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Analysis of coincidence-time loopholes in experimental Bell tests
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We apply a distance-based Bell-test analysis method [E. Knill et al., Phys. Rev. A 91, 032105 (2015)] to three
experimental data sets where conventional analyses failed or required additional assumptions. The first is produced
from a classical source exploiting a “coincidence-time loophole” for which standard analysis falsely shows a Bell
violation. The second is from a source previously shown to violate a Bell inequality; the distance-based analysis
agrees with the previous results but with fewer assumptions. The third data set does not show a violation with
standard analysis despite the high source quality, but is shown to have a strong violation with the distance-based
analysis method.
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I. INTRODUCTION

Local realism, the notion that any two spacelike separated
events can have no influence on each other (locality), and
that measurement outcomes can be modeled as if they were
determined by hidden variables (realism), is fundamental to
classical physics, and is a natural view of reality. When
Einstein, Podolsky, and Rosen noted that quantum mechanics
appears to abandon local realism, they thought that it must
be quantum mechanics that is incomplete [1]. Almost thirty
years later, John Bell showed that local realism and quantum
mechanics are not only conceptually incompatible, but can
actually give different statistical outcomes for experiments
on entangled particles [2]. The statistical differences are
quantified via a Bell inequality, a violation of which would
definitively rule out any local realistic theory, thereby ending a
central debate of 20th-century physics. While entanglement
has been experimentally demonstrated in various physical
systems, due to experimental challenges every Bell test to
date has required assumptions about either the source and
detector (e.g., that the detected particles are a fair sample of
the total ensemble emitted from the source), or the possibility
of signaling between specific events (e.g., assuming that there
is no signaling between the measuring devices) [3]. While
these assumptions allow one to make arguments against local
realism, they present loopholes that could be exploited by a
local realistic model to violate a Bell inequality.

Furthermore, there can also be implicit assumptions within
the data analysis itself if it directly or tacitly assumes no
signaling or fair sampling. Even worse, the data analysis
may directly violate an assumption, thereby invalidating the
analysis technique. The issue can be subtle; for example, in
the case of the “coincidence-time loophole” [4], the implicit
assumptions can come from an otherwise standard coincidence
counting method, where the coincidence windows are centered
on one party’s detection events (the implicit assumption is
that the local hidden-variable model has no time dependence)
instead of using a predefined coincidence window. Finally,

additional loopholes can arise from the assumed source
statistics. Two analysis assumptions are noteworthy. The first
is that most analyses assume that the source emits particles
with independent and identical states. The second assumes that
the average violation has a Gaussian distribution; in particular,
nearly all reported Bell violations are cited in terms of numbers
of standard deviations of violation, whose interpretation
requires that the relevant distributions are Gaussian for many
standard deviations from the mean, which fails to hold no
matter how many particles are detected (for a discussion,
see [5]).

As Bell tests can be a resource for cryptographic protocols,
such as device-independent random number generation [6] and
device-independent quantum key distribution [7], these issues
are critical to the security of the device, as each loophole allows
for an avenue of attack. If the device satisfies a loophole-
free Bell test, i.e., violates a Bell inequality with no extra
assumptions, then the device can be trusted regardless of the
manufacturer of the device or possible hacking technique. Thus
it is important to minimize any extra assumptions required by
the analysis or its interpretation.

In this paper, we begin by describing how common
experimental Bell tests are performed, and the issues that can
arise from the data analysis. We then briefly summarize the
distance-based analysis technique described in Ref. [8], and
in the subsequent sections we compare this technique to the
conventional analysis for real data sets from three distinct
experimental configurations; one is the first demonstration of a
system capitalizing on the coincidence-time loophole to fake a
Bell-inequality violation, while the other two are a pulsed ver-
sion and a continuous version of the quantum source presented
in Ref. [9]. Finally, we discuss general features of the distance-
based analysis technique that apply to all Bell-test experiments.

II. EXPERIMENTAL BELL TESTS

An ideal (bipartite) Bell test consists of a series of “trials,”
which we now define. For each trial two parties, Alice and

1050-2947/2015/92(3)/032130(13) 032130-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.032105
http://dx.doi.org/10.1103/PhysRevA.91.032105
http://dx.doi.org/10.1103/PhysRevA.91.032105
http://dx.doi.org/10.1103/PhysRevA.91.032105
http://dx.doi.org/10.1103/PhysRevA.92.032130


B. G. CHRISTENSEN et al. PHYSICAL REVIEW A 92, 032130 (2015)

Bob, each independently and randomly choose a setting at
which to perform a measurement. They then perform their
measurements and locally obtain measurement outcomes. The
outcomes are obtained locally in the sense that each person’s
outcome is a function only of events occurring in her or his
laboratory. Note: We shall see below that a trial may consist
of a single detected outcome–or even none–or it may consist
of multiple detected outcomes for the measurement setting for
that trial, i.e., a trial may involve a single pair of photons or
multiple pairs, all measured the same way. For the experiments
discussed here, the settings are chosen from two possibilities,
labeled 0 or 1. Alice and Bob’s settings choices are denoted
by sA and sB , respectively; their corresponding measurement
outcomes are denoted by tA

sA and tB
sB , respectively. After many

trials, the records of settings and outcomes are analyzed to test
local realism.

According to quantum theory, Alice and Bob must share
entanglement to obtain results that are not compatible with
local realism. Traditionally, experimenters have endeavored to
engineer their systems to deliver exactly one pair of entangled
photons to Alice and Bob during each trial. This goal is
technically challenging (for reasons described later), so some
experiments have allowed violations of the definition of “trial”
given above. In some experiments, several measurements
happened before Alice and Bob chose new measurement
settings, and those measurements were then analyzed as if
they were from separate trials each with a randomly chosen
setting. In some, Alice and Bob nonlocally determined when
trials have occurred and what their outcomes were. These
allowances complicate the interpretation of the experiment so
that local realism can be rejected only if other (often implicit)
assumptions hold. In the first experiment reported in this
paper we demonstrate a system without entanglement that can
appear to violate local realism when Alice and Bob determine
trials and measurements nonlocally. In the second and third
experiments measurement settings are changed before each
trial and locally determined trials are used, but the experiments
and analyses are designed to allow many entangled photon
pairs to be measured during each trial.

One type of Bell-test experiment in high-efficiency systems
uses polarization entangled photons [9,10]. To generate the
entangled photons, a strong pump laser passes through a
nonlinear crystal setup, where each photon of the pump has a
small probability of downconverting into a pair of entangled
photons, one of which is sent to Alice, and the other to Bob.
The measurement settings for the Bell test are provided by
a polarizer placed after either a half wave plate in a rotation
mount, or a Pockels cell. Afterwards, the photons are detected
on separate high efficiency photon counters, e.g., transition-
edge-sensor detectors (TES) [11]. The detection events from
each TES are recorded by a time-to-digital converter, and
the resulting timetag sequences are saved for later analysis
to check for correlations. A new timetag sequence is saved
for each new setting that Alice and Bob choose. Because
motorized rotation mounts (and Pockels cells to a lesser
extent) cannot always change settings quickly, it is possible
that multiple detection events occur before the settings can
be changed. For example, the two recent photon experiments
closing the detection loophole kept the same setting for 1-s [9]
and 300-s [10] intervals, so the measurement result obtained

for each choice of measurement settings actually involved
many entangled photon pairs. However, the conventional Bell
inequalities used to analyze these two experiments required
each trial to contain at most one photon pair for violation of
local realism to be visible.

