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A successful approach to understand field theories is to resolve the physics into different length or energy scales
using the renormalization group framework. We propose a quantum simulation of quantum field theory which
encodes field degrees of freedom in a wavelet basis—a multiscale description of the theory. Since wavelet families
can be constructed to have compact support at all resolutions, this encoding allows for quantum simulations to
create particle excitations which are local at some chosen scale and provides a natural way to associate observables
in the theory to finite-resolution detectors.
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I. INTRODUCTION

Wavelets are a versatile basis to represent functions which
are neither localized in position nor momentum. They are best
known for their use [1] in signal processing such as in the Joint
Photographic Experts Group (JPEG) compression where they
can represent and compress data at multiple spatial scales with
low loss of fidelity. They are also being adopted to speed up
calculations for a plethora of problems in science, including
quantum molecular dynamics [2], density functional theory
[3], and Monte Carlo simulations on lattice [4], which are of
enormous importance for quantum chemistry, solid state, and
statistical physics. Further, there are potential applications to
high-energy physics where a wavelet basis been proposed as a
way to regularize quantum field theories [5].

At the same time that these advances have been made
in classical computations, algorithms have been developed
to attack difficult problems in quantum mechanics by using
quantum simulators [6]. However, most quantum algorithms
for simulation of dynamics in real space use some version
of bases which are localized in position and/or momentum
and mapped into each other by Fourier transforms. While
the quantum Fourier transform is efficient, more efficient
evolutions may be possible for quantum states which are not
localized in either basis.

In Ref. [7], the authors provide a quantum algorithm
to simulate scalar bosonic field theories which achieves
accurate estimation of scattering matrix probabilities in a time
exponentially faster than known classical algorithms. Here we
present a wavelet-based quantum simulation. A key feature of
this basis choice is that we need not discretize space; rather, we
choose a representative scale to capture features of the wave
function and can add smaller scale features in a controlled
manner. There are several advantages to using wavelets in the
context of quantum simulation algorithms for quantum field
theory. First, wavelets have a built-in scaling structure which
could be used to compute expectation values of operators
such as energy density and two-point correlation functions
at different length scales. This information could then be used
to compute fixed points of renormalization flows [8]. Second,
the wavelet basis has a well-defined procedure to include local

gauge invariance via covariant derivatives at every length scale
[9,10]. Third, in the spirit of quantum information, a wavelet
basis is a natural one to describe quantum fields by the scale
of a measurement. This can obviate issues with divergences
of Greens functions that arise in calculations using pointlike
operators [11].

We first briefly introduce in Sec. II the essential features
of wavelets focusing on a particular family, the Daubechies
wavelets, which are related to each other by dyadic scaling and
discrete translations. In Sec. III we represent the Hamiltonian
for a scalar bosonic field theory in d = 1 spatial dimension
in a wavelet basis where the mode operators have support
over the finite spatial extent of wavelets. This construction
has a straightforward extension to higher d. We show how to
encode the ground state of the free field theory in a register
of qubits or bosonic modes and how to create single-particle
excitations and turn on quartic interactions. The complexity
of this simulation is shown in Sec. IV to be similar, up to a
multiplicative factor logarithmic in the number of modes, to
the algorithm of Ref. [7] that uses the discretized position
basis. A summary of our results and outlook are given
in Sec. V.

II. BASIC PROPERTIES OF DAUBECHIES WAVELETS

Wavelets constitute an orthonomal basis for the Hilbert
space L2(R) of square integrable functions on the line and
we briefly review some of their properties here. For a
comprehensive survey see Ref. [1]. Generically, wavelets are
defined in terms of a mother wavelet function w(x) and a
father scaling function s(x) by taking linear combinations
of shifts and rescalings thereof. For the remainder we focus
on one family known as Daubechies K wavelets where the
role of K ∈ Z+ will be described below. First, we introduce
two unitary operators on L2(R): T for discrete translation
and D for scaling defined by the action on a function
f ∈ L2(R):

Df (x) =
√

2f (2x); T f (x) = f (x − 1). (1)
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The father scaling function s(x) is a solution to the linear
renormalization group equation

s(x) = D
[

2K−1∑
n=0

hnT ns(x)

]
, (2)

reading first block average and then rescale. The 2K real
coefficients {hn} are computed analytically for K < 4 and
are solved for numerically otherwise. Given the solution to
s(x), scale 2−k scaling functions are defined by applying n

unit translations followed by k scaling transformations on the
father:

sk
n(x) = DkT ns(x). (3)

The scaling functions are normalized so∫
dx sk

n(x) = 1. (4)

The mother wavelet w(x) and the father s(x) have the property
that they are neither localized in position or momentum. The
wavelets take the following form:

w(x) =
2K−1∑
n=0

gnDT ns(x) =
2K−1∑
n=0

gns
1
n(x), (5)

where the set of coefficients {gn} are obtained from {hn} by
reversing the order and alternating signs: gn = (−1)nh2K−1−n.
Scale 2−k wavelets are obtained by translating and scaling the
mother:

wk
n(x) = DkT nw(x). (6)

The index K specifies the number of vanishing moments of
the wavelets, i.e.,∫

dx w(x)xp = 0 p = 0, . . . ,K.

The vanishing of the zeroth moment is synonymous with
the admissibility condition which guarantees that the wavelet
basis is square integrable [1]. Choosing larger K means more
features can be captured at a given scale, however, at the ex-
pense of additional computational cost since more translations
are needed during block averaging. Daubechies wavelets are
optimal in the sense that they have the smallest size support for
a given number of vanishing moments [1]. The basis functions
sk
n(x) and wk

n(x) have support on [2−kn,2−k(n + 2K − 1)] and
satisfy the following orthonormality relations:∫

dx sk
n(x)sk

m(x) = δm,n,∫
dx sk

n(x)wk+l
m (x) = 0 (l � 0), (7)∫

dx wk
n(x)wl

m(x) = δm,nδk,l .

