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Traditionally, quantum amplification limit refers to the property of inevitable noise addition on canonical
variables when the field amplitude of an unknown state is linearly transformed through a quantum channel.
Recent theoretical studies have determined amplification limits for cases of probabilistic quantum channels or
general quantum operations by specifying a set of input states or a state ensemble. However, it remains open how
much excess noise on canonical variables is unavoidable and whether there exists a fundamental trade-off relation
between the canonical pair in a general amplification process. In this paper we present an uncertainty-product form
of amplification limits for general quantum operations by assuming an input ensemble of Gaussian-distributed
coherent states. It can be derived as a straightforward consequence of canonical uncertainty relations and retrieves
basic properties of the traditional amplification limit. In addition, our amplification limit turns out to give a
physical limitation on probabilistic reduction of an Einstein-Podolsky-Rosen uncertainty. In this regard, we find
a condition that probabilistic amplifiers can be regarded as local filtering operations to distill entanglement. This
condition establishes a clear benchmark to verify an advantage of non-Gaussian operations beyond Gaussian
operations with a feasible input set of coherent states and standard homodyne measurements.
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I. INTRODUCTION

It is fundamental to ask how an amplification of canonical
variables modifies the phase-space distribution of ampli-
fied states under the physical constraint due to canonical
uncertainty relations. The standard theory to address this
question is the so-called amplification uncertainty principle
[1]. It describes the property of inevitable noise addition on
canonical variables when the field amplitude of an unknown
state is linearly transformed through a quantum channel. This
traditional form of quantum amplification limit is directly
derived from the property of canonical variables and gives
an important insight on a wide class of experiments in
quantum optics, quantum information science [2–12], and
condensed-matter physics [13]. Unfortunately, the linearity of
amplification maps assumed in this theory is hardly satisfied
in the experiments [14], although this assumption corresponds
to a covariance property that works as an essential theoretical
tool to analyze a general property of amplification and related
cloning maps [15,16]. It is more realistic to consider the
performance of amplifiers in a limited input space. In fact,
one can find a practical limitation by focusing on a set of input
states or an ensemble of input states [17–19].

There has been growing interest in implementing proba-
bilistic amplifiers in order to overcome the standard limita-
tion of the traditional amplification limit [20–25]. In these
approaches, one can obtain essentially noiselessly amplified
coherent states with a certain probability by conditionally
choosing the output of the process. Recent theoretical stud-
ies have determined amplification limits for such cases of
probabilistic quantum channels or general quantum operations
[18,19]. Certainly, these results can reach beyond the coverage
of the traditional theory. However, it seems difficult to find a
precise interrelation between these theories. For example, it
is not clear whether the traditional form can be reproduced
as a special case of the general theory. At this stage, we may
no longer expect an essential role of canonical uncertainty
relations in determining a general form of amplification limits.

Another topical aspect on the probabilistic amplification
is its connection to entanglement distillation. On the one
hand, the no-go theorem of Gaussian entanglement distillation
tells us that Gaussian operations are unusable for distillation
of Gaussian entanglement [26,27]. On the other hand, it
has been shown that a specific design of nondeterministic
linear amplifier (NLA) can enhance entanglement [20], and
experimental demonstrations of entanglement distillation have
been reported in [23,25]. Thereby, such an enhancement of
entanglement could signify a clear advantage of non-Gaussian
operations over the Gaussian operations. Interestingly, a sub-
stantial difference between an optimal amplification fidelity for
deterministic quantum gates and that for probabilistic physical
processes has been shown in Ref. [18]. There, a standard
Gaussian amplifier is identified as an optimal deterministic
process for maximizing the fidelity, while the NLA turns out
to achieve the maximal fidelity for probabilistic gates in an
asymptotical manner. However, these amplification fidelities
have not been associated with the context of entanglement
distillation. Hence, it is interesting if one can find a legitimate
amplification limit for Gaussian operations such that the
physical process beyond the limit demonstrates the advantage
of non-Gaussian operations. More fundamentally, we may ask
whether an amplification limit for Gaussian operations could
be derived as a consequence of the no-go theorem.

The fidelity-based amplification limit [17,18] is defined
on an input-state ensemble called the Gaussian-distributed
coherent states. This ensemble has been utilized to demon-
strate a nonclassical performance of continuous-variable (CV)
quantum teleportation [28] and quantum memories [29].
The main idea underlying this ensemble is to consider an
effectively uniform set of input states in a CV space by using a
Gaussian prior. We can sample coherent states with modest
input power around the origin of the phase space with a
relatively flat prior, while a rapid decay of the prior enables
us to suppress the contribution of impractically high-energy
input states. Given this ensemble, an experimental success
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criterion for CV gates is to surpass the classical limit fidelity
due to entanglement-breaking (EB) maps [30]. The classical
fidelity was determined for unit-gain channels in Ref. [31]
and for lossy or amplification channels in Ref. [32] (see also
Ref. [33]). Further, the framework was generalized to include
whole completely positive (CP) maps, i.e., general quantum
operations [18].

Recently, a different form of such classical limits has
been derived using an uncertainty product of canonical
variables [34]. It gives an optimal trade-off relation between
canonical noises in order to outperform EB maps for general
amplification and attenuation tasks. This suggests that, instead
of the fidelity, one can use an uncertainty product of canonical
variables to evaluate the performance of amplifiers. However,
for a general amplification process, it remains open (i) how
much excess noise is unavoidable on canonical variables and
(ii) whether there exists a simple trade-off relation between
noises of the canonical pair.

In this paper we resolve the above questions by presenting
an uncertainty-product form of amplification limits for general
quantum operations based on the input ensemble of Gaussian-
distributed coherent states. It is directly derived by using
canonical uncertainty relations and retrieves the basic property
of the traditional amplification limit. We investigate the
attainability of our amplification limit and identify a parameter
regime where Gaussian channels cannot achieve our bound but
the NLA asymptotically achieves our bound. We also point
out the role of probabilistic amplifiers for entanglement dis-
tillation. Using the no-go theorem for Gaussian entanglement
distillation, we find a condition that a probabilistic amplifier
can be regarded as a local filtering operation to demonstrate
entanglement distillation. This condition establishes a clear
benchmark to verify an advantage of non-Gaussian operations
beyond Gaussian operations with a feasible input set of
coherent states and standard homodyne measurements.

The rest of this paper is organized as follows. In Sec. II,
we present our amplification limit, which is regarded as an
extension of the traditional amplification limit [1] for two
different directions: (i) It determines the limitation with an
input ensemble of a bounded power, and (ii) it is applicable
to stochastic quantum processes as well as quantum channels.
In Sec. III, we consider the attainability of our amplification
limit for Gaussian and non-Gaussian amplifiers. In Sec. IV,
we address the connection between our amplification limit
and entanglement distillation. We conclude this paper with
remarks in Sec. V.

