

V. FOD AND CF FOR A SIMPLE BOB

We devote this section to finding an upper bound for
quantum Bell values in the particular case where Bob has two
inputs and two outputs, while Alice has n inputs and k outputs.
We will argue along the same lines as in the proof of Theorem 1.
However, rather than appealing directly to the conclusion of
the theorem, we will use the simplicity of our setting to further
optimize some steps in the argument, particularly the one
involving truncations. Again, we are looking for structures
resembling deterministic boxes within a quantum box. The
weights of such deterministic boxes yield lower bounds the
FOD and the CF of the box. The details are explained below
(and in Appendix C).

Since Bob is the party with two inputs and two outputs, he
can create ensembles {pi,ρi}1

i=0 or {qj ,σj }1
j=0 at Alice’s site

by making, respectively, measurement y1 or y2 on his part of
the shared quantum state. Lemma 1 asserts that for all pairs of
ρi and σj , and for all POVMs {Mx

a } we have

∃ a0,a1,a2,a3 such that

Tr
(
Mx

a0
ρ0
)

� ε00/2k, and Tr
(
Mx

a0
σ0) � ε00/2k

Tr
(
Mx

a1
ρ0
)

� ε01/2k, and Tr
(
Mx

a1
σ1
)

� ε01/2k (48)

Tr
(
Mx

a2
ρ1
)

� ε10/2k, and Tr
(
Mx

a2
σ0
)

� ε10/2k

Tr
(
Mx

a3
ρ1
)

� ε11/2k, and Tr
(
Mx

a3
σ1
)

� ε11/2k,

where εij = 2 − ‖ρi − σj‖. (Note that the outcomes ai depend
on the input setting x.) This means that if εij > 0 and when
Bob obtains outcomes (b,b′) = (bi,b

′
j ) for inputs (y1,y2), then

for any POVM of Alice there exists at least one outcome on
her side such that once she obtains it, she cannot tell apart
measurement choices of Bob with certainty (i.e., she cannot
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determine whether Bob chose y1 or y2 to create the ensemble).
Let us call such outcome of Alice a confusing outcome. For
example, in the first pair of inequalities in (48), if ε00 > 0,
then the outcome a0 of the POVM does not differentiate with
certainty between ρ0 and σ0. There are four pairs (b,b′), hence
there are four potential confusing outcomes corresponding to
each of these four cases.

Consider now the particular case when Bob’s outcomes are
0 for measurement y1 and also 0 for measurement y2. Let Alice
choose input setting x and let us say that, for this setting (and
for the above Bob’s pair of outcomes), a0 is her confusing
outcome. Using Eq. (48), we have Tr(Mx

a0
ρ0) � ε00/2k and

Tr(Mx
a0

σ0) � ε00/2k. Indeed, this is true for any input choice
of Alice and a0 depends on the input. Now, note that the
joint probabilities from the quantum box can be expressed as
follows:

p(a0,0|x,y1) = p0Tr
(
Mx

a0
ρ0
)
,

(49)
p(a0,0|x,y1) = q0Tr

(
Mx

a0
σ0
)
,

where p0 and q0 denote the marginal probabilities of Bob’s
outcome 0 while measuring, respectively, y1 and y2. Thus we
obtain that they both can be bounded as follows:

p(a0,0|x,y1) � c00, p(a0,0|x,y1) � c00, (50)

with

c00 := 1

2k
min{p0ε00,q0ε00}. (51)

By this construction, we can create a deterministic box (say
D00) with fraction equal to c00. In other words, every quantum
box PQ satisfies the relation PQ = (1 − c00)X + c00D00.
In such a way, we can create four different decomposi-
tions of PQ = (1 − cij )X + cijDij using deterministic boxes
({Dij }1

i,j=0) corresponding to each of the four outcome pairs
(b,b′) of Bob. Using these decompositions and the definition
of FOD we get

FOD � 1

2k
max { min{p0ε00,q0ε00}, min{p1ε11,q1ε11},
min{p0ε01,q1ε01}, min{p1ε10,q0ε10}}. (52)

Notice that the obtained bound still depends on the shared state
and on Bob’s measurements (through the ensembles {pi,ρi}
and {qj ,σj }). Later on (Appendix C) we will optimize over the
ensembles, thus obtaining a universal bound for the FOD of
any quantum box with 2 × n inputs and 2 × k outcomes for
Bob and Alice, respectively, which is as follows:

FOD � 0.10961

2k
. (53)

Using this value of FOD in (10), we can find the following up-
per bound on quantum Bell values for the CHSH inequalities,

βCHSH
qm � 4 − 0.10961 ∗ 2

4
≈ 3.94519. (54)

Next, we will show how this bound can be improved using the
classical fraction. We have more flexibility here because we
can, instead of a single deterministic box, consider mixtures
of boxes corresponding to different pairs of Bob’s outcomes.
To this end, we notice that there is a possibility that there

Alice
y1 y

2
0 1 0 1

x1

.

xn

a0

a1

a2

.
a3

a1

a3

a0

.
a2

.