By the last relation, the wavelets constitute normalized wave
functions. The scaling functions at scale 2−k are complete in
that

∞∑
n=−∞

1√
2k

sk
n(x) = 1. (8)

A final important property of the Daubechies K wavelets is
that they are K − 2 times differentiable.

Linear superpositions of functions {sk
n(x)}∞n=−∞ (with

square summable coefficients) span a subspace Hk of L2(R),
which is the scale 2−k subspace and which is a proper
subspace of a smaller scale spaceHk ⊂ Hk+m (m > 0). Linear
combinations of the scale 2−k wavelet functions {wk

n(x)}∞n=−∞
span the orthocomplement Wk of Hk in Hk+1: Hk+1 =
Hk ⊕ Wk . We can use a set of scaling functions {sk

n(x)}∞n=−∞
to represent features down to scale 2−k and a set of wavelets
{wk

n(x)}∞n=−∞ to represent features down to scale 2−(k+1) that
cannot be represented at scale 2−k . The whole space has the
following decomposition satisfied for any finite k:

L2(R) = Hk

∞⊕
l=k

Wl , (9)

meaning that for a fixed scale 2−k the set{
sk
n(x)

}∞
n=−∞

⋃ {
wl

n(x)
}∞,∞

n=−∞,l=k

span a basis for L2(R).

III. A WAVELET REPRESENTATION OF
QUANTUM FIELDS

A. Free field ground state represented in the wavelet basis

The class of theories we address are the massive scalar
bosonic �̂4 theory in d ∈ N spatial dimensions. These are
given by the Hamiltonian:

Ĥ = Ĥ (0) + Ĥ (I ), (10)

where the free field contribution is

Ĥ (0) =
∫

ddx
1

2

{
�̂2(x,t) + [∇�̂2(x,t)] + m2

0�̂
2(x,t)

}
(11)

and the interaction term is

Ĥ (I ) =
∫

ddx
λ0

4!
�̂4(x,t). (12)

The canonical momentum is

�̂(x,t) = ∂�̂(x,t)

∂t
, (13)

which, together with the field, are normalized to satisfy the
equal time commutation relation [�̂(x,t),�̂( y,t)] = iδd (x −
y) (� ≡ 1). Here the phase velocity of waves in this theory is
set so the speed of light is 1, the bare mass is m0, and the
strength of the interactions is dictated by λ0.

To apply wavelets to the field theory we follow the prescrip-
tion given in Ref. [10]. Because the Hamiltonian involves terms
with no higher than first derivatives, it suffices to choose the
Daubechies K = 3 wavelet family which have continuous first
derivatives for the scale and wavelet functions (Fig. 1). This
will guarantee that we have analytic forms for the coupling
matrix elements in the wavelet basis while also providing
for a minimal size support for the functions, a feature which
reduces the number of nonzero coupling terms that appear in
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FIG. 1. (Color online) The father scaling function s(x) and
mother wavelet w(x) with support on [0,5] for the Daubechies K = 3
wavelet family. The functions have continuous first derivatives.

the Hamiltonian. We present the d = 1 case as it makes the
notation considerably simpler and captures the salient features
of the algorithm. The wavelet representation can easily be
extended to higher dimensions (see Appendix B) using a
Cartesian product of wavelets and scale functions. First we
decompose the field and its conjugate in the wavelet basis as:

�̂(x,t)

=
∑
n∈Z

�̂[s]lmin (n,t)slmin
n (x) +

∑
n∈Z

∞∑
l=lmin

�̂[w]l(n,t)wl
n(x)

(14)
�̂(x,t)

=
∑
n∈Z

�̂[s]lmin (n,t)slmin
n (x) +

∑
n∈Z

∞∑
l=lmin

�̂[w]l(n,t)wl
n(x),

where the coarsest scale in the theory corresponds to 2−lmin .
Henceforth, we drop the dependence of the fields and their
conjugates on time. The discrete field operators are projections
of the field operators onto the scaling and wavelet functions
(here l � lmin):

�̂[s]lmin (n) =
∫

dx �̂(x)slmin
n (x),

�̂[w]l(n) =
∫

dx �̂(x,t)wl
n(x)

(15)

�̂[s]lmin (n) =
∫

dx �̂(x)slmin
n (x),

�̂[w]l(n) =
∫

dx �̂(x)wl
n(x),

and they satisfy the following equal time commutation
relations (assuming here that lmin � r,s):

[�̂[s]lmin (n),�̂[s]lmin (m)] = 0, [�̂[s]lmin (n),�̂[s]lmin (m)] = 0

[�̂[s]lmin (n),�̂[s]lmin (m)] = iδn,m

[�̂[w]r (n),�̂[w]s(m)] = 0, [�̂[w]r (n),�̂[w]s(m)] = 0
(16)

[�̂[w]r (n),�̂[w]s(m)] = iδr,sδn,m

[�̂[w]r (n),�̂[w]s(m)] = 0, [�̂[w]r (n),�̂[w]s(m)] = 0

[�̂[w]r (n),�̂[w]s(m)] = 0, [�̂[w]r (n),�̂[w]s(m)] = 0.

The discrete annihilation operators, for the scaling and
wavelet fields, respectively, are

âlmin (n) = 1√
2

[√
γ (lmin)�̂[s]lmin (n) + i

1√
γ (lmin)

�̂[s]lmin (n)

]

b̂r (n) = 1√
2

[√
γ (r)�̂[w]r (n) + i√

γ (r)
�̂[w]r (n)

]
, (17)

and the inverse relations are

�̂[s]lmin (n) = 1√
2γ [s](lmin)

[âlmin†(n) + âlmin (n)]

�̂[s]lmin (n) = i

√
γ [s](lmin)

2
[âlmin†(n) − âlmin (n)]

(18)

�̂[w]r (n) = 1√
2γ [w](r)

[b̂r†(n) + b̂r (n)]

�̂[w]r (n) = i

√
γ [w](r)

2
[b̂r†(n) − b̂r (n)].