II. GENERAL AMPLIFICATION LIMITS FOR
GAUSSIAN-DISTRIBUTED COHERENT STATES

In this section we present a general amplification limit
for Gaussian-distributed coherent states which is applicable
to either probabilistic or deterministic quantum processes.
We review the fidelity-based results of amplification limits
in Sec. II A partly as an introduction of basic notations. We
present our main theorem in Sec. II B.

A. Fidelity-based amplification limits

We consider transmission of coherent states {|α〉}α∈C
drawn from a Gaussian prior distribution with an inverse

width λ > 0,

pλ(α) := λ

π
exp(−λ|α|2). (1)

We call the state ensemble {pλ(α),|α〉}α∈C the Gaussian-
distributed coherent states. The main motivation to use the
Gaussian prior of Eq. (1) is to execute a uniform sampling
of the input amplitude around the origin of the phase space
|α|2 � λ−1 while keeping out the contribution of higher-power
input states for |α|2 > λ−1 by properly choosing the inverse
width λ > 0. A uniform average over the phase space or
an ensemble of completely unknown coherent states can be
formally described by taking the limit λ → 0.

Let us refer to the following state transformation as the
phase-insensitive amplification or attenuation task of a gain
η � 0,

|α〉 → |√ηα〉. (2)

We say the task is an amplification (attenuation) if η � 1 (η <

1). We may specifically call the task with η = 1 the unit-gain
task. We define an average fidelity of the phase-insensitive task
for a physical map E as

Fη,λ :=
∫

pλ(α)〈√ηα|E(ρα)|√ηα〉d2α. (3)

Note that we use the following notation for the density operator
of a coherent state throughout this paper:

ρα = |α〉〈α|. (4)

The fidelity-based amplification limit [17,18] is given as
follows: For any quantum operation E , i.e., a CP trace-
nonincreasing map, it holds that

F
(Prob)
η,λ := Fη,λ

Ps

� 1

2

(
1 + λ

η
+ 1 +

∣∣∣∣1 + λ

η
− 1

∣∣∣∣
)

, (5)

where Ps is the probability that E gives an output state for the
ensemble {pλ(α),ρα}. It is defined as

Ps := Tr
∫

pλ(α)E(ρα)d2α. (6)

As we will see in the next section, this probability represents
a normalization factor when E acts on a subsystem of a
two-mode squeezed state. Note that Ps = 1 if E is a quantum
channel, i.e., a CP trace-preserving map.

In analogy to Eq. (2), we may define a symmetric phase-
conjugation task associated with the state transformation:

|α〉 → |√ηα∗〉. (7)

Thereby, we may define an average fidelity of this task as

F ∗
η,λ :=

∫
pλ(α)〈√ηα∗|E(ρα)|√ηα∗〉d2α. (8)

The fidelity-based phase-conjugation limit is given by [17,35]

F ∗
η,λ

(Prob) = F ∗
η,λ

Ps

� 1 + λ

1 + η + λ
. (9)

Note that one can generalize the fidelity-based quantum
limits in Eqs. (5) and (9) for phase-sensitive cases by
introducing modified tasks as

|α〉 → S|√ηα〉 or |α〉 → S|√ηα∗〉, (10)
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where

S := S(r) = er(â2−â†2)/2 (11)

is a squeezing unitary operation and r represents the degree of
squeezing. The quantum-limited fidelity values of Eqs. (5) and
(9) are invariant under the addition of unitary operators since
the optimal map can absorb the effect of additional unitary
operators [32,34,36].

B. Amplification limits via an uncertainty product of canonical
quadrature variables

We may consider a general phase-sensitive amplification or
attenuation task in terms of phase-space quadratures so that
average quadratures of the input coherent state ρα of Eq. (4)
are transformed as

(xα,pα) → (
√

ηxxα,
√

ηppα), (12)

where the gain pair of the amplification or attenuation task
(ηx,ηp) is a pair of non-negative numbers, and the mean
quadratures for the coherent state ρα are defined as

xα := Tr(x̂ρα) = α + α∗
√

2
, pα := Tr(p̂ρα) = α − α∗

√
2i

. (13)

Throughout this paper we assume the canonical commuta-
tion relation for canonical quadrature variables [x̂,p̂] = i,
which is consistent with the standard relations such as x̂ =
(â + â†)/

√
2, p̂ = (â − â†)/(i

√
2), and â|α〉 = α|α〉. As in

Eq. (12), we may consider a general phase-conjugation task
associated with the following transformation:

(xα,pα) → (
√

ηxxα, − √
ηppα). (14)

Given the task of Eq. (12), we may measure the performance
of an amplifier E by using the square deviation,

Tr[(ẑ − √
ηzzα)2E(ρα)], (15)

where z ∈ {x,p}. Note that, if the mean output quadratures
are equal to the output of the transformation of Eq. (12) as
Tr[ẑE(ρα)] = √

η
z
zα , the expression of Eq. (15) turns to the

variance of the output quadrature,

Tr[(ẑ − √
ηzzα)2E(ρα)] = Tr[ẑ2E(ρα)] − {Tr[ẑE(ρα)]}2

= 〈�2ẑ〉E(ρα ). (16)

However, it is impractical to consider that the linearity of the
transformation

Tr[ẑE(ρα)] = √
ηzzα (17)

holds in experiments for every input amplitude α ∈ C. We thus
proceed with our formulation without using this condition.

Instead of the pointwise constraint on α, we consider an
average of the quadrature deviations with the Gaussian prior
distribution pλ of Eq. (1). We seek the physical process that
minimizes the mean-square deviations (MSD) of canonical
quadratures [34]:

V̄x(η,λ) := Tr
∫

pλ(α)(x̂ − √
ηxα)2E(ρα)d2α,

(18)

V̄p(η,λ) := Tr
∫

pλ(α)(p̂ ∓ √
ηpα)2E(ρα)d2α,

where the lower sign of the second expression is for the
case of the phase-conjugation task in Eq. (14). The MSDs
in Eq. (18) can be observed experimentally by measuring the
first and the second moments of the quadratures {x̂,p̂,x̂2,p̂2}
for the output of the physical process E(ρα). Due to canonical
uncertainty relations, V̄x and V̄p could not be arbitrarily small
simultaneously. We can find a rigorous trade-off relation
between V̄x and V̄p from the following theorem.