.

.

.

p0 ϵ01 q1 ϵ01

p0 ϵ00 q0 ϵ00

q0 ϵ10p1 ϵ10

p1 ϵ11 q1 ϵ11

p0 ϵ00 q0 ϵ00

p0 ϵ01 q1 ϵ01
q0 ϵ10p1 ϵ10

p1 ϵ11 q1 ϵ11

p0 ϵ01 q1 ϵ01

p0 ϵ00 q0 ϵ00

q0 ϵ10p1 ϵ10

p1 ϵ11 q1 ϵ11

x2

FIG. 3. (Color online) The box {p(a,b|x,y)} of Alice and Bob.
Dashed lines represent which pairs give rise to confused outcomes
(ai’s) and their lower bounds. Note that, for some choice of inputs
(x,y), some or all confused outcomes (ai’s) may coincide with each
other.

may exist a POVM for Alice such that she obtains a single
confusing outcome for two or more different cases (e.g.,
when she obtains a confusing outcome a0, she is unable to
distinguish between measurement choices of Bob not only in
the case when Bob obtains (0,0), but also in the case when he
obtains (1,0)). So, in the worst case, for some measurement
choices there may be just one confusing outcome at Alice’s
side for all the four different cases as shown in Fig. 3 in
the last row of the box. In that case, the quantum box does
not satisfy PQ = (1 − ∑

cij )X + ∑1
i,j=0 cijDij because this

would require us to use some probabilities twice. Thus, to be on
the safe side, we will use only orthogonal pairs of deterministic
boxes (i.e., either PQ = (1 − c00 − c11)X + c00D00 + c11D11

or PQ = (1 − c01 − c10)X + c01D01 + c10D10). Using these
decompositions and the definition of CF we get

CF � 1

2k
max { min{p0ε00,q0ε00} + min{p1ε11,q1ε11},
min{p0ε01,q1ε01} + min{p1ε10,q0ε10}}. (55)

After optimizing over p0,q0, ρi’s, and σj ’s, (Appendix C
contains detailed calculations) one can obtain the following
bound on the CF for 2 × n inputs and 2 × k outputs for Bob
and Alice.

CF � 0.11226

2k
. (56)

Using this estimate one can infer from (10) the following
upper bound on quantum Bell values for CHSH inequalities
(i.e., when n = 2 and k = 2).

βCHSH
qm � 4 − 0.11226 ∗ 2

4
≈ 3.94386. (57)

Notice that these bounds are slightly better than the one
obtained in (14). However, even these slightly better bounds are
quite weak, but since they hold for any 2 × n Bell inequalities,
they presumably cannot be strengthened substantially.
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VI. DISCUSSION

While the bounds we obtained are universal, they are rather
weak. In addition to universality, there are two sources of this
weakness. On one hand, we have applied a series of inequalities
and even if all of them were tight, their combination would lose
that precision. On the other hand, the very concept of the FOD
does not lead in general to optimal bounds (i.e., the Tsirelson
bounds). To see this, let us note that even for classical boxes
the FOD can be very small, leading to a weak bound.

Let us restrict our discussion to the CHSH case (hence 2 × 2
inputs with binary outcomes). Consider the classical box Pnoise

that can be called maximally mixed and is given by

p(ab|xy) = 1/4 for all a,b,x,y . (58)

Since all probabilities are equal to 1/4, it follows from
Observation 2 that

FOD(Pnoise) = 1
4 . (59)

Indeed, any choice of a(1),a(2),b(1),b(2) works in (22) with c =
1/4 and clearly no choice allows c > 1/4. Our inequality (10)
yields, now,

βCHSH(Pnoise) � 3.5 . (60)

Thus even the bound obtained this way for classical boxes
is worse than the Tsirelson bound. (However, as we noted in
Sec. II B, we were guaranteed to get a nontrivial bound, that
is, strictly smaller than βCHSH

alg = 4.)
Note that, in the above example, using the classical fraction

of Pnoise [CF(Pnoise) = 1] would clearly give the correct value
βCHSH

loc = 2. However, even having a general way of calculating
the classical fraction would not always lead to tight estimates.
Indeed, while—as shown by a simple separation argument—
for every box P there is a Bell expression S·P , for which
the bound (10) with c = CF(P ) is saturated (cf. the comment
following Observation 1), this is no longer true for an arbitrary
pair P,S.