Individual photon-pair events can be difficult to reconstruct
from the longer measurement record. For example, all single-
photon detectors have an intrinsic uncertainty of the arrival
time of the photon. Furthermore, down conversion is a
probabilistic process, where the emission can occur at any
time when the pump laser has a nonzero amplitude. This
is most notable for continuous-wave lasers, where down
conversion events happen randomly, uniformly in time. Alice
and Bob need to determine if they have a coincidence event
(both saw a detection event), a single event (only one saw
a detection), or neither saw a detection event (the standard
Bell-test analysis can be modified so that it is not necessary to
account for the cases where neither party detected a photon);
they must determine which type of event occurred despite
the temporal uncertainty of their measurements. For example,
typical quantum optics experiments determine coincidence
events by allowing for a coincidence window around one
party’s—say Alice’s—detection events: if Bob has a detection
event within the coincidence window determined by her
detection event, then it is called a coincident detection. Similar
nonlocal strategies involving information from both parties
have been used in many experiments (for example [10]) to
analyze the data as if they were generated by a series of trials,
each containing a single photon pair.

In a Bell test, however, this seemingly reasonable (but
nonlocal) method for determining coincidences cannot ex-
clude all local realistic models, as it opens up a loophole that
can be exploited by a hacker to produce an apparent Bell-
inequality violation without any actual quantum correlations.
The loophole, called the coincidence-time loophole, allows for
a time-dependent local hidden-variable model [4]. Consider
the Clauser-Horne (CH) Bell parameter [12] in the form

BCH = pAB

(
tA0 = 1,tB0 = 1

) + pAB

(
tA0 = 1,tB1 = 1

)
+pAB

(
tA1 = 1,tB0 = 1

) − pAB

(
tA1 = 1,tB1 = 1

)
−pA

(
tA0 = 1

) − pB

(
tB0 = 1

)
, (1)

where tAz = 1 (tBz = 1) is a detection event for Alice (Bob) with
z being the measurement setting for Alice’s (Bob’s) detector,
pAB(x,y) denotes the settings-conditional probability of the
joint outcome of x and y for Alice and Bob’s detectors,
respectively, and pA(x) [pB(x)] is the setting-conditional
probability of outcome x for any given trial at Alice’s (Bob’s)
detector. Then it can be shown that −1 � BCH � 0 for any
local realistic model.

Consider an experiment where the times of photon-pair
arrivals at the two parties are unknown. To exploit the
coincidence loophole, a hacker who has full control of the
photon source can send a group of four pulses (two to Alice and
two to Bob as shown in Fig. 1) with each pulse offset by a little
less than the Alice-detection-centered coincidence window
used by Alice and Bob. In doing so, the pulses that result
in detections for settings sA = 1 and sB = 1 are separated by
nearly three coincidence window “radii” and therefore do not
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FIG. 1. (Color online) A diagram illustrating the coincidence-
time loophole. Here tA

z = 1 (tA
z = 0) corresponds to a detection event

(no detection event) when Alice chooses measurement setting sA = z,
and similarly for Bob. In (a), a coincidence window (black arrow)
is selected based on Alice’s detection event. A hacker can exploit
this loophole by staggering pulses in time as shown. In this case,
if the radius (half width) of the coincidence window is between T

and 3T , there are no {sA = 1,sB = 1} coincidence counts, implying
that BCH in Eq. (1) is greater than 0, even for a classical source. In
(b), a well-defined trial is used, where the window is centered on a
synchronization pulse (blue line); the loophole vanishes as there is
no longer a way to address only the {sA = 1,sB = 1} coincidence
term. If a large coincidence window (solid arrow) is used, then every
measurement setting has a coincident event, resulting in BCH = 0.
If a short trial window (dashed arrow) is used, then there are only
coincident and single events at settings {sA = 0,sB = 0}, giving a
Bell value of BCH = −1.

result in any coincidence counts, whereas at every other setting
combination the detected pulses fall within the coincidence
window. Consequently, a hacker can achieve an apparent
Bell violation BCH > 0, since the pAB(tA1 = 1,tB1 = 1) term
in Eq. (1) can be made to vanish.

It is interesting to consider the size of the apparent violation.
Normally, we assume that the pairs arrive at a constant rate rP .
Let rA(x), rB(x), and rAB(x,y) be the rates of events whose
detection probabilities are determined by pA(x), pB(x), and
pAB(x,y). Given the constant rate assumption, we can express
pAB(x,y) = rAB(x,y)/rP and similarly for the other rates. The
quantity BCH can be inferred accordingly and whether or not
it violates the inequality BCH � 0 does not depend on the
rate rP . Thus, it is not necessary to know the rate to observe
such a violation. By exploiting the coincidence-time loophole,
sending pulses at a rate rH , a hacker can force an apparent
violation of up to BCH = rH /rP > 0, given the experimenter’s
assumed photon-pair rate rP . If the experimenter attempts
to measure rP independently, this measurement may also be
subject to the hacker’s manipulations. The data set itself only
yields lower bounds on rP . That is, assuming (wrongly) that
the detections arise from constant-rate photon pairs, we have
that rP should be at least the sum of the rate of detections
by A and B, minus the rate of coincident detections at any
given setting combination. This rate is maximized for settings
sA = 1 and sB = 1, where it is 2rH . Accordingly, rP � 2rH .
Setting rP = 2rH gives a maximum inferred violation of
BCH = 1/2 per presumed pair, which actually exceeds not
only the local realistic limit, but even the maximal quantum
mechanically allowed value of BCH ≈ 0.207, matching the

maximum allowed by no signaling [13]. When quantifying the
violation in Figs. 1 and 3 and in the discussion in Appendix A 1,
we use this normalization for the values of BCH, i.e., we set
rP = 2rH .

One method to close the coincidence loophole is to produce
photon pairs only during well-defined time windows by using a
pulsed laser to pump the down-conversion crystal. The arrival
of the photon pairs at Alice and Bob can be synchronized,
e.g., with a separate laser pulse sent to each party. The trial
begins when Alice and Bob choose measurement settings just
before the possible arrival of the entangled photon pair(s).
Each party’s measurement outcome is equal to 0 if he or she
did not detect any photons and 1 if he or she detected one
or more photons during the trial’s duration. This strategy was
used by the experiments in [14] and [9], except that multiple
one-photon-pair trials are performed at the same setting, so
those trials cannot be considered strictly independent of each
other. This dependence issue could be fixed by discarding all
but the very first trial for a given setting (at the cost of much less
usable data), or if the data analysis considers all events taking
place while the settings are held constant to constitute one
trial. The latter approach, discussed in the following section,
requires an alternate type of Bell inequality, which we now
present.

