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Trapped-ion quantum error-correcting protocols using only global operations
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Quantum error-correcting codes are many-body entangled states used to robustly store coherent quantum states
over long periods of time in the presence of noise. Practical implementations will require efficient entangling
protocols that minimize the introduction of noise during encoding or readout. We propose an experiment that
uses only global operations to encode information to either the five-qubit repetition code or the five-qubit code on
a two-dimensional ion Coulomb crystal architecture. We show we can prepare, read out, and acquire syndrome
information for these two codes by using only six and ten global entangling pulses, respectively. We provide an
error analysis, estimating we can achieve a sixfold improvement in coherence time with as much as 1% noise in
the control parameters for each entangling operation.
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I. INTRODUCTION

The endeavour towards large-scale quantum technologies
has recently seen impressive experimental efforts in the
realization of small quantum error-correcting codes (QECCs)
using ion traps [1–3], and also superconductors [4–8].
Given sufficient control over the composite physical systems,
coherence times of encoded quantum states will increase
exponentially with the size of the code. Ultimately, we hope to
achieve the experimental prowess required to build arbitrarily
large codes, but a modest intermediate goal is the development
of small error-correcting codes that can maintain quantum
coherence for timescales longer than those of their composite
parts [9]. Such codes will be useful for building technologies
using distributed quantum architectures [10–12] and provide
long coherence times capable of interrogating fundamental
aspects of quantum mechanics [13].

The difficulties in the realization of QECCs in ion traps are
technical; first among them the experimental finesse necessary
to perform two-ion entangling gates on an array of many ions,
as any spectator ions must be decoupled from the entangling
interaction. This can be achieved physically, via shuttling
[1], or spectroscopically, either by “hiding” ions in ancillary
states [2], or by using dynamic decoupling techniques [3].
Both spectroscopic methods require repeated addressing of
individual ions.

In this paper we propose an alternative to the local
circuit approach for realizing many-body entangled states.
We describe an experimental protocol to prepare two QECCs
using global entangling operations alone, avoiding the need to
decouple subsets of the qubit register.

We consider a six-ion Coulomb crystal in a Penning trap
[14] as depicted in Fig. 1, and we provide a protocol to
encode an arbitrary quantum state to either the five-qubit
code (5QC) [15], or the five-qubit repetition code (5RC). We
extract syndrome information while teleporting information
from the code, allowing us to correct for errors that may
have occurred while the logical state was stored. We provide
a noise analysis showing that we double coherence times with
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an entangling-pulse noise of 1.7% and 0.2% for 5RC and 5QC,
respectively. Such performance is attainable by using current
technology.

In general, it is difficult to find global unitary operations that
realize a chosen target state from a given input state. However,
many target states share a common symmetry with the crystal
architecture. This simplifies protocols to realize desired states,
as all the terms in the state that are equivalent up to the
symmetry evolve identically. The global pulse sequences we
discover enable us to execute entire error-correcting protocols,
including syndrome extraction, using a very low number of
operations compared with other trapped-ion protocols [1–3].
We can perform 5RC (5QC) using only 14 (18) discrete
operations. The number of operations required to perform
these protocols with two-qubit entangling gates is typically
an order of magnitude greater. Conventional nondemolition
stabilizer measurements are even more taxing: the 5QC
stabilizers require several hundred operations per cycle. In this
respect our protocol is favorable, as it substantially reduces the
total gate noise introduced to the system [16,17].

This paper is structured as follows: In Sec. II we intro-
duce the general architecture and describe our approach to
generating symmetry-preserving global unitaries. Section III
outlines how these techniques can be applied to a six-ion
Coulomb crystal to perform two quantum error-correction
protocols. In Sec. IV we describe the numerical methods used
to find pulse sequences to engineer the necessary unitaries.
We subsequently provide a noise analysis of the proposed
experiments in Sec. V. We give some concluding remarks in
Sec. VI. Technical details of our experimental proposals are
given in Appendixes A and B.