VII. CONCLUSION

In this paper we gave an explicit universal bound for 2 × n

Bell inequalities, which is independent of the number n of
inputs and of the dimension of the underlying Hilbert space.
Specifically, we showed that this universal bound depends
only on the number of outputs of the two parties, and on
the difference between the optimal algebraic value and the
optimal deterministic value of the inequality. We showed that
the presence of the fraction of determinism (FOD) in 2 × n BI
prevents quantum Bell values from achieving the maximal
algebraic value. Hence this result is a quantitative variant
of the theorem shown by Gisin et al. in Ref. [16], which
states that there exist no 2 × n inputs pseudotelepathy game.
Although these bounds are not tight, one can improve them
by considering the classical fraction (CF) and by using it to
strengthen the estimate. We have analyzed a simple case where
the CF gives a better bound than taking into account merely
the FOD.

To obtain the above results, we established a reverse
triangle inequality (RTI), which is an independent result of its
own interest. While the triangle inequality gives upper bounds

on the trace distance between a state and mixtures of other
states, the RTI bounds that trace distance from below. We have
determined that this lower bound is different for general (i.e.,
possibly noncommuting) states than when considering only
commuting states. The bound in the commuting case is sharp,
and the one in the noncommuting case is close to being sharp.
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APPENDIX A: PROOF OF THEOREM 2 AND A
DISCUSSION OF ITS OPTIMALITY

Theorem 2: Let ε � 0 and assume that the states ρi,σ

satisfy

‖ρi − σ‖ � 2 − ε, (A1)

for i = 1, . . . ,l. Then, for any probability distribution {pi}li=1,
(1) for any states ρi , σ satisfying (A1)∥∥∥∥∥

l∑
i=1

piρi − σ

∥∥∥∥∥ � 2 − 2
√

lε, (A2)

(2) for commuting states ρi , σ satisfying (A1)∥∥∥∥∥
l∑

i=1

piρi − σ

∥∥∥∥∥ � 2 − lε. (A3)

(3) there exist three noncommuting states ρ1,ρ2, and σ

satisfying (A1) such that∥∥∥∥ρ1 + ρ2

2
− σ

∥∥∥∥ � 2 −
√

2ε. (A4)

Proof. We start by recalling two well-known facts.
Rotfel’d inequality [20]. Let f be a concave function on

[0,∞) such that f (0) � 0 and let A1, . . . ,Al � 0. Then,

Trf

(
l∑

i=1

Ai

)
� Tr

l∑
i=1

f (Ai). (A5)

Rotfel’d inequality is usually stated for just two matrices (i.e.,
l = 2), but the general case follows easily by induction.
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Fuchs–van de Graaf inequalities [21]. These inequalities
give two-sided bounds for the trace distance between two
quantum states σ and τ in terms of fidelity between σ and
τ , which is defined as F (σ,τ ) = Tr

√√
σ τ

√
σ . We have

1 − F (σ,τ ) � 1
2‖σ − τ‖ �

√
1 − F (σ,τ )2. (A6)

Rotfel’d inequality applied with f (t) = √
t allows us to

upper-bound fidelity of the mixture
∑l

i=1 piρi =: ρ in terms
of individual fidelities:

F (σ,ρ) = Tr

√√√√√
σ

(
l∑

i=1

piρi

)
√

σ

= Tr

√√√√ l∑
i=1

pi

√
σρi

√
σ

�
l∑

i=1

√
pi Tr

√√
σρi

√
σ

=
l∑

i=1

√
pi F (σ,ρi). (A7)

The second inequality in (A6) can be rewritten as

F (σ,τ )2 � 1 − 1
4‖σ − τ‖2, (A8)

which combined with the hypothesis ‖ρi − σ‖ � 2 − ε leads
to

F (σ,ρi) �
√

1 − 1
4 (2 − ε)2 =

√
ε − ε2

4 �
√

ε. (A9)