Theorem 1. For any given ηx > 0, ηp > 0, and λ > 0, any
quantum operation (or stochastic quantum channel) E satisfies

∏
z=x,p

[
V̄z(ηz,λ)

Ps

− ηz

2(1 + λ)

]
� 1

4

∣∣∣∣
√

ηxηp

1 + λ
∓ 1

∣∣∣∣2, (19)

where Ps and V̄z are defined in Eqs. (6) and (18), respectively.
Moreover, the lower signs of Eqs. (18) and (19) correspond to
the case of the phase-conjugation task in Eq. (14).

Proof. Let J = JAB be a density operator of a two-mode
system AB described by [x̂A,p̂A] = [x̂B,p̂B] = i. Canonical
uncertainty relations and the property of variances lead to

Tr[(x̂A − gxx̂B)2J ]Tr[(p̂A + gpp̂B)2J ]

� 〈�2(x̂A − gxx̂B)〉J 〈�2(p̂A + gpp̂B)〉J � 1
4 (1−gxgp)2.

(20)

Here, we will prove the case of the normal amplification or
attenuation process by assuming gx � 0 and gp � 0. The
proof for the phase-conjugation process runs similarly by
considering the case with gx � 0 and gp < 0.

From the standard notation x̂B = (b̂ + b̂†)/
√

2 and the
cyclic property of the trace we can write

Tr[(x̂A − gxx̂B)2J ]

= Tr

[
x̂2

AJ − 2gxx̂A

(
b̂†J + J b̂√

2

)

+gx
2

2
(b̂†2J + J b̂2 + 2b̂†J b̂ − J )

]

= TrA

∫
d2α

π
(x̂A − gxxα)2〈α∗|J |α∗〉B − g2

x

2
, (21)

where, in the final line, we execute the partial trace by
TrB[ · ] → ∫ 〈α∗| · |α∗〉B d2α

π
and use the property of the coher-

ent state b̂|α∗〉B = α∗|α∗〉B and 〈α∗|Bb̂† = α〈α∗|B . Similarly,
starting from p̂B = i(b̂† − b̂)/

√
2, we have

Tr[(p̂A + gpp̂B)2J ]

= TrA

∫
d2α

π
(p̂A − gppα)2〈α∗|J |α∗〉B − g2

p

2
. (22)

Next, suppose that J is prepared by an action of a
quantum operation E as J = EA ⊗ IB(|ψξ 〉〈ψξ |)/Ps , where
|ψξ 〉 =

√
1 − ξ 2

∑∞
n=0 ξn|n〉|n〉 is a two-mode squeezed state

with ξ ∈ (0,1) and Ps := Tr[EA ⊗ IB(|ψξ 〉〈ψξ |)]. This implies
〈α∗|J |α∗〉B = (1 − ξ 2)e−(1−ξ 2)|α|2EA(ρξα)/Ps . From this
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relation and Eqs. (1), (21), and (22) we obtain

Tr[(p̂A + gpp̂B)2J ]Tr[(x̂A − gxx̂B)2J ]

=
∏

z=x,p

(
TrA

∫
d2α

π
(ẑA − gzzα)2〈α∗|J |α∗〉B − g2

z

2

)

=
∏

z=x,p

[
Tr

∫
pλ(α)(ẑ − √

η
z
zα)2E(ρα)d2α

Tr
∫

pλ(α)E(ρα)d2α
− ηz

2(1 + λ)

]
,

(23)

where, in the final step, we drop the subscript A, rescale the
integration variable as ξα → α, and introduce

ηx = (1 + λ)g2
x, ηp = (1 + λ)g2

p, λ = 1 − ξ 2

ξ 2
. (24)

Finally, concatenating Eqs. (18), (20), (23), and (24), we can
reach Theorem 1 [Eq. (19)]. �

Theorem 1 states that any physical map is unable to break
the uncertainty-relation-type trade-off inequality for quadra-
ture deviations on average. It draws an inverse-proportional
curve in the V̄x-V̄p plane with a given pair of (ηx,ηp), and the
area below the curve is unattainable by any quantum process
including probabilistic amplifiers [see Fig. 1(a)]. Equation (19)

is essentially the same structure as the traditional form of am-
plification limits [1] [see Eq. (A3) in the Appendix]. However,
note that our theorem can be applied to probabilistic amplifiers.
In addition, it holds without the linearity condition of Eq. (17).
Nevertheless, it retrieves the traditional expression in the limit
of λ → 0. A detailed interrelation between Theorem 1 and the
traditional amplification limit can be found in the Appendix.

In order to see the role of our amplification limit in the
case of the phase-sensitive process, we may consider the curve
in the V̄x-V̄p plane with a different set of (ηx,ηp) under the
constraint of a fixed gain η = (ηxηp)1/2 as in Fig. 1(a). Then,
the intersection of the unattainable area can be represented by
another inverse-proportional curve. This curve determines the
minimum uncertainty in the V̄x-V̄p plane similar to the min-
imum uncertainty curve for normal squeezed coherent states.
In fact, we can show an expression in which the minimum
of the product V̄xV̄p is bounded from below by a constant as
follows. Let us parametrize the boundary of Eq. (19) as

(V̄x,V̄p) = 1

2

∣∣∣∣
√

ηxηp

1 + λ
∓ 1

∣∣∣∣(eR,e−R) + 1

2(1 + λ)
(ηx,ηp),

(25)

where R ∈ R. Suppose that the gain is fixed as η = √
ηxηp.

Then, we can write ηx = ηe−2r and ηp = ηe2r with r ∈ R.
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FIG. 1. (Color online) (a) Solid curves represent general lower bounds on the product of the mean-square deviations (MSD) of Eq. (18)
given by V̄x V̄p � (η′ + |η′ ∓ 1|)2/4 [see Eq. (26)]. Here, an effective gain factor is set to be η′ = η/(1 + λ) = 1.3 with the constraint on
the gain pair

√
ηxηp = η. This constraint parameterizes the gain pair as (ηx,ηp) = (ηeR,ηe−R), with R ∈ R. The upper solid curve is for the

phase-conjugation task, and the lower solid curve is for the normal amplification task. Each of them can be determined by taking the intersection
of our amplification limits in Eq. (19) with various ratios between the gain pair ηx/ηp = e2R . Dotted curves represent the cases for ηx/ηp = 1
and ηx/ηp = 2. (b) Typical behavior of the MSDs in the cases of V̄x = V̄p = V̄ as a function of the gain η. The upper solid line represents the
limitation on the phase-conjugation process [Eq. (30)], and the lower kinked solid line represents the limitation on the normal amplification and
attenuation process [Eq. (28)]. The dashed curve for η ∈ [1,(1 + η)2] shows the minimum of the MSD due to Gaussian channels V̄ 
 [Eq. (33)].
Dash-dotted lines are due to the traditional form of amplification limits for completely unknown coherent states [Eqs. (A10) and (A11) with
G = η]. They can be retrieved by our bounds in the limit of λ → 0. In this figure we set λ = 0.4 so that the structure around η = 1 + λ is
displayed clearly. When η = 0, all lines indicate the minimum value of V̄ = 1/2 due to canonical uncertainty relations as it corresponds to the
trivial case of gx = gp = 0 in Eq. (20).
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Hence, we have