III. ANALYSIS DESCRIPTION

A high-level explanation of the coincidence-time loophole
is that the nonlocal method for inferring single photon-
pair events invalidates the assumptions underlying the Bell
inequalities. The solution is to ensure that each party knows in
advance the time and duration of a trial and relates recorded
data accordingly. Moreover, if the settings are held fixed over
multiple trials, it is necessary to make additional assumptions;
for example, one can assume that the probability distribution
of measurement outcomes is equal for every trial (that has the
same settings) and that each trial is statistically independent
of other trials. Two trials are statistically independent if and
only if the probability of one trial’s settings and outcomes
does not depend on the settings and outcomes observed during
the other trial. Trials that obey these assumptions are said
to be “independent and identically distributed” (i.i.d.) [15].
To avoid making such additional assumptions, trials should
be designed so that a single new trial begins when Alice
and Bob make new settings choices. (An alternative using
setting-dependent coincidence window sizes is described in
Ref. [16].) For the experiments analyzed in Sec. V, each party’s
measurement outcome for a single trial is their entire timetag
sequence recorded between making settings choices, rather
than a single detection or nondetection. Thus, the complete
results from each trial consist of each party’s settings choice
and the detection timetag sequences they measured before the
next setting was applied. Note that in the absence of large
separations between A and B, this may make it difficult to
ensure locality by spacelike separation of relevant events.
In principle, a hacker could have exploited the ability to
communicate settings between A and B before the end of a trial
to effect arbitrary, nonlocal-realistic probability distributions.
Therefore, in order for the experiments below to show violation
of local realism, we must assume that Alice’s measurement
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setting was not communicated to Bob (and vice versa) during
a single trial.

Generalizing the notation introduced above, we denote the
timetag-sequence measurement outcomes of the two parties
by tA

sA and tB
sB , where tA

sA denotes A’s outcome with the
subscript sA indicating the setting used, and similarly for B.
Since the settings choices are under experimenter control,
their probability distribution is known. For the Bell tests
considered here, each of the four setting-choice combinations
has probability 1/4.

To review the principles of the analysis method in [8],
consider first a general local-realism test. The method begins
by constructing a Bell function B of trial results such that a
Bell inequality in the form〈

B
(
tAsA,tBsB ,sA,sB

)〉
LR � 0 (2)

holds for all local realistic models. Here, 〈. . .〉LR denotes
the expectation with respect to a local realistic probability
distribution, where the settings distribution is fixed as above.
Given such a Bell function, a violation can be demonstrated
in an experiment by showing a statistically significant positive
value for an empirical estimate B̂ of B̄ = 〈B(tA

sA,tB
sB ,sA,sB)〉EX,

where 〈. . .〉EX denotes the expectation with respect to the
experimental probability distribution. The traditional method
for evaluating significance is via the sample standard error of
B̂. This can be used to assign approximate confidence intervals
for B̄ but cannot quantify the extremely high significance of
the evidence against local realism that we seek. To quantify
the significance, it is desirable to determine upper bounds on
p values in the framework of statistical hypothesis testing.
Given a test statistic, the associated p value is the maximum
probability according to a null hypothesis (if it was true) that
the experiment would produce a value of the test statistic
equal to or more extreme than the observed value. Smaller
p values can be interpreted as stronger evidence against
a hypothesis. Here, our hypotheses are that local realism
is true, measurement settings are chosen independently and
from known distributions, and that measurement settings are
not communicated to the remote party during a single trial.
Assuming the latter two are satisfied, a small p value means
local realism is unlikely to have produced the observed data.
Reference [5] shows how to obtain p-value bounds from the
trial results.

A general strategy for constructing Bell functions that can
be used for conservative estimates of B̄- and p-value bounds is
given in Ref. [8]. Here, “conservative” means that the estimates
and bounds are statistically valid with no approximations or
extra assumptions on distributions other than the standard ones,
namely that the settings probabilities are known and that local
realistic distributions are mixtures of outcomes determined by
the local settings. The fundamental principle is to start with
settings-dependent “distance” functions lsA,sB (tA,tB) on the
measurement outcome pairs; such functions are required to
satisfy a generalized, twice-iterated triangle inequality

l1,1
(
tA1 ,tB1

)
� l1,0

(
tA1 ,tB0

) + l0,0
(
tB0 ,tA0

) + l0,1
(
tA0 ,tB1

)
. (3)

[If l is non-negative and independent of the settings, then this
is the conventional twice-iterated triangle inequality. Here we
use the term “distance function” to refer to any function family

l satisfying Eq. (3).] Since local realistic models are given by
probability distributions over deterministic models where a
party’s setting determines the party’s measurement outcome,
a Bell function can be constructed from l according to

B
(
tAsA,tBsB ,sA,sB

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l1,1
(
tA1 ,tB1

)
if sA = 1, sB = 1,

−l1,0
(
tA1 ,tB0

)
if sA = 1, sB = 0,

−l0,0
(
tB0 ,tA0

)
if sA = 0, sB = 0,

−l0,1
(
tA0 ,tB1

)
if sA = 0, sB = 1.

(4)

The use of distance functions to obtain Bell inequalities was
introduced by Schumacher in Ref. [17].

For timetag sequence outcomes associated with experi-
ments that are intended to violate a CH-type inequality, Ref. [8]
shows that one can define distance functions according to a
minimum cost of converting the first timetag sequence into the
second by shifting and/or deleting timetags. A feature of the
technique is that in the limit where the average time between
detections is large compared to the time jitter (the uncertainty
in the time of the detection), the value of the distance function
can be made to match the value of any CH-type Bell function.
One issue is that the costs defining the distance function are
parametrized, and we wish to choose these parameters opti-
mally given the characteristics of the experiment. However,
to avoid biases and remain conservative, it is necessary to
choose the parameters beforehand, independent of the data
to be analyzed. That is, contrary to what is often done in
experiments, no part of the “final data” can be used to find
analysis parameters, such as delays. Otherwise the validity
of confidence intervals or p values is lost. The parameters
can instead be determined by setting aside a fraction of the
trials from the beginning of the experiment. This “training
data set” is used for optimizing analysis parameters. The
remainder of the trials constitute the analysis data set and
should only be analyzed once the parameters have been
chosen. In the applications below, the training set serves to
determine two Bell functions. The first is designed to maximize
a CH-like violation and can be compared to traditional (that
is, nondistance-based) measures of violation. For reporting
these violations, we modify the conventional method so that
the violation reported is meaningful without assuming that
the trials are independent, as explained in Appendix B. The
methods for computing p-value upper bounds used by [5]
require Bell functions that are bounded, so we create a second
Bell function that is a systematically “truncated” version of the
first. The truncation method is general and can be applied to
any distance-based Bell function [8]. As these p-value bounds
are extremely small, we give their negative logarithm base 2,
called the log2 -p-value (lower) bound. See Sec. V for the
interpretation of p values and their comparison to Gaussian
tails.