Each annihilates the free field vacuum and together with
the set of adjoint creation operators they satisfy the bosonic
commutation relations:

[âlmin (n),âlmin†(m)] = δm,n

[b̂l(n),b̂j†(m)] = δm,nδj,l,
(19)

with all others commutators vanishing. The Hilbert space for
the free field theory is spanned by linear combinations of
products of the creation operators from the set almin†(m),bl†(m)
applied to |G〉.

The coefficients γ depend on the scale 2−lmin and the mass
m0 as follows:

γ [s](lmin) = 1 ±
√

1 − 4ν[s](lmin)η[s](lmin)

2ν[s](lmin)
(20)

γ [w](r) = 1 ±
√

1 − 4ν[w](r)η[w](r)

2ν[w](r)
,

where |G〉 is the free field vacuum state,

ν[s](lmin) = 〈G|�̂[s]lmin (0)�̂[s]lmin (0)|G〉
ν[w](r) = 〈G|�̂[w]r (0)�̂[w]r (0)|G〉

(21)
η[s](lmin) = 〈G|�̂[s]lmin (0)�̂[s]lmin (0)|G〉

η[w](r) = 〈G|�̂[w]r (0)�̂[w]r (0)|G〉,

and the ± sign is chosen according to the case that makes the
expression positive.

Following Ref. [10] we decompose the free field Hamilto-
nian into three pieces

Ĥ (0) = Ĥss + Ĥww + Ĥsw. (22)

We fix a scale 2−lmin so the Hilbert space is decomposed as
in Eq. (9). Then the constituent terms of the Hamiltonian
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are

Ĥss = 1

2

(∑
n∈Z

: �̂[s]lmin (n)�̂[s]lmin (n) :

+m2
0

∑
n∈Z

: �̂[s]lmin (n)�̂[s]lmin (n) :

+
∑

m,n∈Z
: �̂[s]lmin (m)Dk

m,n�̂
[s]lmin (n) :

⎞
⎠

Ĥww = 1

2

(∑
n∈Z

∑
l�lmin

: �̂[w]l(n)�̂[w]l(n) : (23)

+m2
0

∑
n∈Z

∑
l�lmin

: �̂[w]l(n)�̂[w]l(n) :

+
∑

m,n∈Z

∑
l,j�lmin

: �̂[w]l(m)Dl,j
m,n�̂

[w]j (n) :

⎞
⎠

Ĥsw = 1

2

∑
m,n∈Z

∑
l�lmin

: �̂[w]l(m)Dl,lmin
m,n �̂[s]lmin (n) : ,

where : Ô : indicates normal ordering of the operator Ô is
taken. The operator Ĥss describes physics at a scale 2−lmin

involving interactions between scale field degrees of freedom,
Ĥww describes physics at finer scales involving interactions
between wavelet degrees of freedom, and Ĥsw describes
coupling between scale fields at resolution 2−lmin and finer
wavelet degrees of freedom. While there are an infinite number
of finer scale degrees of freedom we truncate to lmax consistent
with momentum cutoffs in physical theories. Specifically, the
maximum momentum for a single-particle excitation is pmax 

2lmax as described in Sec. III C. The coupling coefficients are

Dlmin
m,n =

∫
dx ∂xs

lmin
m (x) · ∂xs

lmin
n (x)

Dl,j
m,n =

∫
dx ∂xw

l
m(x) · ∂xw

j
n(x) (24)

Dl,lmin
m,n = 2

∫
dx ∂xw

l
m(x) · ∂xs

lmin
n (x).

Many of these coefficients are computed in Ref. [10] for the
Daubuchies K = 3 wavelets. The choice of K = 3 ensures
a continuous first derivative of the scaling functions which
allows for computing these overlaps exactly. Because the
functions have compact support, the coefficients vanish unless
|n − m| � 4.

Let the physical one-dimensional volume be La where L ∈
N and a is the unit of length at the base scale, and assume
periodic boundaries. The size of L will be determined by
the long-wavelength physics that one wishes to capture. At
smaller scales, 2−l , the unit of length is a2−l . We will work
in normalized length units such that a = 1, and we choose
our base scale so lmin = 0 such that the support of the scaling
function s0

0 (x) = s(x) is the interval [0,5]. A plot of these
functions is shown in Fig. 2.

Now let us introduce notation for basis vectors in the
wavelet basis. Basis vectors |r〉

w
j
m

denote field amplitude r

in the wavelet mode w
j
m such that �̂[w]j (m)|r〉

w
j
m

= r|r〉
w

j
m

and, similarly, �̂[s]0(m)|r〉s0
m

= r|r〉s0
m
. We adopt a simplified

notation for states in the tensor product space of the

V = L2lmax+1, (25)

FIG. 2. (Color online) One-dimensional Daubechies K = 3
scale functions and wavelets plotted as a function of position x at
three scales for a system of size L = 10 with periodic boundaries. (a)
Scale functions {s0

n(x)}L−1
n=0 ; (b) wavelets {w0

n(x)}L−1
n=0 ; (c) {w1

n(x)}2L−1
n=0 ;

(d) wavelets {w2
n(x)}4L−1

n=0 . Results in the main text are for a system
with periodic boundaries.
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modes utilizing the vector r = (r0, . . . rV −1)T with

|r〉 = |r0〉s0
0
⊗ · · · ⊗ |rL−1〉s0

L−1
⊗ |rL〉w0

0

⊗ · · · ⊗ |r2L−1〉w0
L−1

⊗|r2L〉w1
0
⊗ · · · ⊗ |r4L−1〉w1

2L−1

⊗|r4L〉w2
0
· · · ⊗ |rV −1〉wlmax

V/2−1
. (26)

The ground state of the free field theory Ĥ (0) is then
approximated by

|G〉 ≈ N−1
∫

dr0 . . .