V̄xV̄p = 1
4 {η′2 + |η′ ∓ 1|2 + |η′ ∓ 1|η′(eR+2r + e−R−2r )}

� 1
4 (η′ + |η′ ∓ 1|)2, (26)

where we defined η′ = η/(1 + λ) and used eR+2r + e−R−2r �
2. This gives the lower bound of the uncertainty product
V̄xV̄p under the constraint of the fixed gain η = √

ηxηp, and
it implies an inverse-proportional relation between V̄x and
V̄p shown in Fig. 1(a). Note that the boundary of Eq. (26) is
parameterized as

(V̄x,V̄p) = 1
2 (η′ + |η′2 ∓ 1|)(eR,e−R). (27)

This expression is obtained by substituting ηx = ηeR and
ηp = ηe−R into Eq. (25). We will discuss the design of
physical amplifiers that potentially achieve this boundary in
the next section.

It would be instructive to illustrate the gain dependence of
our quantum limit for simple cases [See Fig. 1(b)]. For the
symmetric case with ηx = ηp = η and V̄x = V̄p = V̄ , we can
write Theorem 1 [Eq. (19)] for the normal amplification or
attenuation task as

V̄

Ps

� 1

2

(
η

1 + λ
+

∣∣∣∣ η

1 + λ
− 1

∣∣∣∣
)

, (28)

or, equivalently,

V̄

Ps

�
{

1
2 η ∈ [0,1 + λ],
η

1+λ
− 1

2 η > 1 + λ.
(29)

This shows basically the same structure in the expression of
the fidelity-based amplification limit in Eq. (5). For phase
conjugation, we alternately have

V̄

Ps

� η

1 + λ
+ 1

2
. (30)

The minima of the MSDs V̄ for both Eqs. (28) and (30) are
shown as functions of η in Fig. 1(b). They obviously fall
below the lines due to the traditional form of amplification
limits given in Eqs. (A10) and (A11) for η > 1 in the case
of the normal amplification task and for η > 0 in the case
of the phase-conjugation task, respectively. Note that the gap
disappears in the limit of λ → 0, although it is impossible to
test amplification devices for completely unknown coherent
states in the real world.

As we have already mentioned, the MSDs of Eq. (18)
can be observed experimentally by measuring the first and
the second moments of the quadratures {x̂,p̂,x̂2,p̂2} for the
output of the physical process E(ρα). This can be done by
standard homodyne measurements. In contrast, one needs to
know higher-order moments of the quadratures in order to
determine the fidelity to coherent states in Eqs. (3) and (8)
when homodyne measurements are performed. This is because
the output state E(ρα) could be a non-Gaussian state. Note that
one can find a lower bound of the fidelity from the observed
value of the MSDs [32,34].

III. ACHIEVABILITY OF THE AMPLIFICATION LIMIT

In this section, we consider the attainability of our ampli-
fication limit given in Eq. (19) by using a standard Gaussian
amplifier and a probabilistic amplifier.

A. Gaussian amplifier

In this section we investigate the performance of Gaussian
channels for the normal amplification or attenuation process
(see Sec. III C for the phase-conjugation process).

At the moment, let us consider the phase-insensitive case,
i.e., ηx = ηp = η > 0. The quantum-limited phase-insensitive
Gaussian amplifier or attenuator with the gain G transforms
the first and second moments of quadratures [37] as

Tr[ẑAG(ρα)] =
√

Gzα,
(31)

Tr[ẑ2AG(ρα)] = Gz2
α + (G + |G − 1|)/2,

where z ∈ {x,p} and we use the notation in Eqs. (4) and (13).
This yields the following expression for the MSDs of Eq. (18):

V̄z(η,λ)|E=AG
= 1

λ
(
√

G − √
η)2 + G + |G − 1|

2
. (32)

When the prior distribution pλ(α) of Eq. (1) becomes broader
so that λ → 0, the contribution of the first term in Eq. (32)
becomes significantly larger. In this limit, G = η is the
solution that minimizes the MSDs, and the optimality of the
Gaussian amplifier is retrieved; namely, the Gaussian amplifier
AG saturates our bound of Eq. (19), like AG saturates the
traditional amplification limit in Eq. (A10).

In order to minimize the MSDs for a finite distribution with
λ > 0 we may rewrite Eq. (32) as

V̄z(η,λ) =
⎧⎨
⎩

1
λ

(
√

G − √
η)2 + 1

2 G ∈ [0,1],

1+λ
λ

(√
G −

√
η

1+λ

)2 + η

1+λ
− 1

2 G > 1.

For the first case with G ∈ [0,1], G = η fulfills the equality
of Eq. (19) for η ∈ [0,1]. For the second case with G > 1, the
optimal gain G = η/(1 + λ)2 fulfills the equality of Eq. (19)
for η � (1 + λ)2. Thereby, the minimum MSD due to Gaussian
channels is divided into the following three cases [see Fig.
1(b)]:

V̄ 

z (η,λ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 η ∈ [0,1],

1
λ

(
√

η − 1)2 + 1
2 η ∈ (1,(1 + λ)2),

η

1+λ
− 1

2 η � (1 + λ)2.

(33)

Hence, in the phase-insensitive case of the normal amplifica-
tion or attenuation process, we can conclude that the Gaussian
channel constitutes an optimal quantum device that saturates
our amplification limit except for the range of the gain factor
η ∈ (1,(1 + λ)2).

To proceed with the case of an asymmetric pair of gains,
we can choose ηp > ηx > 0 without loss of generality. Let us
write η = √

ηxηp, with

ηx = ηe−2r , ηp = ηe2r , r > 0. (34)

We can readily see that an action of the quadrature squeezer S

of Eq. (11) followed by the amplification process modifies the
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first and second moments as

Tr[x̂SAG(ρα)S†] = e−rTr[x̂AG(ρα)],

Tr[p̂SAG(ρα)S†] = erTr[p̂AG(ρα)],
(35)

Tr[x̂2SAG(ρα)S†] = e−2rTr[x̂2AG(ρα)],

Tr[p̂2SAG(ρα)S†] = e2rTr[p̂2AG(ρα)].