Inserting this bound into (A7) and using the Cauchy-
Schwarz inequality yields

F (σ,ρ) �
l∑

i=1

√
pi

√
ε �

√
lε. (A10)

We are now in a position to appeal to the first of the Fuchs–van
de Graaf inequalities (A6) to obtain

1
2‖ρ − σ‖ � 1 − F (σ,ρ) � 1 −

√
lε, (A11)

or ‖ρ − σ‖ � 2 − 2
√

lε, as needed for part 1 of the theorem.
For part 2 of the theorem, let us first reformulate the state-

ment in the language of probability densities (non-negative
functions with unit integral) and the usual L1 norm ‖ · ‖1.

Let gi,h be probability densities satisfying ‖gi − h‖1 =∫ |gi − h| � 2 − ε for i = 1, . . . ,l. Then, for any weights
{pi}li=1, ∥∥∥∥∥

l∑
i=1

pigi − h

∥∥∥∥∥
1

� 2 − lε, (A12)

and the inequality is sharp.
Now, since for any real u,v we have the identity |u −

v| = u + v − 2 min{u,v}, the condition ‖gi − h‖1 = ∫
gi +

h − 2 min {gi,h} � 2 − ε translates to
∫

min {gi,h} � ε/2.

Accordingly, if g = ∑l
i=1 pigi , then

min {g,h} �
l∑

i=1

min {gi,h}, (A13)

and so
∫

min {g,h} � lε/2, which is again equivalent to
‖f − g‖1 � 2 − lε. This proves part 2; moreover, the proof
provides a guide for constructing—for any instance of
parameters—examples when the inequality (A12) (or (3)) is
sharp.

While the “threshold for significance” in the bounds in (A2)
and (A12) is roughly the same (lε � 1), the dependence on
lε as that quantity goes to 0 is different. What is interesting
is that this difference between the classical and quantum
settings is genuine and not just an artifact of the argument.
This is the content of part 3 of the theorem, which shows
that the O(

√
ε) dependence in (A2) is optimal, at least in the

case l = 2.
To simplify the exposition, let us first reformulate the

problem by considering a slightly more general question.
What is the optimal function ε → φ(ε) such that whenever

ρ1,ρ2,σ are positive semidefinite matrices whose trace is
at most 1 and such that Trρi + Trσ − ‖ρi − σ‖ � ε for
i = 1,2, then Trρ + Trσ − ‖ρ − σ‖ � φ(ε) for any convex
combination ρ = pρ1 + (1 − p)ρ2?

The point is that the optimal function φ for this relaxed
problem is the same as for the original problem, where all the
traces are required to be equal to 1, at the cost of increasing the
dimension by 2. Indeed, if ρi,σ are as above, we may define
states ρ̃i ,σ̃ by

ρ̃i =
⎡
⎣ρi 0 0

0 1 − Trρi 0
0 0 0

⎤
⎦, σ̃ =

⎡
⎣σ 0 0

0 0 0
0 0 1 − Trσ

⎤
⎦.

(A14)

It is then easy to see that 2 − ‖ρ̃i − σ̃‖ = Trρi + Trσ − ‖ρi −
σ‖, and similarly for ρ̃ = pρ̃1 + (1 − p)ρ̃2.

With this reformulation, it is enough to look at 2 × 2
matrices and p1 = p2 = 1

2 . Given r ∈ [0,1], consider

σ =
[

0 0
0 r

]
, ρi =

[
1 − r ±√

r(1 − r)
±√

r(1 − r) r

]
,

(A15)

where i = 1 corresponds to the plus sign and i = 2 to the
minus. One directly checks that

Trρi + Trσ − ‖ρi − σ‖ = 1 + r −
√

1 + 2r − 3r2. (A16)

On the other hand, if ρ = 1
2 (ρ1 + ρ2), then

Trρ + Trσ − ‖ρ − σ‖ = 2r. (A17)

In our setting, this means that if ε := 1 + r − √
1 + 2r − 3r2

(which covers all possible values ε ∈ [0,2] as r varies
over [0,1]), then φ(ε) � 2r . Since (2r)2 � 2(1 + r −√

1 + 2r − 3r2) = 2ε for r ∈ [0,1], this shows that φ(ε) �√
2ε. In other words, for l = 2 one cannot have a lower bound

in (A2) that is better than 2 − √
2ε.