II. GLOBAL UNITARY OPERATIONS

We consider a qubit register in a two-dimensional ion
Coulomb crystal. Physical qubits are written to the two Zeeman
sublevels of the S1/2 ground state of each ion. The protocols we
describe rely on the Zeeman splitting being large and are thus
best suited for implementation in a Penning trap, where these
levels are separated by ∼100 GHz at typical magnetic-field
strengths. The state of the qubit register of N ions is written
in the spin basis |s〉R ≡ |s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sN 〉 for sj = ↑,↓,
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FIG. 1. (Color online) Quantum error-correcting codes are pre-
pared by using six ions trapped in a rotationally symmetric planar
crystal. The trap magnetic field is B. A periodic spin-dependent force
is generated by a pair of off-resonant laser beams with frequency
difference μL and angular separation of θ , symmetric above and
below the crystal plane. We encode and read out information to the
crystal by using only global operations by variation of μL, along with
a standard set of collective local microwave rotations.

where arbitrary states are written

|χ〉R =
∑

s

rs |s〉R , (1)

such that
∑

s |rs |2 = 1. We do not consider a particular
species of ion, but suitable examples include magnesium and
beryllium, which we show in Fig. 2.

Projective readout of the physical qubits in the computa-
tional basis is given by fluorescence from a laser resonant
with a suitable dipole transition; for instance, S1/2 → P3/2.
This transition is also used for Doppler cooling the crystal.
A microwave field at the qubit frequency ω0 permits global
Pauli X and Y rotations, while Pauli Z rotations are effected
by applying the laser normally used for readout, detuned far
from resonance, producing an ac Stark shift of the qubit levels.
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FIG. 2. (Color online) Schematic of optical dipole force and
readout lasers for 9Be+. At typical magnetic-field strengths, the
detuning of the Raman lasers from the S1/2 → P3/2 transition, �R ,
is several tens of GHz, while the difference frequency between the
upper and lower beams is μL ≈ 1 MHz.

We exploit the coupling between transverse mechanical
modes of the Coulomb crystal and spin-dependent optical
dipole forces (ODFs) to realize complex unitary operations
on the qubit register. We show that we can generate global
unitary operations of the form

U (φ) =
∑

s

eiφs |s〉 〈s|R , (2)

where φ is a vector of phases φs determined by the spin-mode
couplings.

Following the treatment of Britton et al. [18], we generate a
spin-dependent ODF by application of a pair of crossed Raman
lasers with detuning �R ∼ 40 GHz from a suitable dipole tran-
sition, shown in Fig. 2. The polarizations of the two beams can
be adjusted such that the ac Stark shift of the qubit transition
frequency ω0 due to each individual beam is zero, while their
interference produces a one-dimensional optical lattice with
wave vector kL = (0,0,kL), the polarization gradient of which
provides the force. Additionally, we introduce a frequency
difference μL between the lasers, causing the optical lattice
to scan across the crystal and leading to a periodic transverse
driving force. If this frequency difference is tuned close to
one of the normal mechanical modes of the crystal, the ODF
can be made to excite collective vibrations of the ions.

In general, a quantum harmonic oscillator driven off
resonantly will traverse a closed loop in phase space with
radius proportional to the driving force [19]. The system
returns to its initial motional state at times τ = 2π/δ where δ

is the detuning from resonance, acquiring a geometric phase
proportional to the area of the loop. If the driving force is
spin-dependent then this can be used to entangle the spin
degree of freedom, as in the two-ion phase gate [20,21].
We demonstrate the extension of this technique to arbitrary
numbers of ions driven in modes that do not couple identically
to all ions. Unlike Ref. [18] and other previous applications
of such ODF beams, we do not require the beams to produce
forces of equal magnitude on opposing spins, allowing their
ratio R = F↑/F↓ to be varied between approximately −0.5
and −2 through adjustment of �R . This modification greatly
increases the range of unitaries that may be produced.