Because all the experiments discussed below were per-
formed before the statistical techniques were fully developed,
their analysis was retrospective and in this sense deviated from
the ideal protocol (i.e., there could be a slight bias in the
bounds due to prior knowledge of the data before analysis);
the deviations are discussed in Appendix C.
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IV. EXPERIMENTAL REALIZATION OF THE
COINCIDENCE-TIME LOOPHOLE

We realized the coincidence-time loophole experimentally
by combining two attenuated lasers on a beam splitter for
both Alice and Bob (Fig. 2). For Alice, one laser is polarized
orthogonal to the polarizer setting for measurement setting
sA = 0, while the other laser is polarized orthogonal to the
polarizer setting for sA = 1, and similarly for Bob. This allows
the source to address the measurement settings independently
[i.e., when we send a laser pulse polarized along (sA = 1)⊥,
we should only receive detection events for measurement
setting sA = 0]. We then attenuate the sources to a mean
photon number per pulse of around 10. The relatively high
mean photon number offsets the loss in the measurement and
detection process, but is still small enough to minimize the

Pol (sA=1)
T

HWP Pol

APD
1µs1µs

Pol (sA=0)
T

(sA=1)
T

(sA=0)
T

(sB=0)
T

(sB=1)
T

Pol (sB=1)
T

Pol (sB=0)
T

FIG. 2. (Color online) A diagram of our experimental setup to
produce the local hidden-variable model described in Fig. 1. On
Alice’s side, we electrically pulse two 670-nm laser diodes with a
pulse width of 100 ns; these pulses then pass through polarizers
aligned orthogonally to her two measurement settings (Pol (sA =
0)⊥ and Pol (sA = 1)⊥). That is, we emit pulses that will not pass
through one of the two measurement settings, ensuring only one of
the measurement settings will detect our optical pulse. The laser
pulse that passes through the (sA = 0)⊥ polarizer is emitted 2 μs
before the (sA = 1)⊥ laser pulse. We attenuate the lasers enough so
that after they are combined on a beam splitter, each pulse has a mean
photon number of approximately 10, to offset any system loss while
minimizing the noise due to crosstalk in the polarizers. Similarly
on Bob’s side, we combine two attenuated lasers on a beam splitter.
Here, the (sB = 1)⊥ pulse is emitted 2 μs before the (sB = 0)⊥ pulse,
and both are offset from Alice’s photon pulses by 1 μs. The basis
choice for the polarization analysis is implemented with a half wave
plate (HWP) and polarizer (Pol), where the settings are −11.25◦

for sA = 0, 33.75◦ for sA = 1, 11.25◦ for sB = 0, and −33.75◦ for
sB = 1 (corresponding to the optimal CH-Bell-inequality-violating
settings of a perfect maximally entangled state). The photons are then
detected by avalanche photodiodes (APDs), with an efficiency lower
than 66%, the outputs of which are recorded using time-to-digital
converters. The results of analyzing the data both with a coincidence
window determined by Alice’s detection event, as well as a predefined
coincidence window, are displayed in Fig. 3.

effect of crosstalk in the polarizer (there is a small chance
that the polarization state to be blocked is still transmitted
through the polarizer). We then pulse the lasers as shown in
Fig. 1, with adjacent pulses separated by T = 1 μs. If we
determine the number of coincidence events by a nonlocal
method of checking if Bob had a detection event within a
window (e.g., 2 μs) around Alice’s detection events, then we
observe Bell-inequality violations up to BCH = 0.49 (with the
normalization discussed earlier), where Alice and Bob use
the optimal settings for an ideal maximally entangled state as
specified in the caption of Fig. 1. A plot of the data analyzed
in this way is displayed in Fig. 3. We see a “violation” of over
2700 σ (assuming Gaussian statistics). By altering the two
laser polarizations and increasing the mean photon number
to offset any additional losses, we have been able to exploit
this loophole for a wide range of measurement settings; see
Appendix A 1. In addition, the degree of violation can be
altered by changing the laser polarization. As a final note,
while the plot in Fig. 3 has a well-defined structure (which
would obviously make the hack easy to detect), it is possible
to broaden the observed “violation range” by probabilisti-
cally switching between local hidden-variable models with
different pulse spacings; therefore, one cannot simply look
at a plot of the Bell violation versus coincidence window
size to determine if the coincidence-time loophole is being
exploited.

In contrast, if Alice and Bob determine each trial’s
measurement outcomes locally using a coincidence window
of fixed duration centered on a predefined time rather than one
centered on a detection (see Appendix A 2 for details), we do
not see a statistically significant Bell violation, as shown in
Fig. 3. Furthermore, when we use the distance-based analysis
from Ref. [8], the results correctly do not indicate that the
system is behaving contrary to local realism. Initially, in the
training set, where delays are determined to offset electronic
latencies, the delays on apparent coincidences were found
to depend highly on the measurement settings, due to the
scheme for exploiting the coincidence loophole. From the other
experiments using the same setup, the latencies are known to
be small, so for demonstration purposes we did not offset for
electronic latencies. The resulting distance-based Bell function
[Eq. (4)] is then significantly negative, showing no evidence
against local realism according to this analysis.

While the data set in this case is contrived to be clearly
determined by a local hidden-variable model, in real experi-
ments the issues are far more subtle. For example, avalanche
photodiodes can have a count-rate-dependent latency, and
since each measurement setting can have different detection
rates (for example, in Ref. [9], the count rates differed by a
factor of 3), it is critical that the analysis is not susceptible
to these minor latency shifts. To show that these issues are
relevant, Ref. [8] proposes a coincidence-loophole-exploiting
scheme whose statistics closely match those of a standard
photon-pair source.

V. EXPERIMENTS WITH VIOLATION

The example above shows the use of the distance-based
analysis technique to “catch” an invalid violation of a Bell
inequality with a purely classical source. The following two
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FIG. 3. (Color online) Two plots of the measured Bell parameter,
BCH [Eq. (1)] (solid blue line), as a function of the coincidence
window radius for our experiment using a classical source to produce
the local hidden-variable model shown in Fig. 1. When the data set
is analyzed with a coincidence window determined by a detection
event (a), the coincidence-time loophole can be exploited to produce
a Bell violation (values greater than 0). We separated each pulse
by 1 μs, so with this model we see BCH > 0 for any coincidence
window radius between 1 and 3 μs. For coincidence windows less
than 1 μs, we do not have any coincidence counts, but we still have
single counts, resulting in a negative Bell parameter of BCH � −1.
While this value depends on the chosen normalization, the minimal
inferred value of rp is at rp = 2rh, resulting in the most negative
Bell parameter of −1. With window sizes larger than 3 μs, we assign
coincident and single events to nearly every detection event, resulting
in a Bell parameter of 0. In contrast, when the data are analyzed with
a fixed predefined coincidence window (b), or using the technique
described in the text, the Bell parameter remains between −1 and 0,
and therefore does not show a violation of local realism. The results
match well the predictions given the structure of the classical source,
as explained in Appendix A 2. The positions of the transitions are
due to the location of the predefined coincidence window relative to
the pulse set. The transitions between 0 and −1 are not sharp because
of the slow desynchronization between the fixed windows and the
actual source pulse rate. That is, the window slowly drifted such that
it was not always centered on the pulse set. For more details, see
Appendix A 2.

examples demonstrate the strength of this analysis on data with
actual quantum correlations.