While this example does not directly address the case l > 2,
we know that—already in the classical setting—one can not
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have a nontrivial bound if lε is not small enough, and so the
dependence of the bound in (A2) on l cannot be too far from
optimal. �

Proposition 2: Assume that ε � 0 and that the states
ρi,σj satisfy ‖ρi − σj‖ � 2 − ε for all i ∈ {1,...,l1} and j ∈
{1,...,l2}. Then, for any probability distribution {pi}l1i=1 and
{qj }l2j=1, ∥∥∥∥∥∥

l1∑
i=1

piρi −
l2∑

j=1

qjσj

∥∥∥∥∥∥ � 2 − 2
√

l1l2ε. (A18)

Proof. The proof is a straightforward extension of the
previous argument. Using Rotfel’d inequality one more time
for F (σ,ρi) in (A7) gives us the following,

F (σ,ρi) �
l2∑
j

√
qjF (σj ,ρi). (A19)

Since we are assuming ‖ρi − σj‖ � 2 − ε, the same calcula-
tion as in (A9) yields

F (σj ,ρi) �
√

ε. (A20)

Therefore, combining (A7), (A19), and (A20) we are led to

F (σ,ρ) �
l1∑
i

√
pi

l2∑
j

√
qjF (σj ,ρi)

�
l1,l2∑
i,j

√
piqj

√
ε �

√
l1l2ε. (A21)

It remains to use the first Fuchs–van de Graaf relation (A6) to
obtain (A18). �

APPENDIX B: FRACTION OF DETERMINISM IN QM

Lemma 1: Let ε � 0 and suppose that ‖ρ − σ‖ � 2 − ε.
Then, for any POVM {Ma}ka=1, there exists an outcome a0

such that

Tr
(
Ma0ρ

)
� ε

2k
and Tr

(
Ma0σ

)
� ε

2k
. (B1)

Proof. We shall show that if, on the contrary, for all a we
have either Tr(ρMa) < ε

2k
or Tr(σMa) < ε

2k
, then

pe <
ε

4
, (B2)

where pe is the probability of error in distinguishing ρ versus
σ with equal a priori probabilities. Since it is known that
probability is given by the Helstrom relation [19],

pe(ρ,σ ) = 1
2 − 1

4‖ρ − σ‖, (B3)

this will contradict the hypothesis ‖ρ − σ‖ � 2 − ε and prove
the lemma.

To that end, let us define two sets: Iρ = {a : Tr(σMa) < ε
2k

}
and Iσ = I \ Iρ , where I is the set of all indices a. By the
above assumption, for all a ∈ Iσ we have Tr(ρMa) < ε

2k
. Our

decision scheme will be now as follows: If a ∈ Iρ then the
state is ρ, otherwise it is σ . With this decision scheme we

have

pe � 1

2
Tr

⎛
⎝∑

a∈Iρ

Maσ

⎞
⎠ + 1

2
Tr

(∑
a∈Iσ

Maρ

)

<
1

2
|Iρ | ε

2k
+ 1

2
|Iσ | ε

2k
= ε

4
, (B4)

which shows (B2) and completes the proof of Lemma 1. �
Lemma 2: Let E1 = {pi,ρi}l1i=1 and E2 = {qj ,σj }l2j=1 be two

ensembles which give rise to the same density matrix. Given
l̃1 � l1 and l̃2 � l2, we set

δ1 = 1 −
l̃1∑

i=1

pi, δ2 = 1 −
l̃2∑

j=1

qj , (B5)

and define new ensembles,

Ẽ1 = {p̃i ,ρi}l̃1i=1, Ẽ2 = {q̃j ,σj }l̃2j=1, (B6)

where p̃i = pi/(1 − δ1) and q̃j = qj/(1 − δ2). Then the en-
sembles Ẽ1,Ẽ2 satisfy∥∥∥∥∥∥

l̃1∑
i=1

p̃iρi −
l̃2∑

j=1

q̃j σj

∥∥∥∥∥∥ � 2 max{δ1,δ2}
1 − min{δ1,δ2} . (B7)

Proof. Since
∑l1

i=1 piρi = ∑l2
j=1 qjσj , it follows from the

triangle inequality that∥∥∥∥∥∥
l̃1∑

i=1

piρi −
l̃2∑

j=1

qjσj

∥∥∥∥∥∥ �

∥∥∥∥∥∥
l1∑

i=l̃1+1

piρi

∥∥∥∥∥∥ +
∥∥∥∥∥∥

l2∑
j=l̃2+1

qjσj

∥∥∥∥∥∥
= δ1 + δ2. (B8)