From Eqs. (34) and (35), we can observe that the Gaussian
channel E(ρ) = SAG(ρ)S† fulfills

V̄x(ηx,λ) − ηx/2 = e−2r [V̄x(η,λ) − η/2],
(36)

V̄p(ηp,λ) − ηp/2 = e2r [V̄p(η,λ) − η/2].

This relation with the expression of Eq. (33) implies that the
channel E(ρ) = SAG(ρ)S† saturates our quantum limit (19)
except for η ∈ (1,(1 + λ)2).

Consequently, Gaussian channels constitute optimal physi-
cal processes in the amplification or attenuation task under the
practical setting of the Gaussian-distributed coherent states
unless the normalized gain factor is in the proximity of η/(1 +
λ) ∼ 1. In this sense, we could keep the term of the “quantum-
limited process” or “quantum-limit amplifier” for the Gaussian
amplifierAG. Similar statements hold for fidelity-based results
[17,18]. Note that our analysis here does not preclude the
possibility that a trace-decreasing Gaussian amplifier could
achieve the bound for η ∈ (1,(1 + λ)2), although it seems
unlikely that the trace-decreasing class has an advantage, as
we will discuss in Sec. IV.

B. Non-Gaussian amplification

In this section we investigate the performance of a non-
Gaussian operation, the NLA of Ref. [20], for the normal
amplification process. We will show that the performance of
the NLA approaches arbitrarily close to our amplification limit
of Eq. (19) for the range of the gain η ∈ (1,(1 + λ)2), where the
Gaussian amplifier shows a substantially lower performance
as in Fig. 1(b).

Let us consider the probabilistic amplifier described by
Qg(ρ) ∝ QNρQN , with QN = N 1/2 ∑N

n=0 gn|n〉〈n|, where
we assume g � 1 and N > 0. This leads to

QN |α〉 = N 1/2e−|α|2/2
N∑

n=0

(gα)n√
n!

|n〉 =: |ωg,N,α〉,
(37)

â|ω〉 = N 1/2gαe−|α|2/2
N−1∑
n=0

(gα)n√
n!

|n〉.

Hence, we can write QN |α〉 ∝ |gα〉 on the truncated photon-
number space {|n〉〈n|}n=0,1,2,...,N , and the operation Qg ampli-
fies coherent states without extra noises in the limit N → ∞.
The trace-nonincreasing condition for quantum operations
Q2

N � 1 implies N � g−2N . In what follows we focus on
the phase-insensitive case of ηx = ηp = η. The case of the
phase-sensitive process with a possibly asymmetric gain pair
(ηx,ηp) can be addressed by repeating the procedure of the
previous section.

From Eq. (37) we can easily calculate the mean values 〈x̂〉ω,
〈p̂〉ω, and 〈â†â〉ω = 〈x̂2 + p̂2 − 1〉ω/2. As a consequence we

can obtain the following expression:

〈(x̂ − √
ηxα)2 + (p̂ − √

ηpα)2〉ω
= 〈x̂2 + p̂2〉ω − 2

√
η〈x̂xα + p̂pα〉ω + η

(
x2

α + p2
α

)〈ω|ω〉

= N
[

2(g2 − 2
√

ηg)|α|2
N−1∑
n=0

(g2|α|2)n

n!

+ (2η|α|2 + 1)
N∑

n=0

(g2|α|2)n

n!

]
e−|α|2 , (38)

where (xα,pα) is given by Eq. (13).
Now, let us evaluate the MSDs of Eq. (18) for the

probabilistic amplifier Qg . [The physical process is given
by E(ρ) = Qg(ρ)]. Due to its phase insensitivity, we can
write V̄ := (V̄x + V̄p)/2 = V̄x = V̄p. Using this relation and
Eq. (38), we have

V̄ = 1

2

∫
pλ(α)〈(x̂ − √

ηxα)2 + (p̂ − √
ηpα)2〉ωd2α

= Nλ

1 + λ

[
(g − √

η)2
N−1∑
n=0

g2n(n + 1)

(1 + λ)n+1
+ η

g2N (N + 1)

(1 + λ)N+1

+ 1

2

N∑
n=0

g2n

(1 + λ)n

]
. (39)

In this expression and the following expression, the inte-
grations can be calculated by using

∫
pλ(α)e−|α|2 |α|2kd2α =

λk!/(1 + λ)k+1 with pλ from Eq. (1). We can write the
probability that the NLA operation Qg gives the output in
Eq. (6) as

Ps = Tr
∫

pλ(α)QN |α〉〈α|QNd2α

= Nλ

1 + λ

N∑
n=0

g2n

(1 + λ)n
� Nλ

1 + λ
. (40)

As we have seen in Sec. II, this probability Ps corresponds
to the physical probability that the amplifier gives the desired
outcome when it acts on a subsystem of a two-mode squeezed
state.

Our concern here is the parameter regime of the gain factor
η ∈ (1,(1 + λ)2), where the Gaussian channel cannot achieve
our quantum limitation of Eq. (19) [see Fig. 1(b)]. We will
address this regime by further dividing it into two subregimes,
η ∈ (1,1 + λ) and η ∈ (1 + λ,(1 + λ)2), since the behavior of
the minimum MSD suddenly changes at η = 1 + λ.

For η ∈ (1,1 + λ), by substituting g = √
η in Eqs. (39) and

(40), we obtain the form of the MSDs for the probabilistic
amplifier Qg as

V̄ (Prob) = V̄

Ps

= Nλη

Ps

(
η

1 + λ

)N (N + 1)

(1 + λ)2
+ 1

2
. (41)

Since η/(1 + λ) < 1 and Ps is bounded from below as in
Eq. (40), we have V̄ (Prob) = 1/2 for N → ∞. This indicates
that the NLA Qg saturates our bound of Eq. (29) for η ∈
(1,1 + λ).

For η ∈ (1 + λ,(1 + λ)2), let g = (1 + λ)/
√

η � 1 and
x := (1 + λ)/η < 1. Then, we can respectively rewrite
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Eqs. (39) and (40) as

V̄ = Nλ

1 + λ

(
1

x
+ NxN + 1

2

N∑
n=0

xn

)
,

(42)

Ps = Nλ

1 + λ

N∑
n=0

xn.

From these expressions we obtain

V̄ (Prob) = V̄

Ps

= 1

1 − xN+1︸ ︷︷ ︸
�1

⎛
⎝1

x
− 1 + N (1 − x)xN︸ ︷︷ ︸

�0

⎞
⎠ + 1

2
.

From this expression and x < 1, we obtain

lim
N→∞

V̄

Ps

=
(

1

x
− 1

)
+ 1

2
= η

1 + λ
− 1

2
. (43)

This coincides with our bound in Eq. (29) when η ∈ (1 +
λ,(1 + λ)2). Therefore, one can design a probabilistic machine
whose performance is arbitrary close to the amplification
limit of Eq. (19) by taking sufficiently large N in both the
subregimes η ∈ (1,1 + λ) and η ∈ (1 + λ,(1 + λ)2).