∫
drV −1 e− 1

2 rT K1/2 r |r〉, (27)

where the normalization is N−1 = det(K1/2)1/4/πV/4. Here
the coupling matrix is

K =

⎡
⎢⎢⎢⎢⎢⎣

[Kss] [Ksw(0)] · · · [Ksw(lmax)]

[Ksw(0)]T [Kww(0,0)] . . . [Kww(0,lmax)]

...
. . .

[Ksw(lmax)]T [Kww(0,lmax)]T · · · [Kww(lmax,lmax)]

⎤
⎥⎥⎥⎥⎥⎦. (28)

The scale-scale mode couplings are encoded in Kss, the scale-wavelet couplings in Ksw, and the wavelet-wavelet couplings in
Kww. These matrices are

[Kss]a,b = (
m2

0 − D0
0,0

)
δa,b + 1

2

(
D0

0,(a−b) mod L + D0
0,(b−a) mod L

)
(0 � a,b < L)

[Ksw(l)]a,b = D
0,l
a,b (0 � a < L, 0 � b < L2l , 0 � l � lmax) (29)

[Kww(l,j )]a,b = m2
0δa,bδj,l + D

l,j

a,b(0 � a < L2l , 0 � b < L2j , 0 � j � l � lmax).

The values of these coupling overlap integrals for
Daubechies K = 3 wavelets are obtained from the following
relations. First we use the scaling function components defined
in Eq. (2)

h0 = 1

16
√

2
(1 +

√
10 +

√
5 + 2

√
10)

h1 = 1

16
√

2
(5 +

√
10 + 3

√
5 + 2

√
10)

h2 = 1

16
√

2
(10 − 2

√
10 + 2

√
5 + 2

√
10)

(30)

h3 = 1

16
√

2
(10 − 2

√
10 − 2

√
5 + 2

√
10)

h4 = 1

16
√

2
(5 +

√
10 − 3

√
5 + 2

√
10)

h5 = 1

16
√

2
(1 +

√
10 −

√
5 + 2

√
10).

The coefficients gn = (−1)nh5−n. The coefficients D0
m,n =

D0
n,m with

D0
0,0 = 5.2576013450,

D0
0,1 = −3.3828986455

D0
0,2 = 0.87333354692, (31)

D0
0,3 = −0.11139112377

D0
0,4 = −5.3243362257 × 10−3,

and D0
m,n = 0 for |m − n| > 4. Because the derivatives of

translations of the father functions form a partition of

unity [1], ∑
n

n∂xs
0
n(x) = 1,

the coefficients satisfy the following constraint:∑
n

nD0
m,n = 0.

The other coefficients are

D
0,l
a,b = 22(l+1)(〈a|[H (l)]l+1D(l)GT (l)|b〉

+ 〈a + L|[H (l)]l+1D(l)GT (l)|b〉
+ 〈a|[H (l)]l+1D(l)GT (l)|b + 2lL〉)

D
l,j

a,b = 22(l+1)(〈a|G(l,j )[H (l,j )]l−jD(l,j )GT (l,j )|b〉
+ 〈a + 2jL|G(l,j )[H (l,j )]l−jD(l,j )GT (l,j )|b〉
+ 〈a|G(l,j )[H (l,j )]l−jD(l,j )GT (l,j )|b + 2lL〉),

(32)

where the scale-dependent matrices are

H (l) =
2(l+2)(L+4)−5∑

m,n=0

hn−2m|m〉〈n|

H (l,j ) =
2(l−j+1)(2(2j L−4))−5∑

m,n=0

hn−2m|m〉〈n|

D(l) =
2(l+2)(L+4)−5∑

m,n=0

D0
m,n|m〉〈n|

D(l,j ) =
2(l−j+1)(2(2j L−4)−5∑

m,n=0

D0
m,n|m〉〈n|
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FIG. 3. (Color online) Visualization of a 1D free scalar bosonic
field (mass m0 = 1) in the wavelet basis. The system size is L = 10,
and lmin = 0, lmax = 6 so the total number of modes is V = 1280.
The modes are ordered according to Eq. (26) with coarsest scale
modes in the upper left and finest wavelet modes in the lower right.
White indicates zero values. (a) The coupling matrix K . Diagonal
stripes show couplings within a given scale while off diagonal stripes
represent couplings between scales. (b) Field correlation matrix
��,� = 1

2 K−1/2 as defined in Eq. (38).

G(l) =
2(l+2)(L+4)−5∑

m,n=0

gn−2m|m〉〈n|

G(l,j ) =
2(l−j+1)(2(2j L−4)−5∑

m,n=0

gn−2m|m〉〈n|. (33)

An example of a K matrix is plotted in Fig. 3(a). Because the
wavelets have compact support, the coupling matrix is sparse,

having 
10V log2(V ) nonzero elements, with the factor of 10
arising from the fact that Daubechies K wavelets have overlap
with 2(2K − 1) translates within any given scale.

B. Constructing the ground state of the free field theory

We encode the vacuum state |G〉 in Eq. (27) into a
qubit register. As described in Appendix A, let the values
rj be discretized via an m bit string xj = xj,0xj,1 . . . xj,m−1

according to rj (xj ) = δ�(−1)xj,0
∑k−1

r=1 2xj,r with δ� the field
amplitude resolution. The field resolution scales like δ� =
O(

√
ε

V E
) (see Sec. IV), where E is a bound on the expectation

value of the energy during the simulation and ε quantifies the
distance between the truncated many body state and the true
ground state of the theory.

The ground state is then represented as a state of m × V

qubits:

|G〉 ≈ N−1
∑

{xj,r∈{0,1}}V −1,m−1
j=0,r=0

e− 1
2 r({xj })T K1/2r({xj })

× |x0,0 . . . x0,m−1〉s0
0
. . . |xV −1,0 . . . xV −1,m−1〉wlmax

V/2−1
.