First, we consider the data collected and analyzed in
Ref. [9], where the experiment had a high enough system
efficiency and low enough noise to be able to violate a CH
Bell inequality without the detection loophole. This system
consisted of a mode-locked frequency-tripled Nd:YAG laser
(120-MHz repetition rate, 5-ps pulse width, λ = 355 nm)
which was attenuated to approximately 10 mW and focused
on a pair of orthogonal nonlinear crystals to produce 710-nm
polarization-entangled photon pairs via type-I spontaneous
parametric down conversion [18]. Through precise spatial and
spectral filtering, as well as using TES detectors, a system
efficiency of 75% ± 2% was achieved, enough to close the
detection loophole with the background counts present in the
system. However, due to the 1-μs timing jitter of the detectors,
the resultant timetag sequences cannot distinguish individual
pulses, separated by only 8 ns; instead, a Pockels cell was used
to create 2-μs pulses every 40 μs. A predefined coincidence
window of 2.4 μs was centered around a signal from the
Pockels cell which produced the laser pulse. Alice’s and Bob’s
measurement outcomes for that trial were “0” if no photons
were detected during that window and “1” if any photons were
detected during that window. These predefined coincidence
windows together with the use of the Pockels cells ensured that
with high probability at most a single photon pair was present
during each trial. A Bell inequality designed for single photon
pairs could witness violation of local realism while avoiding
the coincidence-time loophole discussed above. The data set
was collected by changing the measurement settings randomly
every second, collecting for 4450 different measurement
setting choices. For the analysis in Ref. [9], the data set
was partitioned into 50 different Bell tests. The uncertainty
was calculated from the distribution of the 50 different Bell
parameters using the sample standard error. The reported value
from this approach was BCH = 5.4 × 10−5 ± 7.0 × 10−6, a
7.7-σ violation, where the conventional interpretation of the
large violation assumes Gaussian statistics. In contrast, here
we analyze the same data set with the distance-based method
without making distributional assumptions or approximations.
Additionally, because the measurement settings were fixed
across many trials (i.e., multiple photons detected at each
setting), the previous analysis required assuming that each trial
was i.i.d., but our analysis treats each 1-s period with fixed set-
tings as one trial and therefore does not require this assumption.
This analysis is detailed in Appendix C. We find a log2 -p-value
bound of 33, which means that for every local realistic model,
the probability that this analysis reports a log2 -p value above
33 is less than 2−33 = 1.16 × 10−10, a very unlikely event.
While this result is equivalent to a 6.3-σ violation for Gaussian
statistics (we give the Gaussian-equivalent violation only for
comparison; it is computed from the p-value bound of 2−33

by solving
∫ ∞
x

e−x2/2/
√

2π = 2−33 for x), slightly lower than
the 7.7-σ violation reported in Ref. [9], it does not assume
Gaussian statistics. Thus, we see that with minimal degradation
of the evidence for Bell-inequality violation, we have reduced
the required assumptions on the system: the trials need not
be independent and identical and the distributions are not
approximated by Gaussians. If the system is being hacked, lack
of independence and Gaussianity are even more pronounced.
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Finally, we consider a different data set taken on the same
high-efficiency system, but without pulsing the laser with a
Pockels cell, so that the entanglement source is effectively
emitting continuously. To analyze the data conventionally, we
partition time into segments independent of the data (that is,
we impose a fixed coincidence window). Since we are not
determining the coincidence window based on the data, it is not
susceptible to the coincidence-time loophole [see Fig. 1(b)].
However, because we are introducing a coincidence window
that is not related to the arrival time of photons, due to the
detector time jitter, we are effectively introducing loss into
the system. That is, if the window is small compared to the
time jitter, then it is possible that Alice and Bob’s detection
events from a single pair of photons are nevertheless registered
in different time segments, resulting in two single counts
without a coincidence count. In the opposite limit, the window
becomes too large, which reduces the Bell parameter due to
the high likelihood of counting uncorrelated photon pairs as
coincidences. The result of analyzing the data in this way
is displayed in Fig. 4. While the source quality is sufficient
for a Bell test (that is, it has high heralding efficiency and
high entanglement quality), the effective loss introduced by
this conventional analysis is too much for us to adequately
extract the quantum correlations. If we instead analyze the data

FIG. 4. (Color online) A plot of the CH-Bell parameter from
a nonpulsed experiment, analyzed using different predefined co-
incidence windows. While the system is capable of a detection
loophole-free violation as verified in Ref. [9], the inefficiencies of
a conventional analysis with predefined coincidence windows are
unable to produce a nonclassical result: for small window sizes, the
analysis introduces loss because of the timing uncertainty (time jitter)
of the detectors, causing the misassignment of some detection events
as noncoincidence counts; large windows catch all coincidences, but
also increase the system noise, to which the CH Bell inequality is
very sensitive, again resulting in a reduced Bell parameter. Here we
show the Bell parameter for many different coincidence windows, the
blue solid line is a fit to all of the data points (the points are spaced
by 10 ns), each of which lie within the thickness of the line. With
conventional analysis, we do not observe a Bell violation (above the
red dashed line) for any coincidence window size. With the analysis
discussed in [8], we observe a violation with a log2 -p-value bound
of 269.

using the distance-based approach discussed here, we find a
violation with a log2 -p-value bound of 269, the equivalent of a
19-σ violation (see Appendix C for more details). In addition
to revealing a violation where conventional analysis would
not produce one, the confidence in the violation is actually
significantly larger than that with the pulsed source presented
in Ref. [9]. This is because we can utilize a system that is
“on” more often than a pulsed source (which by definition
has no data collection between pulses), thereby resulting in
substantially more data.

VI. DISCUSSION

As shown in the above examples, the distance-based anal-
ysis of Ref. [8] is able to improve the statistical significance
of a Bell-inequality violation, as well as reduce the required
assumptions compared to a standard analysis. While the
analysis uses distance functions as a measure of the violation,
it has important features common to any conservative analysis
of Bell-inequality data. First, to estimate the significance of
the violation, it is important to use p-value bounds instead
of standard deviations. The latter are unreliable for the high
significance of typical Bell-inequality violations. Second,
to prevent overestimating the statistical significance of the
Bell-inequality violation, delays, coincidence windows, and
other such analysis parameters should be determined from a
training data set (that is then discarded) rather than the data to
be analyzed. Otherwise, if the final data set is used to determine
these parameters, the reported violation may be biased by
statistical fluctuation rather than reflect a fair estimate. Finally,
all Bell tests should have predefined trials to avoid opening up
additional loopholes (e.g., the coincidence-time loophole). The
predefined trials may be based on a timetag sequence according
to the chosen settings as presented here, specific laser pulses
detected on a photodiode as presented in Ref. [9], or the detec-
tion of heralding photons as in the ion experiments of Ref. [6].
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APPENDIX A: ADDITIONAL EXPERIMENTAL DETAILS

This section further discusses our classical source that
exploits the coincidence time loophole. The first subsection
explains how the source can be tuned to match Alice and Bob’s
expectations (i.e., to give violations consistent with quantum
mechanics). In the second subsection we use a predefined
coincidence window to analyze the data from the classical
source and find no violation of local realism.