It would be helpful to provide physical intuition for why
the probabilistic amplifier Qg works so remarkably well
that it can achieve our quantum limit. By the action of
QN = ∑N

n=0 gn|n〉〈n| on the two-mode squeezed state |ψξ 〉 =√
1 − ξ 2

∑∞
n=0 ξn|n〉|n〉 we have [38]

QN |ψξ 〉 =
√

1 − ξ 2
N∑

n=0

(gξ )n|n〉|n〉. (44)

This means the resultant (unnormalized) state is proportional
to another two-mode squeezed state in the truncated photon-
number subspace, i.e., QN |ψξ 〉 ∝ |ψgξ 〉. It thus effectively
enhances the two-mode squeezed interaction as ξ → gξ (see
Sec. IV for a specific statement on the strength of entan-
glement). On the other hand, it is known that the two-mode
squeezed state minimizes the uncertainty product of Einstein-
Podolsky-Rosen-like operators 〈�2(x̂A − gxx̂B)〉〈�2(p̂A +
gpp̂B)〉 [39]. This quantity appears in Eq. (20), and by
construction its minimum is responsible for our quantum limit
of Eq. (19). Therefore, we have a simple physical picture in
which, starting from a two-mode squeezed state ψξ , the NLA
Qg enables us to produce another two-mode squeezed state ψξ ′

so as to minimize the corresponding quantum uncertainty (with
a certain probability and a finite error). This picture would also
explain why the NLA Qg could achieve the optimal fidelity
in the fidelity-based amplification limit [18]. The optimal
fidelity can be related to the maximum eigenvalue of a density
operator in the form of M = ∫

d2αpλ(α)|α〉〈α| ⊗ |κα∗〉〈κα∗|
[see Eq. (15) of [17]], and the eigenstate that gives the
maximum eigenvalue is a two-mode squeezed state [17].

Now, we can reach the following two statements for the
normal amplification or attenuation process: (i) Our quantum
limitation on the amplification or attenuation process behaves
as a tight inequality including the case of the phase-sensitive
amplification process. (ii) In order to demonstrate an advantage
of a non-Gaussian amplifier over the Gaussian devices, one

needs to operate the amplifier in the regime η ∈ (1,(1 + λ)2).
We will address the case of the phase-conjugate amplification
or attenuation process in the next section.

C. Phase conjugation

Our bound on the uncertainty product in Eq. (19) for
the phase-conjugate process is equivalent to the bound of
the classical limit due to entanglement-breaking channels in
Ref. [34]. Hence, our bound can be achieved by the following
measure-and-prepare scheme:

A∗
G(ρ) = π−1

∫
d2α〈α|ρ|α〉|

√
Gα∗〉〈

√
Gα∗|, (45)

with G = η/(1 + λ)2 for the case with symmetric gain pair η =
ηx = ηp. For the asymmetric case, the bound can be achieved
by adding the squeezer on the channel as E(ρ) = SA∗

G(ρ)S†,
similar to the flow of Eqs. (34), (35), and (36). This concludes
the tightness of our quantum limit in Eq. (19) for the case of
the phase-conjugation task.

As a summary of this section, we have investigated the
attainability of our quantum limit given in Eq. (19). For
the normal amplification task, it has been shown that there
are two parameter regimes, one in which the well-known
Gaussian amplifier achieves our quantum limit and the other
in which a probabilistic non-Gaussian amplifier outperforms
the Gaussian amplifier. Specifically, we have shown that the
NLA outperforms the Gaussian amplifier and asymptotically
achieves our bound in the parameter regime η ∈ (1,(1 + λ)2).
For the phase-conjugation task, our quantum limit can be
achieved by a Gaussian phase-conjugation channel described
by an entanglement-breaking map. These structures repeat the
results of the optimal amplification design for the fidelity-
based amplification limit given in Ref. [18]. Hence, our
result suggests that the optimality of the amplifiers could
be addressed straightforwardly by using canonical variables
without invoking a fidelity-based figure of merit despite recent
studies being more focused on the property of fidelities
[17–19]. Our results also suggest that canonical uncertainty
relations still play a significant role in determining quantum
limitations on a general physical process.

In the next section we will introduce a different point of
view on our framework of amplification limits.

IV. GAUSSIAN AMPLIFICATION LIMIT AND
ENTANGLEMENT DISTILLATION

In this section, we find an interesting connection be-
tween our amplification limit and entanglement-distillation
protocols. In Sec. IV A, we show that the no-go theorem
for Gaussian entanglement distillation imposes a physical
limitation on amplifiers composed of Gaussian operations.
Then, it turns out that the NLA [20] (the probabilistic amplifier
Qg of the previous section) is actually breaking this limit
and is regarded as a process of entanglement distillation. In
Sec. IV B, we show that our amplification limit, conversely,
provides an asymptotically tight limitation on entanglement
distillation. This immediately implies that the NLA is an
optimal entanglement-distillation process.
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A. A tight no-go bound on Gaussian entanglement distillation
and a criterion for entanglement distillation by

a non-Gaussian amplifier

Let us define the Einstein-Podolsky-Rosen (EPR) uncer-
tainty for the density operator J of a two-mode system AB as
[40]

�(J ) := min
{
1, 1

2 〈�2(x̂A − x̂B) + �2(p̂A + p̂B)〉J
}
. (46)

This quantity determines the entanglement of formation (EOF)
for symmetric Gaussian states [40] and generally gives a lower
bound of EOF for two-mode states [41,42],

E(J ) � f [�(J )], (47)

where f is a decreasing function of � defined in Ref. [40]
and the equality holds when J is a symmetric Gaussian state.
Equation (47) also suggests that a smaller EPR uncertainty
implies a higher entanglement. Note that Theorem 1 of
Ref. [41] is proven without using the property that the state ρ

is a Gaussian state. Hence, the EPR uncertainty gives a lower
bound of the EOF not only for two-mode Gaussian states but
also for general two-mode states. The EPR uncertainty for the
two-mode squeezed state |ψξ 〉 =

√
1 − ξ 2

∑
n ξn|n〉|n〉 can be

written as

�(ψξ ) = (1 − ξ )2

1 − ξ 2
, (48)

and the EOF is formally given by

E(ψξ ) = f [�(ψξ )]. (49)

Let us consider the case of gx = gp = 1 in our proof of
Eq. (19). Then, with the help of Eqs. (23) and (24), the EPR
uncertainty for a general state J = EA ⊗ IB(|ψξ 〉〈ψξ |)/Ps can
be associated with the MSDs of Eq. (18) as