We obtain the transverse modes of the Coulomb crystal with
the methods described in Ref. [22], solving the eigenvector
equation for the N × N axial stiffness matrix Kzz. The mode
eigenvectors |am〉 are the eigenvectors of Kzz and the corre-
sponding mode eigenfrequencies ωm are related to its eigen-
values λ by the mass of a single ion, M , as ωm = √

λm/M .
Writing the set of mode eigenvectors as a matrix A =∑
i |i〉 〈am| with elements Ami , we can decompose any forces

fi on the constituent ions into generalized forces Qm acting
on each mode, where

Qm =
∑

i

Amifi . (3)

Given a uniform ODF beam across the crystal, we express
the forces on the whole register as a matrix F, with elements
Fis representing the forces on ion i for each |s〉R in |χ〉R . The
product of the modal matrix A and this new dipole force matrix
gives the spin-mode coupling matrix M with elements

Mms =
∑

i

AmiFis . (4)
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The matrix M defines the generalized force acting on each
normal mode for each state |s〉R of the register. In the case of a
symmetric crystal, many of the modes will have a degenerate
partner of the same frequency. A pair of degenerate modes
will be driven simultaneously, so it is proper to consider the
Pythagorean sum of the generalized forces on each pair and
the corresponding rows in M are combined in quadrature.

We apply a set of pulses near resonant with each mode such
that μL = ωm − δ, where we define a vector P with elements
Pm proportional to the pulse areas, and use the freedom to
adjust δ to ensure that the loops close. The geometric phase
acquired by each basis state in |χ〉R is proportional to the
square of the generalized force and is given by

φs =
∑
m

(Mms)
2Pm, (5)

determining the unitary of Eq. (2).

III. ERROR-CORRECTION PROTOCOLS

We now show we can use the described experimental
setup to prepare and read out the five-qubit code (5QC),
and the five-qubit repetition code (5RC), in a six-ion register.
The 5QC and 5RC encode a single logical qubit in the subspace
of the Hilbert space of five physical qubits. Additionally, we
measure syndrome information that enables us to identify
errors to the encoded state, which we can then correct with
an appropriate single-qubit operation. The 5QC protects the
encoded information against arbitrary Bloch sphere rotations
suffered by a single physical qubit of the register. Alternatively,
the 5RC protects against dephasing channel errors acting on up
to two physical qubits, but cannot correct for spin-flip noise.
In many-ion qubits, the T1 lifetime is several hundred seconds.
In these cases, the 5RC provides sufficient protection against
a realistic noise model.

We consider the explicit example of a qubit register of six
ions in a crystal in the configuration shown in Fig. 3(a). The
qubit of the central “hub” ion is initialized in the logical state

|ψ〉H = α |↓〉H + β |↑〉H . (6)

The five “code” ions in the ring around the hub will encode
the quantum information. They are initially prepared in the
product state

|S〉C = |+ + + ++〉C = 1

25/2

∑
s

|s〉C , (7)

where the summation is made over all configurations in the
spin basis of the five code ions. Given the ability to prepare
the initial state

|χ0〉R = |ψ〉H ⊗ |S〉C , (8)

and the ability to measure qubits of the register in the Pauli-X
basis, we require only two global unitary operations, Uring and
Uspokes, to encode and read out the 5QC, and only Uspokes to
encode and read out 5RC. The unitaries Uspokes (Uring) will
globally apply a controlled phase gate between each of the
qubits in the register that share a gray edge in Fig. 3(b) [3(d)].
We summarize the error-correcting protocol in the caption of
Fig. 3.