Let θ1 = 1 − δ1,θ2 = 1 − δ2. Then

(1 − δ1)

∥∥∥∥∥∥
l̃1∑

i=1

p̃iρi −
l̃2∑

j=1

q̃j σj

∥∥∥∥∥∥
=
∥∥∥∥∥∥θ1

l̃1∑
i=1

p̃iρi − θ1

l̃2∑
j=1

q̃j σj

∥∥∥∥∥∥
=
∥∥∥∥∥∥θ1

l̃1∑
i=1

p̃iρi − θ2

l̃2∑
j=1

q̃j σj + (θ2 − θ1)
l̃2∑

j=1

q̃j σj

∥∥∥∥∥∥
�

∥∥∥∥∥∥
l̃1∑

i=1

piρi −
l̃2∑

j=1

qjσj

∥∥∥∥∥∥ + |δ1 − δ2|. (B9)

Combining (B8) and (B9) we are led to∥∥∥∥∥∥
l̃1∑

i=1

p̃iρi −
l̃2∑

j=1

q̃j σj

∥∥∥∥∥∥ � δ1 + δ2 + |δ1 − δ2|
1 − δ1

. (B10)

Finally, using the identity a + b + |a − b| = 2 max{a,b} and
noticing that the same estimate holds if we replace δ1 with δ2,
we obtain the required estimate.
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APPENDIX C: FOD AND CF FOR l = 2

For a quantum box with 2 × n inputs and 2 × k outputs
for, respectively, Bob and Alice, the FOD and the CF were
estimated in Sec. V as follows:

FOD � 1

2k
max { min{p0ε00,q0ε00}, min{p1ε11,q1ε11},

min{p0ε01,q1ε01}, min{p1ε10,q0ε10}},
and

CF � 1

2k
max { min{p0ε00,q0ε00} + min{p1ε11,q1ε11},

min{p0ε01,q1ε01} + min{p1ε10,q0ε10}},
where εij = 2 − ‖ρi − σj‖.

The above bounds are independent of the choices of
measurements of Alice. We would like to find a bound for
the FOD and the CF, which only depends on the number of
outcomes of Alice. To achieve this, we have to optimize over
p0,q0, ρi’s, and σj ’s.

By renaming the labels, we may assume that

p0 � q0 � q1 � p1, (C1)

in which case the above estimates simplify to

FOD � 1

2k
max{q0ε00,p1ε11,q1ε01,p1ε10}, (C2)

and

CF � 1

2k
max{q0ε00 + p1ε11,q1ε01 + p1ε10}. (C3)

To come up with explicit bounds, we first note that Corol-
lary 1 implies that maxij εij � 1

4 . Another bound can be ob-
tained from Lemma 2 by truncating from our ensembles the el-
ements with smaller probabilities (i.e., in view of (C1), {p1,ρ1}
and {q1,σ1}). The truncated ensembles are then simply {1,ρ0}
and {1,σ0}, and since δ1 = p1 and δ2 = q1, the conclusion

of Lemma 2 translates to

ε00 = 2 − ‖ρ0 − σ0‖ � 2

(
1 − max{p1,q1}

1 − min{p1,q1}
)

= 2

(
1 − q1

p0

)
. (C4)

To produce a lower bound for the FOD we consider now the
following two cases.

(1) If ε00 � 1/4, then

FOD � 1

2k
max

{q0

4
,2q0

(
1 − q1

p0

)}
. (C5)

(2) If ε00 < 1/4, then some εij other than ε00 is greater
than or equal to 1

4 and so

FOD � 1

2k
max

{p1

4
,2q0

(
1 − q1

p0

)}
. (C6)

Since p1

4 � q0

4 in view of our assumption (C1), a lower bound
for the FOD is given by (C6), the smaller of the two values
obtained in cases 1 and 2.

All that remains is to minimize over all pi’s and qj ’s
satisfying the constraints, i.e., 0 � p1 � q1 � 1

2 . We have

min
0�p1�q1� 1

2

max

{
p1

4
,2q0

(
1 − q1

p0

)}
� 5 − √

17

8
� 0.10961,

(C7)

and, therefore,

FOD � 0.10961

2k
. (C8)

We can similarly estimate CF, which in the present setting
verifies

CF � 0.11226

2k
. (C9)
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