(34)

To construct this ground state using quantum gates one can use
the Kitaev-Webb circuit [12]. The cost of that construction is
dominated by the O(V 2.376) time complexity associated with
the LDL matrix decomposition of the matrix K1/2.

The field operators expressed in the qubit basis are

�̂[s]0(n) = δ�σ z
n,0

m−1∑
v=1

2v(|1〉〈1|)n,v

(35)

�̂[w]j (n) = δ�σ z
L2j +n,0

m−1∑
v=1

2v(|1〉〈1|)L2j +n,v.

The momentum operators are not diagonal in the qubit basis
so we need to first transform the state to a basis which is
diagonal via the m − 1 qubit quantum Fourier transform (QFT)
F (which acts on all but the sign bit),

�̂[s]0(n) = δ�σ z
n,0F†

[
m−1∑
v=1

2v(|1〉〈1|)n,v

]
F

(36)

�̂[w]j (n) = δ�σ z
L2j +n,0F

†

[
m−1∑
v=1

2v(|1〉〈1|)L2j +n,v

]
F .

For the free field theory, the ground state is a Gaussian
which is completely characterized by the covariance matrix �

defined as

�j,k = Re[tr[ρ(r̂j − 〈r̂j 〉)(r̂k − 〈r̂k〉)]], (37)

where 〈r̂j 〉 is the expectation value of j -th component of the
2V -dimensional vector of operators:

r̂ = [�̂[s]0(0), . . . ,�̂[s]0(L − 1),�̂[w]0(0) . . . ,�̂[w]0(L − 1),

. . . ,�̂[w]lmax (0), . . . ,�̂[w]lmax (2lmaxL − 1),

�̂[s]0(0), . . . ,�̂[s]0(L − 1),�̂[w]0(0) . . . ,�̂[w]0(L − 1),

. . . ,�̂[w]lmax (0), . . . ,�̂[w]lmax (2lmaxL − 1)]T .
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The covariance matrix is block diagonal in the field modes and
their conjugates:

� =
(

��,� ��,�

��,� ��,�

)
= 1

2

(
K−1/2 0

0 K1/2

)
. (38)

A visualization of the correlation matrix ��,� for a massive
free field theory is given in Fig. 2(b). We note that the matrix
K1/2 that appears in the exponent of the of the ground-
state amplitudes has many negligible elements. Numerics on
systems of size V = 2560 modes (size L = 10 and lmax = 7)
and for a wide range of masses, show that ∼3/4 of the
matrix elements have magnitude <10−8. Hence, in practice,
the O(V 2.376) scaling for the construction of the ground state
might be improved making use algorithms that exploit the
matrix sparsity [13].

For completeness, in Appendix C we also describe how to
construct the ground state using an encoding with a bosonic
network instead of qubits. Because the state is Gaussian, the
preparation procedure requires only Gaussian operations on
single modes or pairs of modes.

C. Particle creation in the free field theory

Let us consider the steps in a quantum algorithm to create
a particle excitation above the vacuum ground state of the free
field theory. A simple choice here is to choose the particle’s
wave function to be the wavelet ψ(x) = wr

n(x). That is, we
want to construct the state

b̂r†(n)|G〉. (39)

The momentum operator in the wavelet basis is [10]

p̂ = −
[ ∑

m,n

: �̂[s]lmin (m)P k
m,n�̂

[s]lmin (n) :

+
∑

(m,l),(n,j )

: �̂[w]l(m)P l,j
m,n�̂

j (n) :

+
∑
m,l,n

: �̂[w]l(m)P l
m,n�̂

[s]lmin (n) :

]
, (40)

where

P k
m,n =

∫
dxslmin

m (x)∂xs
lmin
n (x)

P l,j
m,n =

∫
dxwl

m(x)∂xw
j
n(x) (41)

P l
m,n =

∫
dx

[
wl

m(x)∂xs
lmin
n (x) + slmin

n (x)∂xw
l
m(x)

]
.

TABLE I. Values of overlap integrals used to determine the
momentum of excited state wave packets for Daubechies K = 3
wavelets. Note P 0

0,m = −P 0
0,−m and P

0,0
0,m = −P

0,0
0,−m, and for |m| > 4

the values are zero.

m P 0
0,m P

0,0
0,m

0 0 0
1 0.745203 −1.32599
2 −0.145203 0.146573
3 0.014612 −0.014612
4 0.000342 −0.000342

See, for example, Table I. Note that translational shifts in the
wave function do not change the momentum. Furthermore,
from the scaling properties of the scaling functions and
wavelets, P k

m,n = −P k
n,m = 2kP 0

0,n−m and P l,l
m,n = −P l,l

n,m =
2lP

0,0
0,n−m.
For the excited state in Eq. (39), the expectation value of

the momentum (assuming r � k) is

〈G|b̂r (n)p̂b̂r†(n)|G〉 = − i

2
2rP

0,0
0,0 = 0. (42)

Finite momentum excited states can be created from a
superposition of wavelets. Consider the state

|E〉 = [αr,nb̂
r†(n) + βr,mb̂r†(m)]|G〉, (43)

with r � k and |αr,n|2 + |βr,m|2 = 1. We find

〈E|p̂|E〉 = 2rP
0,0
0,n−mIm[αr,nβ

∗
r,m].