(a) (b) (c)

(d)∗ (e) (f)∗

(g) (h)

FIG. 3. (Color online) The protocol for 5RC and 5QC. Figures
marked with an asterisk are omitted for 5RC. (a) We initialize the
crystal in the product state, |χ0〉R . The hub qubit, shown in blue, lies
at the center of the crystal. The code qubits of the crystal, shown
in green, form a rotationally symmetric outer ring. (b) We perform
unitary Uspokes. This entangles the hub qubit to the 5RC codespace.
(c) We measure the central ion to teleport the logical information onto
the blue ring ions, completing the encoding of 5RC. (d) (Omitted for
5RC) To prepare 5QC, we also apply Uring immediately after the
measurement, mapping codewords of 5RC to 5QC. (e) The logical
qubit is protected now that the code is prepared. (f) (Omitted for 5RC)
To begin readout for 5QC, we apply Uring to map 5QC codewords
to 5RC codewords. (g) We prepare the central qubit in the |+〉 =
(|↑〉 + |↓〉)/√2 state and perform Uspokes once more, entangling the
codespace to the hub. (h) Measuring the code qubits teleports the
quantum information back to the central ion. Because the Pauli-X
measurements we perform commute with the stabilizers of 5RC, the
fluorescence pattern of the measured bright and dark ions, shown in
red and yellow, provides syndrome information (see Appendix A).

The protocol we described requires the ability to prepare
and measure the hub qubit independently of the code qubits
and vice versa. This can be achieved with a focused beam,
or globally, by using two isotopes of a suitable ion species.
Here the isotopic shift would be sufficient to allow resonant
frequency addressing during state preparation and readout,
without significantly affecting the coupling to the off-resonant
entangling pulses. We also require the ability to globally realize
unitary operations Uring and Uspokes. Finding pulse sequences
to realize such global operations can be challenging. In the
following section we describe the numerical methods we use
to find suitable sequences.

IV. SEARCHING FOR GLOBAL UNITARY OPERATIONS

Given suitable control to prepare the initial state and the
ability to make the necessary measurements, we must also
be able to perform the unitary operations Uring and Uspokes to
complete the described error-correction tasks. To do so, we
need to find a pulse sequence that simultaneously achieves
phases φs that correspond to the desired unitary operation. In
this section we explain the numerical methods we use to find
pulse sequences that realize the required rotations.
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A six-ion planar crystal has six transverse modes including
two degenerate pairs, shown in the matrix AT in order of
decreasing frequency

AT =

⎛
⎜⎜⎜⎝

1
1
1
1
1

0 0
(G−2) 0

2(1−G) G

(G−2) −G

1 −1

0 0
−(G + 1) (1−G)

2G 0
−(G + 1) (G−1)

1 −1

−5
1
1
1
1

⎞
⎟⎟⎟⎠

1︸︷︷︸
ω1

1 1︸ ︷︷ ︸
ω2

1 1︸ ︷︷ ︸
ω3

1︸︷︷︸
ω4

where G = (1 + √
5)/2 and the mode vectors are shown un-

normalized for brevity. We have five control parameters with
which to engineer the desired unitary, the pulse areas, Pm,
applied to each of the four mode frequencies, and the force
ratio R.

In general it is unlikely that we can find a pulse sequence that
simultaneously generates an arbitrary choice of target phases,
φ′

s . However, we are able to significantly increase the search
space by exploiting our freedom to choose an arbitrary global
phase, φg , and by taking φs values modulo 2π . We define the
total phase �s(ns) to be

�s(ns) = φs + φg + 2πns, (9)

where ns takes integer values. Finding a pulse sequence that
leads to phases �s(ns) instead of φs will achieve the same
effective unitary evolution.