�(J ) = 1
2

(
V̄ (Prob)

x + V̄ (Prob)
p − 1

)
= V̄ (Prob) − 1

2 , (50)

where V̄ (Prob) = (V̄ (Prob)
x + V̄ (Prob)

p )/2 is an average of the
MSDs and V̄ (Prob)

z := V̄z/Ps . When E(ρ) = ρ (E is an identity
map), J is the two-mode squeezed state. Then, substituting the
condition gx = gp = 1 into Eq. (24), we have η = 1 + λ =
1/ξ 2. From this relation and Eq. (48) we can write

�(ψξ ) = 1

λ
(
√

η − 1)2. (51)

Since Gaussian entanglement cannot be distilled by Gaus-
sian local operations and classical communication [26,27], we
have

E(ψξ ) � E(J ), (52)

whenever E is a Gaussian operation. Concatenating Eqs. (47),
(49), and (51), we obtain

f [�(ψξ )] � f [�(J )]. (53)

Since f is a decreasing function of �, this implies

�(ψξ ) � �(J ). (54)

This means that the EPR uncertainty of a two-mode squeezed
state cannot be reduced by any local Gaussian operation.

Substituting Eqs. (50) and (51) into Eq. (54), we obtain

V̄ (Prob) � 1

λ
(
√

η − 1)2 + 1

2
. (55)

This is a physical limitation that bounds the average of the
MSDs when E is a Gaussian CP map. Interestingly, the right-
hand side of Eq. (55) coincides with the right-hand side of the
second equation in Eqs. (33). Therefore, this bound is tight and
achieved by the Gaussian amplifier AG in Eq. (32). It could be
helpful to restate this bound in the following form.

Theorem 2. For any Gaussian operation E and λ > 0 it holds
that

1

2Ps

∑
z∈{x,p}

V̄z(1 + λ,λ) � 1

λ
(
√

1 + λ − 1)2 + 1

2
, (56)

where Ps and V̄z are given by Eqs. (6) and (18), respectively.
Proof. See the above discussion and Eq. (55). �
Theorem 2 [Eq. (56)] can be regarded as an amplification

limit for Gaussian operations. In addition, it per se presents
the Gaussian limitation on manipulating the EPR correlation.
Hence, any violation of Eq. (56) signifies a probabilistic
enhancement of entanglement and a non-Gaussian advantage
of entanglement distillation. In other words, breaking the
condition in Eq. (56) is a clear criterion for an experimental
demonstration of entanglement distillation. Furthermore, such
a benchmark can be verified by using standard homodyne
measurements with an input ensemble of coherent states
similar to the recently proposed quantum benchmark [34].

Note that there are different approaches to characterize
non-Gaussian entanglement generation [43–45]. Our result
here is directly determined by the no-go theorem for Gaussian
entanglement distillation and is applicable to local filtering
operations acting on a single mode. Moreover, it ensures an
enhancement of the EOF. It would be valuable to investigate
how one can beat our boundary of Theorem 2 by using state-
of-the-art technology in photonic quantum state engineering
[46–55] and whether the experimental demonstrations of
probabilistic amplifications [21,22,24] can fulfill our criterion.

Although Eq. (56) gives a tight limitation for Gaussian
operations, our statement is severely restricted for the single
point η = 1 + λ of the curve achieved by the Gaussian channel
in the second inequality of Eq. (33) [see Fig. 1(b)]. Therefore,
it remains open how to determine such an amplification limit
on the class of Gaussian operations for the entire parameter
space η ∈ (1,(1 + λ)2).

B. Amplification limit as a physical limit on distillation of
entanglement via local filtering operations

We show our amplification limit in Eq. (19) presents a
bound for minimizing the EPR uncertainty when one uses the
local filtering operation described by a stochastic quantum
channel.

In contrast to our distillation bound for Gaussian operations
in Eq. (56) we have the following statement for general CP
maps:

Corollary 1. For any operation E and λ > 0 it holds that

1

Ps

∑
z∈{x,p}

V̄z(1 + λ,λ) � 1, (57)
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where Ps and V̄z are given by Eqs. (6) and (18), respectively.
Proof. Recalling η = 1 + λ and V̄ (Prob)

z − 1/2 � 0 in
Eq. (50), we can show that

�(J ) = 1
2

(
V̄ (Prob)

x + V̄ (Prob)
p − 1

)
�

√(
V̄

(Prob)
x − 1

2

)(
V̄

(Prob)
p − 1

2

)
� 0, (58)

where we use the relation a + b � 2
√

ab for {a,b} � 0 and
Theorem 1 [Eq. (19)]. This proves Eq. (57). �

The property of �(J ) � 0 itself can be obtained from the
definition of the EPR uncertainty in Eq. (46), and Corollary 1
is rather trivial. An interesting point here is that the minimum
of this inequality, which is the bound on the entanglement
distillation process starting from a two-mode squeezed state,
is asymptotically achievable by the probabilistic amplifier
Qg in Eq. (37). Hence, the NLA not only is a probabilistic
amplifier that enables us to break the no-go bound on Gaussian
operations in Eq. (56) but also provides an optimal process that
asymptotically achieves the physical limitation of Eq. (57).
Again, the simple physical picture that, starting from a two-
mode squeezed state ψξ , the NLA Qg enables us to produce
another two-mode squeezed state ψξ ′ would explain why this
process could be optimum [See Eq. (44)]. It would be worth
noting that a quantum benchmark inequality (Corollary 1 of
[34]) with η = 1 + λ corresponds to

1

Ps

∑
z∈{x,p}

V̄z(1 + λ,λ) � 3. (59)

The equality implies �(J ) = (V̄ (Prob)
x + V̄ (Prob)

p − 1)/2 = 1.
Hence, the separable point E(J ) = 0 is consistent with the
entanglement-breaking limit.

In this section, we have found an insightful interrela-
tion between our amplification limit and continuous-variable
entanglement. It has been shown that the no-go theorem
for Gaussian entanglement distillation gives a limitation on
Gaussian amplifiers. Thereby, we have pointed out that the
NLA can break this limit and would be useful to demonstrate
the significance of a non-Gaussian process. In addition,
it turned out that our amplification limit determines the
physical limitation of entanglement distillation due to local
filtering operations. Note that one can find different links
between probabilistic amplifiers and entanglement distillation
in Refs. [23,25,56]. Note also that local photon subtraction
and addition could reduce the EPR uncertainty and enhance
entanglement [57].