For a given scale, the maximum magnitude momentum
eigenstate is obtained for n − m = −1, αr,n = 1/

√
2, βr,m =

∓i/
√

2 in which case 〈E|p̂|E〉 = ±2r−1P
0,0
0,−1 = ±0.663 ×

2r . Hence the maximum momentum of a single-particle state is

pmax = 0.663 × 2lmax . (44)

A generalized single-particle excitation at scale 2−r

is defined by f †|G〉, where f̂ † = ∑
r,n αr,nb

r†(n) and∑
r,n |αr,n|2 = 1. Following the approach in Ref. [7] we

introduce an ancillary qubit a interacting with the register
qubits via

Ĥψ = f̂ † ⊗ (|1〉〈0|)a + f̂ ⊗ (|0〉〈1|)a. (45)

If we can simulate the evolution by Ĥψ , then
e−iĤψπ/2|G〉|0〉a = −if̂ †|G〉|1〉a and we have the excited state
up to a phase with no entanglement left between the ancilla
and the register. The Hamiltonian written out explicitly in the
qubit representation is

Ĥψ = δ�√
2

∑
r,n

[(
Re[αr,n]

√
γ [w](r)σ z

L2r+n,0

[
m−1∑
v=1

2v(|1〉〈1|)L2r+n,v

]

+ Im[αr,n]
1√

γ [w](r)
σ z

L2r+n,0F†

[
m−1∑
v=1

2v(|1〉〈1|)L2r+n,v

]
F

)
⊗ σx

a

+
(

Im[αr,n]
√

γ [w](r)σ z
r,0

[ m−1∑
v=1

2v(|1〉〈1|)r,v
]

− Re[αr,n]
1√

γ [w](r)
σ z

r,0F†

[
m−1∑
v=1

2v(|1〉〈1|)r,v
]
F

)
⊗ σy

a

]
, (46)
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where the factors γ [w](r) is defined according to Eq. (20) and
can be computed either ahead of time on a classical machine
or by measurements of correlation functions in the free field
ground state [see Eq. (21)]. The evolution generated by the
noncommuting terms in Ĥ� then can be simulated efficiently
by Trotter decomposition [14]. Note that the overhead cost to
implement the QFT is O(m2).

A method to prepare single-particle excitation in a bosonic
network encoding is given in Appendix C.

D. Interacting field theory

The Hamiltonian including interactions in the wavelet basis
is

Ĥ = Ĥss + Ĥww + Ĥsw + Ĥ (I ), (47)

where the interaction term is

Ĥ (I ) = λ0

4!

∑
z′s∈{w,s}

∑
j ′s

∑
n′s

∫
dx f z1,j1

n1
(x)f z2,j2

n2
(x)

× f z3,j3
n3

(x)f z4,j4
n4

(x)

: �̂[z1]j1 (n1)�̂[z2]j2 (n2)�̂[z3]j3 (n3)�̂[z4]j4 (n4) : ,

(48)

where

f z,j
n =

{
slmin
n (x) j = lmin and z = s

w
j
n(x) j � lmin and z = w.

(49)

Because the scale functions and wavelets have compact
support, the number of nonzero summands in the interaction
scales like O[V log2(V )].

IV. RESOURCE SCALING OF THE QUANTUM
WAVELET SIMULATION

The overall efficiency of the bosonic field theory simulator
in the wavelet basis can be obtained by comparing it with
the discretized position basis algorithm which was carefully
analyzed in Ref. [7]. In the latter algorithm the real valued
field, which is a function of the continuous position degree
of freedom, is discretized by treating the volume as finite
and composed of N ∈ N points equally spaced by physical
length a′ in each dimension. The longest wavelength physics
that can be captured is Na′ and the highest momentum that
can be represented is 1/a′. Furthermore, the amplitude for
the field at each of the V ′ = Nd discrete points in space is
discretized to values in the set δ�[−2b−1, . . . ,2b−1] where
b = log2(�max/δ�) [15].

The efficiency of the algorithm is quantified in terms of two
important quantities: the total energy bound E such that the
evolved state satisfies 〈ψ(t)|Ĥ |ψ(t)〉 � E for all times in the
simulation and the error ε which is defined in terms of fidelity
of the truncated and discretized many-body state with the
true state: |〈�|�cut〉| � 1 − ε. A cutoff in the maximum field

amplitude �max = O(
√

V ′E
m2

0ε
) ensures the above fidelity. By the

Fourier relation between conjugate variables, the momentum
cutoff is �max = δ−1

� , and upper bounding the expectation
values of �̂(x) and �̂2(x) in terms of energy, it suffices

to choose �max = O(
√

V ′E
ε

). The number of qubits needed

for the simulation is then n = V ′b = O[V ′ log2(V ′E
m0ε

)]. In the
massive case, two point correlators decay exponentially with
separation, and V ′ need only scale logarithmically with ε.

The asymptotic scaling for the number of quantum gates
needed to simulate particle scattering is found by summing the
gates for the following steps: free field ground-state prepara-
tion, excited-state preparation by adiabatic turn-on of particle
creation interaction, adiabatic turn-on of interaction terms
in the Hamiltonian, and, finally, measurement of scattering
probabilities. It is shown that the total number of gates is a
small polynomial in 1/ε in the weak-coupling regime, and in
the strong-coupling regime there is an additional overhead of
a polynomial in the momentum p of the colliding particles,
the number of outgoing particles, and the distance from the
phase transition such that the overall scaling for a simulation
of duration t is O(pd+1+o(1)(tV ′)1+o(1)).

In the wavelet basis, for the one-dimensional case d = 1, the
number of modes is V = L2lmax+1 [Eq. (25)] and for arbitrary
dimension, V = (L2lmax+1)d . The longest wavelength physics
that can be captured is La and the highest momentum scale,
from Eq. (44), is 2lmaxa. In order to compare the resource
scaling with the case of discrete basis we need to equate the
longest wavelength and highest momentum scales in the two
descriptions, namely

Na′ = La,

1

a′ = 2lmax

a
,

(50)

which implies

N = L2lmax ⇒ V = 2dV ′. (51)

In dimensions d = 1,2, or 3 the number of modes used in
both simulations are very similar. The same arguments that
led to the scaling of the maximum field amplitude �max apply,
namely we are truncating a field on V modes by cutoffs in the
field amplitude at �max. Hence the scalings of �max,�max and
the total number of qubits b is the same as in the discretized
position basis where V ′ is replaced by V .