The problem thus consists of a series of conventional
nonlinear optimization repeated across a O(2N )-dimensional
space of integer strings, n. Within the continuous parameter
space of each integer string, we use a Nelder–Mead search to
minimize a cost function

C(P,R,n) =
∑

s

[�s+1 − φ′
s+1 − �s + φ′

s]
2 = 0. (10)

The difficulty of the optimization problem lies in searching
the space of integer strings. To simplify the problem we
bound the integer values within the limits −10 � ns � 10.
This restriction is experimentally advantageous: small values
of ns are favorable because large phase-space areas are more
sensitive to errors in pulse length or intensity. With this
restriction, the systems we describe are small enough that
employing exhaustive search techniques is not unreasonable.
We make use of the fact that each element in the summation
on the right-hand side of Eq. (10) is non-negative, and
therefore the terms of the series must be zero for a solution
to hold. We are then able to perform a series of simpler
minimization problems for shorter strings of integers to find
integer solutions for only a few terms of the cost function at
once. Completing these simpler search problems enables us to
efficiently eliminate large regions of the integer search space
and thus significantly speeds up the exhaustive search.

Using the described techniques, we find a large number
of sparsely distributed solutions for our target unitaries; we
are free to select those that will minimize the sensitivity to
expected experimental noise. As well as minimizing the total
pulse areas, it is useful to select solutions with modest force
ratios R, because these are less sensitive to polarization noise

in the optical dipole force lasers. One solution for Uspokes is

(P1,P2,P3,P4,R) = (3.125,2.604,2.604,0,−1.400), (11)

where the pulse areas are normalized such that a center-of-
mass pulse P1 = 1 would produce a π radian phase shift on
the |↓〉H ⊗ |↓↓↓↓↓〉C state. We give a full description of the
state evolution during this pulse sequence in Appendix B. The
values of the integer string for the minimization we find takes
small values, with −3 � ns � 3 for all s.

Additionally, we find the pulse sequence

(P1,P2,P3,P4,R) = (10.99,7.677,19.65,10.99,−0.6737),
(12)

will produce Uring. We remark that we can vary the ratio of
forces for each pulse, but for the present purposes it is sufficient
to keep this constant throughout the sequence.

Another possible solution to the integer search would be the
use of evolutionary algorithms, which would not provide an
exhaustive search but might be more efficient for large numbers
of qubits. We have found that simple evolutionary algorithms
enable us to find some of the solutions that we obtain by using
an exhaustive approach.

While numerical search methods work for the codes we
describe here, and may be used to obtain other interesting
unitary operations on small registers, the size of the integer
space suggests that this approach will not scale well to larger
registers. Finding solutions for much larger problems will
likely depend on the whole or partial use of analytical methods
for determining suitable pulse sequences. This is the subject
of ongoing work [23].

V. NOISE ANALYSIS

Our results show that we can execute both QECC protocols
using very few pulses. Short pulse sequences are advantageous
because errors that occur during the protocol are minimized.
We numerically simulate both protocols by using imperfect
unitary operations to estimate the engineering requirements
necessary to reduce the decay of quantum coherence.

We examine the decoherence of the encoded state over
time t where we perform the protocol by using imperfect
unitary operations. We numerically simulate the 5RC protocol
by using the imperfect Uσ

spokes unitary, where we disrupt the
optimal pulse sequence for Uspokes, Eq. (11), by replacing
pulse areas Pm and force ratio R with εm(σ )Pm and εR(σ )R,
respectively, where εm(σ ) and εR(σ ) are random variables
chosen from a normal distribution with standard deviation σ

and unity mean. The spin of each individual ion, ρ, dephases
via the completely positive and trace-preserving map

γt (ρ) = (1 + e−t )ρ/2 + (1 − e−t )ZρZ/2, (13)

where Z is the Pauli Z matrix. Importantly, γt is continuous in
t and converges to the maximally dephased state in the t → ∞
limit, i.e.,

lim
t→∞ γt (ρ) = (ρ + ZρZ)/2.