1. Controlling violation size

In an actual attempt of a Bell test, Alice and Bob would
likely suspect the presence of a hacker if their estimated CH-
Bell parameter is beyond the quantum-mechanical limit of
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FIG. 5. (Color online) A plot of several measured data points
from our classical source when analyzed incorrectly (susceptible
to the coincidence-time loophole discussed in Sec. II). The blue
curve is the predicted quantum-mechanical maximum given the state
cos θ |HH 〉 + sin θ |V V 〉. Here, we assumed Alice and Bob have a
target θ and use the optimal measurement settings for their presumed
input state. We then adjusted the source polarizer angles to match
the quantum-mechanically allowed maximum Bell parameter, given
Alice and Bob’s measurement settings. The resulting measurements
(red data points) are indistinguishable from the quantum-mechanical
expectation.

(
√

2 − 1)/2. Even more so, if Alice and Bob know that they
have low system efficiencies, then the value they expect is well
below (

√
2 − 1)/2. In particular, with low efficiency, Alice and

Bob design their system to use states of the form cos θ |HH 〉 +
sin θ |V V 〉 (see Refs. [9,10,19]) to maximize the measured
violation. Consequently, a hacker would want Alice and Bob
to believe that they prepared a less entangled state (states with
θ farther from π/4). If Alice and Bob estimate θ for their state,
there is a maximum θ -dependent Bell parameter they expect.
Ideally, the hacker controls the measured Bell parameter to
match Alice and Bob’s expectation and avoid suspicion. In
our case, with the source depicted in Fig. 2, we can tune
the source polarizers (and adjust the laser diode brightness to
compensate the increased loss) to create nearly any value of
the Bell parameter. The results of several measurements using
this technique are displayed in Fig. 5.

2. Predefined window analysis

To use a predefined window to analyze the data exploiting
the coincidence-time loophole, we first add in a synchro-
nization signal at the rate equal to the rate that the source
emits a set of pulses, 100 kHz in our case. As there was no
actual synchronization signal when the data set was taken, we
implement this signal in postprocessing. For comparison with
Fig. 1(b), where the predefined coincidence window is in the
center of the pulse set, we placed the first synchronization
signal in the center as determined by the first two detection
events in the data set. We then create a periodic signal by
spacing each synchronization signal by 10 μs (= 1/100 kHz).
To compensate for the relative temporal drift between the

function generator and the timetagging electronics, we reset
the synchronization signal every 500 detection events to be
recentered in the pulse set. If the separation between adjacent
pulses is 1 μs (see Fig. 2), then we would expect a Bell
parameter close to 0 for windows less than 0.5 μs, since
there will be neither single nor coincident events (other than
occasional dark counts, no event will fall within the predefined
window). For windows between 0.5 and 1.5 μs we would
expect a Bell parameter close to −1, since we see events
primarily from {sA = 0,sB = 0}. That is, pAB(tA0 = 1,tB0 =
1) = 1, pA(tA0 = 1) = 1, and pB(tB0 = 1) = 1 in Eq. (1), while
all other terms are 0. Finally, for predefined window sizes
larger than 1.5 μs, all terms in Eq. (1) are equal to 1, leading
to a Bell parameter of 0. The results of analyzing the classical
data with a predefined coincidence window of variable width
are displayed in Fig. 3.

APPENDIX B: CONSERVATIVE ESTIMATES
OF BELL VIOLATION

For each experiment, the timetag Bell function B used has
expectations that are related to the violation of a CH-type
inequality by multiplying the latter by the expected number of
photon pairs. In the limit of low time jitter compared to the
mean photon-pair interarrival time, the expectations according
to B and that expected from the CH-type inequality converge.
It is therefore worthwhile to estimate the expected value of the
Bell function for comparison purposes. In principle, for each
trial, the expectation of B is an experimental observable that,
if greater than zero, witnesses violation of the Bell inequality
associated with B. If the trials are i.i.d., the expectation can be
estimated empirically using conventional methods. For tests of
LR, this is usually done by estimating the settings-conditional
expectations of B, which are then added. The uncertainty
is obtained accordingly. When the trials are not necessarily
independent or identical, there may be no single expectation
of B to estimate, so the conventional method cannot be
used. Here we give an alternative that produces meaningful
results in the general case. It statistically agrees with the
conventional method when the trials are i.i.d.: While the
estimated uncertainties obtained are slightly larger on average,
they differ by an amount that is comparable to the expected
statistical fluctuations in the estimate.

We emphasize that the purpose of these methods is to
obtain an estimate of a physical quantity and the associated
uncertainty. They do not yield certificates against local realism
(see [5] for a discussion). While we obtain uncertainties that
are appropriate for dependent trials whose expectations change
in time under normal experimental conditions, a sufficiently
determined adversary can still ensure that our uncertainties are
overly optimistic.

Here is the procedure for our method. A mathematical
discussion follows the procedure.

(1) (a) Initialize the running value of the estimated total
Bell violation by setting b̂[0] = 0.

(b) Initialize the running value of the estimated variance
û[0] = 0.

(2) For each trial result di , 1 � i � N in order, do the
following:

(a) Before considering di :
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(i) Predict the settings-conditional expected Bell-function
values 〈B(Di)|Si = s〉 at the next trial as bpred,i(s). This
prediction can be based on any information available before the
ith trial occurred, including calibrations, theory, and previous
trial results. Here, Si = (SA

i ,SB
i ) are the joint settings random

variables and Di are the random variables whose outcome
values are the di .

(ii) Determine the predicted average Bell-function violation
b̄pred,i = ∑

s bpred,i(s)ps , where ps is the probability of settings
choice s. Note that 〈bpred,i(S)〉 = b̄pred,i is known exactly
before the ith trial.

(b) Now consider di :
(1) Compute b̂[i] = b̂[i−1] + B(di) − [bpred,i(si) − b̄pred,i].
(2) Compute û[i] = û[i−1] + [B(di) − bpred,i(si)]2.
(3) Report the estimated total Bell violation as b̂[N] with an

approximate 68% confidence interval of b̂[N] ± √
û[N].

The simplest method for predicting the settings-conditional
Bell-function expectations in step (2) (a) (i) of the procedure
is to compute the sample means conditional on settings from
the first i − 1 trials and the training trials. This works well
for stable experiments. For the data analyses in this paper, we
used a segment of recent trials (including the training trials)
instead. We formulated the procedure for a fixed Bell function,
but the procedure also works if the Bell functions are chosen
adaptively before each trial.