The number of quantum gates to perform a quantum
simulation incurs only a penalty of replacing V with V log2(V )
in the scaling formulas relative to the discretized basis
encoding. The reason is that in the wavelet basis the terms
in the free field and interacting Hamiltonians couple across all
scales as opposed to the discretized position basis where only
nearest-neighbor modes are coupled. Because the wavelets
have compact support, the number of summands in Ĥ scales
like O[V log2(V )]. The first step of constructing the ground
state of the free field Hamiltonian has time cost O(V 2.376), the
same form as in the discretized bases, which is obtained from
the worse case scaling assuming a dense correlation matrix.
During particle creation and simulated evolution steps, the
aforementioned additional terms in the Hamiltonian using
the wavelet basis means scaling with respect to V in the
discretized basis should be replaced by V log2(V ). Finally,
measurement has the same scaling in either basis. A notable
advantage of using the wavelet basis is that particle creation
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and measurement can be done at a variety of different length or
energy scales without further transformations on the system.

V. CONCLUSIONS

We have shown that scalar bosonic quantum field theories
can be simulated efficiently on a quantum computer using a
wavelet basis. Without compromising overall efficiency, our
algorithm reorganizes the quantum state and its evolution into
sectors at different length scales. We anticipate this could
be useful to study renormalization flow and is a natural
setting for characterizing fields in terms of finite-bandwidth
detectors. Furthermore, the wavelet basis is well adapted to
study entanglement in the free field theory at different length
scales, including at the critical massless point [16]. We note
that early work [17] on classical simulations of the d = 2 φ4

theory using wavelets by found notable improvements in
simulation times. Specifically, those authors showed that local
Metropolis simulations of autocorrelation times showed an
order of magnitude improvement in computation time cost
using Haar wavelets vs discretized bases. The origin of this
improvement was the ability to optimize the updates over
each scale independently. It could well be that quantum
simulations using wavelets could also see improvements using
real-time propagation with scale-dependent parameters, e.g.,
using adaptive Trotter time steps that depend on the scale of
the wavelet excitations.

For future work we note that an efficient quantum algo-
rithm is known [18–20] for performing DaubechiesK-wavelet
transforms on an m qubit register in O(m2) gates [21].
This algorithm translates between the discretized position
space representation of a single particle and the wavelet
representation. It would be of interest to adapt this to quantum
simulations of multiparticle strongly correlated systems.

Resolving the description of a system according to length
scale has also led to a successful numerical approach—the
multi-scale renormalization ansatz (MERA) [22]—primarily
for classical simulation of both discrete quantum many-body
systems and also field theories [23] (in the latter case,
the success of the ansatz has been demonstrated for free
field theories). We remark that there could be interesting
connections between the multiscale representation of quantum
many-body states using the MERA and the wavelet basis
described here. In the wavelet basis, the wavelet modes capture
the short-range entangement at any given length scale, while
in the MERA the same role is played by local disentangling
and coarse-graining transformations.
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APPENDIX A: PREPARING THE GROUND STATE USING
A DISCRETIZED POSITION BASIS

In this appendix we review how the state representing the
quantum field is encoded in the discretized position basis.

The Hamiltonian Ĥ (0) can be obtained as the continuum limit
of a discrete system with V ′ bosons with canonical position
and momenta variables {q̂j } and {p̂j }, respectively, which
satisfy [q̂j ,p̂k] = iδj,k . Consider the following Hamiltonian
for bosons on the sites of a cubic lattice of size V ′ = Ld with
uniform lattice spacing a′:

Ĥ (0) =
V ′∑

m=1

p̂2
m

2μ
+ λ

2

∑
m

q̂2
m + κ

∑
〈m,n〉

(q̂m − q̂n)2, (A1)

where the sum over 〈m,n〉 is over nearest-neighbor pairs. The
continuum limit is obtained by taking

V ′ → ∞
Positions xm = a′m, m ∈ Zd

q̂m → �̂(xm)∑
m → 1

a′d
∫

ddx

(q̂m − q̂n) → a′[∇�̂(x)]〈m,n〉
κ = a′d−2κ̄, μ = a′dμ̄, λ = a′d λ̄
Rescaling: �̂(x) → κ̄−1/2�̂(x),

which leads to the Hamiltonian density

Ĥ(0) = 1

2
{μ̄κ̄−1�̂(x,t)2 + [∇�̂(x,t)]2 + λ̄κ̄−1�̂(x,t)2}.

(A2)
Setting μ̄κ̄−1 → 1 and λ̄κ̄−1 = λμ−1 = m2

0, we obtain the
Hamiltonian density for the free field interaction in Eq. (11).

The descretized version of the Hamiltonian [Eq. (A1)] is
compactly written:

Ĥ (0) = 1
2 ŝT Aŝ, (A3)

where ŝ is the 2V ′ dimensional vector of position and momenta
operators, ŝ = (q̂1, . . . q̂V ′ ,p̂1, . . . p̂V ′)T , and

A =
(

K 0

0 1V ′

)
, (A4)

where

Ki,j = (
4d + m2

0

)
δi,j − 2δ (i ∈ neighborhoodj ). (A5)

The covariance matrix associated with a state ρ is defined
�j,k = Re[tr[ρ(ŝj − 〈ŝj 〉)(ŝk − 〈ŝk〉)]], where 〈ŝj 〉 is the ex-
pectation value of j -th element of ŝ and where K is defined in
Eq. (A5). The ground state (vacuum) of this system then can
be expressed as a Gaussian in the position basis:

|G〉 = N−1
∫ ∞

−∞
dq1 . . .

∫ ∞

−∞
dqV ′ e− 1

2 qT K1/2q|q1〉 . . . |qV ′ 〉,
(A6)

where N−1 = det(K1/2)1/4/πV ′/4 is the normalization and
q = (q1, . . . ,qV ′)T .