We additionally assume that each application of Uσ
spokes

is performed in time tU = 5 × 10−4, equivalent to a 50 μs
gate for qubits with 100 ms coherence time. We model the
noise introduced during the application of Uσ

spokes by applying
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FIG. 4. (Color online) Average fidelity as a function of time
for imperfectly prepared 5RC states, with time measured in units
of ion coherence times. Protocol executed with pulse noise σ =
0, 0.005, 0.01, and 0.015 shown (from top to bottom) in red, yellow,
green, and blue, respectively. The fidelity of a single qubit under the
dephasing map is also shown in blue (lower line). The dashed line
marks 0.99 fidelity. The inset shows unitless ratio τ/τ1Q plotted as a
function of the standard deviation of pulse noise σ . A fit to the data
yields τ/τ1Q ∼ τ0[2 − exp(1858σ 2)].

the dephasing map to each qubit for a time tU before the
instantaneous application of Uσ

spokes.
We measure decoherence by using the average fidelity

F(ρH ) = |tr[ρH |ψ〉 〈ψ |H ]|, (14)

where ρH is the final state that is read out from the code, to be
compared with the initially encoded state, |ψ〉 〈ψ |H . We are
interested in the decay of fidelity over time. In Fig. 4 we plot
F(ρH ) as a function of time. The fidelity is calculated with
500 random samples of |ψ〉H and Uσ

spokes for each t .
To quantify the improvement in coherence time attained

using the code, we compare its coherence time to that of a qubit
stored in the spin of a single ion. We define the high-fidelity
time τ to be the time the prepared code maintains fidelity above
0.99. We compare τ to τ1Q, the high-fidelity time of a single
qubit. The inset of Fig. 4 shows τ/τ1Q for 5RC as a function
of σ . We observe scaling

τ/τ1Q = τ0(2 − eσ 2/α), (15)

where τ0 = τ/τ1Q is the code-dependent optimal coherence
time improvement we can achieve for the noiseless σ = 0
case. Our results show that we converge exponentially towards
τ0 as σ 2 decreases. For 5RC, we find α ∼ 5.4 × 10−4, and
τ0 ∼ 6.92.

We perform a similar simulation for 5QC, using disrupted
Uring and Uspokes unitaries, where ions decohere via the
depolarizing map

ξt (ρ) = (1 + 3e−t )ρ/4 + (1 − e−t )(XρX + YρY + ZρZ)/4.

(16)
Like the dephasing map given in Eq. (13), the map (16) is
continuous in the parameter t , and in the long-time limit the
map converges to the maximally depolarized state; namely,

lim
t→∞ ξt (ρ) = (ρ + XρX + YρY + ZρZ)/4. (17)

Using the depolarizing noise map and 50 μs pulse times, we
find α ∼ 3.0 × 10−5 and τ0 ∼ 2.45 for the 5QC protocol.

We extrapolate the present data to the value τ/τ1Q = 1 to
obtain a threshold pulse noise of σth ∼ 0.0038 for 5QC, and
σth ∼ 0.018 for 5RC. Producing gates that meet these threshold
values is feasible with existing technology. We expect further
improvements to be achieved by repeating the protocol period-
ically, thus suppressing errors before significant decoherence
has occurred.

VI. CONCLUSION

We have shown, by utilizing symmetries of the mechanical
modes of an ion Coulomb crystal, that we can find global
entangling operations to produce interesting quantum states.
We have demonstrated this by describing two quantum error-
correcting protocols using the presented scheme. Furthermore,
we have shown that the simplicity of the proposed QECC
protocols leads to improvements in quantum coherence with
relatively modest experimental demands. We expect the
present experimental proposal will produce results that are
competitive with current state-of-the-art trapped-ion error-
correcting protocols [1–3]. One could use the protected qubits
of the present proposal in a hybrid distributed scheme to
realize scalable computation [10–12]. In such a scheme, the
improvements in coherence times provided by our proposal
can lead to exponential improvements in the resource costs of
an error-correction code [24]. We hope the methods we used
will motivate further study into other entangled states that can
be produced entirely or in part by simple global operations.