Consider a sequence of trials with each trial’s result given
by di . We now adopt the usual conventions for random
variables and their outcome values, where random variables
are capitalized. Thus Di is the random variable for the result
from the ith trial, and di is its outcome value in a particular
run of the experiment. The results consist of the measurement
outcomes and settings. We let T X

i and SX
i be the respective

random variables for the measurement outcome and setting
of party X in the ith trial. We let D denote the sequence
of random variables Di . The random variables Di are not
necessarily independent, but the distributions of the settings
SX

i are jointly uniform and therefore independent of each other.
We let Hi−1 be a random variable that captures the history
of events preceding trial i, including events not captured
by D but that are relevant to the experiment. In particular,
Hi−1 determines Dj for j < i and may include additional
experimentally relevant information. The goal is to obtain an
empirical estimate of the quantity

b̄[N](h) =
N∑

i=1

〈B(Di)|Hi−1 = hi−1〉, (B1)

and a confidence interval for this estimate. Here, hi−1 is the
actual value of the history random variable. Throughout, we
assume that the relevant real-valued random variables have
finite second moments. We interpret b̄[N](h) as the total Bell-
inequality violation actually present in the experiment, which
we estimate with b̂[i]. We do not assume that the outcome value
hi−1 is known, just that it is well defined for a given run of the
experiment. Define b̄i(h) = b̄i(hi−1) = 〈B(Di)|Hi−1 = hi−1〉.
This is the expected value of the Bell function for the upcoming
ith trial, just before the trial is performed. We use the following
conventions to refer to functions of random variables and the
random variables defined by these functions: Except for the
Bell function B, we use lower case annotated symbols for the

functions. Applying a function to a random variable as in the
expression b̄i(H ) defines a new random variable. To simplify
the notation, we also refer to this random variable by its upper
case variant, so that B̄i = b̄i(H ). (Here H refers to the full
history.) The outcome values of this random variable are then
denoted by b̄i = b̄i(h).

For i.i.d. trials, b̄i(h) = 〈B(Di)〉 and is independent of i

and h. The sum b̄[N](h) = ∑N
i=1 b̄i(h) can then be interpreted

as the conventional total Bell-inequality violation of the
experiment, if it is positive. For the empirical estimate of
b̄[N](h) we could compute

∑N
i=1 B(di), but instead we use

the less-noisy estimate b̂[N] from the procedure. The estimate
is less noisy because we subtracted from b(di) the quantity
[bpred,i(si) − b̄pred,i], whose mean is guaranteed to be zero but is
expected to be positively correlated with the original estimate.

The first task is to show that b̂[N] is an unbiased estimator of
b̄[N](h) [that is 〈B̂[N]〉 = 〈b̄[N](H )〉]. We use E(A|B) to denote
the conditional expectations of A with respect to B interpreted
as a function of the random variable B. The notation 〈. . .〉
is reserved for unconditional expectations and expectations
conditional on specific outcome values. Since E(. . . | . . .)
denotes random variables, they may occur inside 〈. . .〉. By
expanding the definition, we have

〈B̂[N]〉 =
〈

N∑
i=i

B(Di) − (Bpred,i − B̄pred,i)

〉
. (B2)

The expectation of Bpred,i − B̄pred,i is 0 by design, so

〈B̂[N]〉 =
N∑
i=i

〈B(Di)〉 (B3)

=
N∑
i=i

〈E(B(Di)|Hi−1)〉 (B4)

=
N∑
i=i

〈b̄i(H )〉 (B5)

= 〈b̄[N](H )〉, (B6)

where the identity 〈B(Di)〉 = 〈E[B(Di)|Hi−1]〉 follows from
the rules for iterated conditional expectations. (This is a special
case sometimes referred to as the “law of total expectations”.)

The second task is to determine an approximate 68%
confidence interval for b̄[N](h) around b̂[N](d). Note that the
confidence interval is itself a random variable with respect
to H that should reflect what actually happened during the
experiment as indicated in the definition of b̄[N](h). Formally,
we seek a bound δ for a (conservative) confidence interval
for b̄[N](h) − b̂[N](d) that satisfies a coverage condition,
namely that before the experiment, the probability that −� �
b̄[N](H ) − b̂[N](D) � � is at least 68%. Here � is the random
variable with outcome values δ. (We could consider −δ as the
lower endpoint of a one-sided confidence set with no upper
bound, in which case we require that before the experiment,
the probability that −� � b̄[N](H ) − b̂[N](D) is at least 84%.)
Because the trials may not be i.i.d., the standard estimates of
variance cannot be applied to determine δ. Our method yields
an estimate of an error bound given relatively mild assumptions
and sufficiently large N .
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Let b̂i = B(di) − bpred,i(si) + b̄pred,i be the increment b̂[i] −
b̂[i−1] of the estimated Bell violation from the ith trial. By
design of bpred,i , we have E(B̂i |Hi−1) = E[B(Di)|Hi−1] =
b̄i(H ).

We investigate the statistics of the estimation error �[N] =
b̂[N](D) − b̄[N](H ) = ∑N

i=1 �i , with

�i = B̂i − B̄i . (B7)

Note that 〈�i〉 = 0 and 〈�[N] = 0〉, so the variance of �[N] is

Var(�[N]) =
〈(

N∑
i=i

�i

)2〉
. (B8)

Since E(�i |Hi−1) = 0, the �i are martingale increments
adapted to the Hi . (For the relevant theory of martingales,
see Ref. [20].) Martingale increments at different times are
uncorrelated. That is, for i > j , 〈�i�j 〉 = 〈E(�i�j |Hj )〉 =
〈E(�i |Hj )�j 〉 = 0. A consequence is that the variance of the
estimation error satisfies Var(�[N]) = 〈∑N

i=1 �2
i 〉. In detail,〈(

N∑
i=1

�i

)2〉
=

〈∑
i>j

2�i�j +
N∑

i=1

�2
i

〉
(B9)

=
∑
i>j

2〈�i�j 〉 +
〈

N∑
i=1

�2
i

〉
(B10)

=
〈

N∑
i=1

�2
i

〉
. (B11)

Since we do not know b̄i(h), we cannot directly compute
δ2
i as our estimate of 〈�2

i |Hi−1 = hi−1〉. But we can use the
prediction b̄pred,i of B̄i(h) made before the ith trial. Recall
that the variance of a random variable R is the minimum
expectation of (R − m)2, where the minimum is achieved by
m = 〈R〉. In conditional form, this implies E(�2

i |Hi−1) �
E[(�i − M)2|Hi−1] for any M that is a function of Hi−1,
because �i is zero-mean conditional on Hi−1. We set M =
B̄pred,i − B̄i and define

δ̂i = δi − m = B(di) − bpred,i(si), (B12)

which we can compute from the available information. The
variance inequality now implies E(�̂2

i |Hi−1) � E(�2
i |Hi−1),

so û[N] = ∑N
i=1 δ̂2

i can serve as a biased-high estimate of the
desired variance. Formally,

〈Û[N]〉 =
N∑

i=1

〈
�̂2

i

〉
(B13)

=
N∑

i=1

〈
E

(
�̂2

i

∣∣Hi−1
)〉

(B14)

�
N∑

i=1

〈
E

(
�2

i

∣∣Hi−1
)〉

(B15)

=
N∑

i=1

〈
�2

i

〉
(B16)

= Var(�[N]), (B17)

where Û[N] is the random variable corresponding
to û[N].