V. CONCLUSION AND REMARKS

In this paper we have presented an uncertainty-product form
of quantum amplification limits based on the input ensemble of
Gaussian-distributed coherent states and successfully revived
the key role of canonical uncertainty relations in determining
a general quantum limit. Our amplification limit retrieves
basic properties of the traditional amplification limit without
assuming the linearity condition. Moreover, it is usable for
general stochastic quantum channels and hence probabilistic
amplifiers. Given a physical process, one can test how closely
the performance of the process approaches the ultimate

quantum limit via an accessible input set of coherent states and
standard homodyne measurements. We have also identified the
parameter regime where Gaussian channels cannot achieve
our bound but the NLA [20] asymptotically achieves our
bound. In addition, we have derived an amplification limit on
Gaussian operations by using the no-go theorem for Gaussian
entanglement distillation. This in turn shows that beating this
limit implies a clear advantage of non-Gaussian processes in
reducing the EPR uncertainty and establishes a simple criterion
for entanglement distillation. Thereby, we have found that the
NLA not only is an amplifier whose action is useful for an
enhancement of entanglement but also constitutes an optimal
local filtering process for reducing the EPR uncertainty. It
would be valuable to investigate how one can demonstrate such
a non-Gaussian advantage by using state-of-the-art technology
in photonic quantum state engineering [46–55] as well as in
the experiments of the noiseless amplification [21–25].

Unfortunately, our result on the Gaussian amplification
limit works for a rather restricted set of the parameters.
The possibility to extend Theorem 2 beyond the present
constraints is left for future works. It remains open whether
(i) a probabilistic Gaussian channel might outperform the
deterministic Gaussian channel and (ii) a Gaussian channel
could be an optimal trace-preserving map (both regarding the
parameter regime η � 1 + λ). The second statement is true for
the case of the fidelity-based amplification limit [18], while the
validity of the first statement is unclear. It is also open whether
one can signify the non-Gaussian advantage on entanglement
distillation from the viewpoint of the fidelity-based approach.
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APPENDIX: CONNECTION TO THE AMPLIFICATION
UNCERTAINTY PRINCIPLE

In this appendix we show that our amplification limit (for
the case of the uniform distribution λ → 0) coincides with
the familiar traditional form of amplification limits given in
Ref. [1].

Let us recall the amplifier uncertainty principle (AUP) in
Ref. [1]. We consider linear transformation of a single mode
field, so that the first moments are linearly amplified with a
possibly phase-dependent gain factor (Gx,Gp) as

〈Ŷx〉 =
√

Gx〈X̂x〉, 〈�2Ŷx〉 = Gx〈�2X̂x〉 + Nx,
(A1)〈Ŷp〉 = ±√

Gp〈X̂p〉, 〈�2Ŷp〉 = Gp〈�2X̂p〉 + Np,

where X̂ and Ŷ denote input and output quadratures, re-
spectively. They satisfy the canonical commutation relation
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[X̂x,X̂p] = [Ŷx,Ŷp] = i. The upper and lower signs in
Eq. (A1) respectively indicate the cases of the normal
amplification or attenuation process and the phase-conjugation
process. We may focus on the property of added noise
terms:

Nx = 〈�2Ŷx〉 − Gx〈�2X̂x〉,
(A2)

Np = 〈�2Ŷp〉 − Gp〈�2X̂p〉.
This quantity tells us an amount of additional noise imposed
by the channel because the second terms in Eqs. (A2) represent
the variance of an input state. The AUP gives a physical limit
for CP trace-preserving maps satisfying Eq. (A1):

NxNp � 1
4 |√GxGp ∓ 1|2. (A3)

Note that in Ref. [1] the AUP is defined through the added
noise number Az := Nz/Gz = 〈�2Ŷz〉/Gz − 〈�2X̂z〉.

In order to link Eq. (A3) to our amplification limit in
Eq. (19), we consider the input of coherent states ρα = |α〉〈α|
with the shorthand notation of Eq. (13). This input implies

〈�2X̂x〉 = 〈�2X̂p〉 = 1/2, (A4)

〈X̂x〉 = xα, 〈X̂p〉 = pα. (A5)

Using Eqs. (A1) and (A5), we can write

〈�2Ŷx〉 = 〈
Ŷ 2

x

〉 − 〈Ŷx〉2 = Tr[(x̂ −
√

Gxxα)2E(ρα)],
(A6)

〈�2Ŷp〉 = 〈
Ŷ 2

p

〉 − 〈Ŷp〉2 = Tr[(p̂ ∓ √
Gppα)2E(ρα)].

Due to the linearity assumption, we can write any average
of the variance (〈�2Ŷx〉,〈�2Ŷp〉) over the coherent-state
amplitude α as the variances for a single coherent state. Hence,
it holds that∫

pλ(α)(〈�2Ŷx〉,〈�2Ŷp〉)d2α = (〈�2Ŷx〉,〈�2Ŷp〉). (A7)

Concatenating Eqs. (A2), (A4), (A6), and (A7), we can
write

Nx =
∫

pλ(α)Tr[(x̂ −
√

Gxxα)2E(ρα)]d2α︸ ︷︷ ︸
V̄x (Gx,λ)

−Gx/2,

(A8)

Np =
∫

pλ(α)Tr[(p̂ ∓ √
Gppα)2E(ρα)]d2α︸ ︷︷ ︸

V̄p(Gp,λ)

−Gp/2,

where the terms with underbraces, V̄x and V̄p, come from Eq.
(18). Substituting Eqs. (A8) into Eq. (A3), we can reexpress
the AUP as∏

z=x,p

[V̄z(Gz,λ) − Gz/2] � 1

4
|√GxGp ∓ 1|2. (A9)

It would be instructive to illustrate the gain dependence for
symmetric cases as in Fig. 1(b). For the normal amplification
process with G = Gx = Gp and V̄ = V̄x = V̄p we have

V̄ � 1
2 (G + |G − 1|). (A10)

Similarly, for the phase-conjugation process, we have

V̄ � G + 1
2 . (A11)

We thus clearly observe that the structures of Eqs. (A10) and
(A11) are the same as those of Eqs. (28) and (30), respectively.

On the other hand, substituting {λ,ηx,ηp} = {0,Gx,Gp} in
Eq. (19) and assuming E is a CP trace-preserving map, we can
write our amplification limit as∏

z=x,p

[V̄z(Gz,0) − Gz/2] � 1

4
|√GxGp ∓ 1|2. (A12)

Comparing this relation with Eq. (A9), we can see that our
amplification limit coincides with the AUP in the limit of
λ → 0. It is clear from Fig. 1(b) that the inequalities of
Eq. (A10) [Eq. (A11)] can be violated for any finite width
of the distribution λ > 0 whenever η > 1 (η > 0).
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