The values of qj are discretized via a b bit string xj =
xj,0xj,1 . . . xj,b−1 according to qj (xj ) = δ�(−1)xj,0

∑b−1
r=1 2xj,r .

The ground state can be represented as a state of b × V ′ qubits:

|G〉 ≈ N−1
∑

{xj,r∈{0,1}}V ′ ,b−1
j=1,r=0

e− 1
2 q({xj })T K1/2q({xj })

|x0,0 . . . x0,k−1〉 . . . |xV ′−1,0 . . . xV ′−1,k−1〉. (A7)
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APPENDIX B: WAVELETS FOR HIGHER
DIMENSIONS d > 1

The wavelet representation for scalar field theories can
be straightforwardly generalized to higher dimensions as
described in Ref. [10]. For completeness, we include the
argument. In d = 3, for example, n = (nx,ny,nz) ∈ Z3 and
the scale functions slmin

n (x) = slmin
n1

(x1)slmin
n2

(x2)slmin
n3

(x3), where
x is now a position vector in R3 and n = (nx,ny,nz) ∈ Z3

becomes a displacement vector. The generalized wavelets
wm

n,α(x) are defined by seven different forms (distinguished
by the collective index α):

wm
n,(1,k3) = slmin

n1
(x1)slmin

n2
(x2)wk3

n2
(x3) m = max(k,k3)

wm
n,(2,k3) = slmin

n1
(x1)wk2

n2
(x2)slmin

n2
(x3) m = max(k,k2)

wm
n,(3,k3) = wk1

n1
(x1)slmin

n2
(x2)slmin

n2
(x3) m = max(k,k1)

wm
n,(4,k2,k3) = slmin

n1
(x1)wk2

n2
(x2)wk3

n2
(x3) m = max(k,k2,k3)

wm
n,(5,k1,k2) = wk1

n1
(x1)wk2

n2
(x2)slmin

n2
(x3) m = max(k,k1,k2)

wm
n,(6,k1k3) = wk1

n1
(x1)slmin

n2
(x2)wk3

n2
(x3) m = max(k,k1,k3)

wm
n,(7,k1,k2,k3) = wk1

n1
(x1)wk2

n2
(x2)wk3

n2
(x3) m = max(k1,k2,k3)

(B1)

The mode operators �̂ and �̂ are now indexed as:

�̂[s]lmin (n,t) → �̂[s]lmin (n,t), �̂[w]l(n,t) → �̂[w]l(n,α,t)

�̂[s]lmin (n,t) → �̂[s]lmin (n,t), �̂[w]l(n,t) → �̂[w]l(n,α,t),
(B2)

where the discrete field operators satisfy the following equal
time commutation relations (assuming here that k � r,s):

[�̂[s]lmin (n),�̂[s]lmin (m)] = 0, [�̂k(n),�̂[s]lmin (m)] = 0

[�̂[s]lmin (n),�̂[s]lmin (m)] = iδn,m,

[�̂[w]r (n,α),�̂[w]s(m,β)] = 0

�̂[w]r (n,α),�̂[w]s(m,β)] = 0

[�̂[w]r (n,α),�̂[w]s(m,β)] = iδα,βδr,sδn,m

[�̂[w]r (n,α),�̂[w]s(m)] = 0, [�̂[w]r (n,α),�̂[w]s(m)] = 0

[�̂[w]r (n,α),�̂[w]s(m)] = 0, [�̂[w]r (n,α),�̂[w]s(m)] = 0.

(B3)

APPENDIX C: ADAPTATION OF THE SIMULATION
TO BOSONIC ENCODING

Rather than discretizing the amplitude of the register
modes using qubits we could instead opt to directly use

V distinguishable bosonic modes with position basis states
{|q〉q̂0 , . . . ,|qV −1〉q̂V −1}. In this case the mode operators in
Eq. (26) are just the position operators {q̂j } acting on the
modes according to q̂j |q〉q̂j

= q|q〉q̂j
.

The ground state is a multimode Gaussian state, which we
rewrite for clarity:

|G〉=N−1
∫

dq0 . . .

∫
dqV −1 e− 1

2 qT K1/2q |q0〉q̂0 . . . |qV −1〉q̂V −1 ,

(C1)

where q = (q0, . . . qV −1)T and the coupling matrix K is given
in Eq. (28). The ground state |G〉 is obtained by a unitary
transformation on the V mode vacuum state, described by the
following symplectic transformation on the initially decoupled
position and momentum mode operators:

v̂ → Y v̂. (C2)

The transformation acts to transform the vacuum correlation
function as

�vac = 1
2 12V → � = 1

2YY T = 1
2 (K−1/2 ⊕ K1/2), (C3)

The symplectic transformation Y is composed of the 2V col-
umn vectors which are eigenvectors of the matrix �A�T A =
K ⊕ K , where A = K ⊕ 1. There is a canonical decomposi-
tion for Y written as one round of beam splitters and phase
shifters, followed by parallel single mode squeezing, followed
by a second round of beam splitters and phase shifters [24].
This decomposition is efficient, costing O(V 2) elementary
operations.

Particle excitations above the ground state can also be
created using the bosonic encoding. Here the Hamiltonian
used to create excitations is a simple quadratic interaction,

Ĥψ = f̂ †ĉ + f̂ ĉ†, (C4)

where ĉ†,ĉ are creation and annihilation operators that act
on an ancillary bosonic mode. We prepare the ancillary
mode in the Fock state |n = 1〉 and evolve by Ĥψ , such
that e−iĤψπ/2|G〉|n = 1〉 = −if̂ †|G〉|n = 0〉 and we have the
excited state up to a phase with no entanglement left between
the ancilla and the register. Note the Fock state |n = 1〉 is a
non-Gaussian state; however, it can be prepared efficiently
by a variety of techniques (see Ref. [25] and references
therein).
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