TABLE I. Projected errors, syndromes, and the corresponding
Pauli corrections to the final teleported state for 5RC and 5QC.
Syndromes are given as florescence patterns of bright and dark
ions around the ring during the final readout stage. We represent
florescence patterns of dark and bright ions with symbols � and
�, respectively. The correction we apply is invariant under cyclic
permutations of the florescence pattern.

Projected Fluorescence Logical Pauli
error on 5RC pattern correction

IIIII ����� I

IIIII ����� X

IIZII ����� I

IIZII ����� X
ZIIIZ ����� I

ZIIIZ ����� X

IZIZI ����� I

IZIZI ����� X

Projected Fluorescence Logical Pauli
error on 5QC pattern correction
IIIII ����� I

IIIII ����� X

IIZII ����� I

IIZII ����� X
IIY II ����� −Y

IIY II ����� iZ

IIXII ����� Z

IIXII ����� iY
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APPENDIX A: SYNDROME READOUT FROM
FLORESCENCE PATTERNS

Table I shows a list of correctable Pauli errors, the
florescence patterns we expect to observe at readout for a
given error, and the corresponding Pauli corrections we must
apply when the state is read out.

APPENDIX B: STATE EVOLUTION DURING “SPOKE”
PULSE SEQUENCE

Table II shows how each basis state evolves under the
application of the series of pulses for Uspokes, from the initial
product state, Eq. (8), in the leftmost column, towards the target
state in the rightmost column. The columns list the absolute
phases and phase angles after each pulse. We point out that
cyclic permutations of ring qubit configuration all acquire the
same phase. The table therefore only shows the phase for one
representative state for each configuration that is equivalent up
to a cyclic permutation. The bottom row lists the fidelity of
each intermediate state relative to the target.

TABLE II. Phases φs acquired by basis states |s〉 after each stage of the composite entangling pulse. Note that the final state is equivalent
to the target up to a global phase of ε = 1.125π . The fidelity with the target state at each stage is shown in the final row.

Basis |s〉 Initial Phase/π Phase after ω1 Pulse/π Phase after ω2 Pulse/π Phase after ω3 Pulse/π Target Phase/π

+ Perms φs φs φs (mod 2π ) φs φs (mod 2π ) φs φs (mod 2π ) φs

|0〉 |00000〉 0 3.125 1.125 3.125 1.125 3.125 1.125 0
|0〉 |00001〉 0 1.125 1.125 2.125 0.125 3.125 1.125 0
|0〉 |00011〉 0 0.125 0.125 2.743 0.743 3.125 1.125 0
|0〉 |00101〉 0 0.125 0.125 0.507 0.507 3.125 1.125 0
|0〉 |00111〉 0 0.125 0.125 2.743 0.743 3.125 1.125 0
|0〉 |01011〉 0 0.125 0.125 0.507 0.507 3.125 1.125 0
|0〉 |01111〉 0 1.125 1.125 2.125 0.125 3.125 1.125 0
|0〉 |11111〉 0 3.125 1.125 3.125 1.125 3.125 1.125 0
|1〉 |00000〉 0 1.125 1.125 1.125 1.125 1.125 1.125 0
|1〉 |00001〉 0 0.125 0.125 1.125 1.125 2.125 0.125 1
|1〉 |00011〉 0 0.125 0.125 2.743 0.743 3.125 1.125 0
|1〉 |00101〉 0 0.125 0.125 0.507 0.507 3.125 1.125 0
|1〉 |00111〉 0 1.125 1.125 3.743 1.743 4.125 0.125 1
|1〉 |01011〉 0 1.125 1.125 1.507 1.507 4.125 0.125 1
|1〉 |01111〉 0 3.125 1.125 4.125 0.125 5.125 1.125 0
|1〉 |11111〉 0 6.125 0.125 6.125 0.125 6.125 0.125 1

Fidelity 0.5 0.25 0.634 1
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