To justify
√

û[N] as an estimated uncertainty requires addi-
tional assumptions on the random variables. For Chebyshev-
type inequalities involving variance and a variety of exponen-
tial bounds on tail probabilities, boundedness of B suffices
(and is typically stronger than necessary). But one would like
to use appropriate central-limit theorems in the same way as
for i.i.d. trials. The conditions under which such central-limit
theorems hold are surprisingly broad, but not unrestricted.
Reference [20] has a variety of relevant versions that can be
applied in nonadversarial situations where the square errors �2

i

are asymptotically well-behaved. We therefore suggest that
in typical physics experiments with sufficiently many trials
without excessive stability problems, the approximate 68%
confidence interval of the total Bell violation can be given as
b̂[N] ± √

û[N]. We expect this interval to be conservative under
most conditions even though the trials need not be i.i.d.

APPENDIX C: DISCUSSION OF ANALYSES

Here we describe in detail the distance-based analyses of
the data from the three experiments discussed in the paper.
The results reported are from final analyses that adhered to
the protocol of inferring parameters from the training set and
applying them adaptively to the analysis set. However, the final
analyses were not strictly blind; the data set was available for
some time while our analysis methods were being developed
and there were multiple early analysis attempts involving
various techniques. Features of the data discovered in these
attempts required changes in preprocessing and strategy. These
changes are described below as needed.

Each data set was analyzed by two or three methods for
comparison purposes. The simplest method is a conventional
analysis based on coincidence counting. The results of this
method are susceptible to the coincidence loophole and require
strong assumptions on the source and its statistics. The second
method involves our distance-based Bell-function analysis
applied to trials consisting of all the data acquired while the
settings were held fixed. The third computes “certificates” of
violation [given as log2(p) values] using the prediction-based-
ratio (PBR) protocol [5,21] with truncated versions of the
distance-based Bell functions. We discuss the analysis of the
three experiments in reverse order, which is also the order in
which the data sets were received and analyzed.

1. Continuously emitting quantum source

The data set for this experiment consists of 3953 trials with
randomly chosen settings. The measurement outcomes consist
of a sequence of timetags for each party, where each timetag
records a detection event. The average numbers of recorded
detections per trial are approximately 1400 on setting 1 and
4900 on setting 2 for both parties. Each trial’s results are
stored in one file. The files for eight trials were corrupted
and therefore discarded, leaving 3945 trials. The timetag
sequences were preprocessed in two steps. The preprocessing
parameters were determined at an early stage of analysis with
a set consisting of 97 × 4 randomly chosen trials with 97 at
each settings choice. (The final analysis was performed in
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the order in which the experiment was performed with the
initial trials used for training—see below. The preprocessing
parameters suggested by the training set for the final analysis
were the same up to statistical fluctuations, so we did not
change them for the final analysis.) The first preprocessing
step compensated for transient artifacts near the beginning
and end of the timetag sequences. We therefore used only
timetags from the middle portion of the sequence determined
as follows: The sequence durations are approximately 1 s. For
each trial, we first determined the earliest recorded time t0 in
both parties’ sequences and set t ′0 to be the second multiple of
108 past t0 (in the time units used for the timetags, 156.25 ps).
Thus t ′0 = (
t0/108� + 2)108. We then used only timetags with
recorded times t satisfying t ′0 � t � t ′0 + 6 × 109. We remark
that this preprocessing step is nonlocal, which is in general
undesirable. We are not aware of any way in which a local
realistic (LR) source could exploit this, though the possibility
exists. The second preprocessing step corrected a systematic
timing offset between the recorded times for the two parties.
The offset was applied to all timetag sequences of party A and
involved shifting the timetags by −685 time units (i.e., 107
ns). For comparison, the time jitter determined as the typical
distance between apparent coincidences is of the same order.

All analysis attempts used the preprocessing of the previous
paragraph. We describe the final analysis first and then discuss
how we arrived at the final analysis. For the conventional
analysis, we used the first 197 trials to determine the optimal
coincidence window. We then computed the number of
coincidences for each trial. The coincidences were determined
as described in [8] rather than with the simple Alice-centered
windows used in the main text. We then computed the
estimated total violation as described in Appendix B according
to the Bell inequality used for the original analysis of the pulsed
quantum source in Ref. [9]. The total violation according to
this analysis is 5.14(10) × 104, corresponding to a nominal
signal-to-noise ratio (SNR) of 59.7. The latter is the ratio of the
total violation to the estimated uncertainty; see Appendix B.

The distance-based analysis was performed adaptively. An
adaptive procedure was required because the parameters of the
distance-based Bell function used are sensitive to the apparent
drifts in count rates over time. Starting at the 201st trial
and then every 400 trials, we reoptimized the Bell-function
parameters on the previous 800 trials. (Before the 801st trial
we used all the trials already processed, including the first
200.) The Bell function was then computed for each of the
next 400 trials, before reoptimizing the parameters. We then
estimated the total violation as described in Appendix B.
The total violation according to the distance-based analysis
is 2.52(10) × 104, corresponding to a nominal SNR of 24.5.

The Bell-function values from the distance-based analysis
were then used in an adaptive version of the PBR analysis.
This required adaptively computing the parameters for Bell-
function truncations and the mixtures used in constructing
the test factor according to the protocol in Ref. [8]. This
proceeded similarly to the distance-based analysis, except that
the parameters were updated every ten trials and optimized
on the last 400 (or less) trials. We chose the more frequent
update because there is little computational cost in doing so
and the truncation and mixture parameters are sensitive to
small drifts in the conditional means of the Bell function. The

log2(p)-value bound obtained is 269, equivalent to a one-sided
Gaussian SNR of 19.

The final analysis was performed after two previous
analyses. The first analysis involved partitioning the trials
into randomly chosen sets of four matched trials, one at each
of the settings choices. The version of the distance-based
analysis available at the time yielded a significantly smaller
total violation than the final analysis. The PBR analysis at the
time was faulty, but suggested a significantly higher log2(p)-
value bound than revealed by the final analysis. Because the
randomization strategy used in this analysis is not acceptable
for certification purposes, a second analysis was performed
after the analysis procedures were updated. During this
analysis, we discovered that the count-rate variations in time
significantly affect the log2(p)-value bounds, requiring that
the analysis be performed adaptively. A choice for adaptation
parameters was made after investigating the time scale of the
variations. The estimated total violation found was the same
within error bars as the one for the final analysis. The third and
final analysis was required because we discovered an error in
our original method for Bell-function truncation in the PBR
analysis resulting in an overly optimistic log2(p) value. The
adaptation parameters were chosen for the final analysis based
on our experience in the second round of analysis. Because
of this history, a moderate bias in the estimated total violation
and in the log2(p)-value bounds is expected.

2. Pulsed quantum source

The data set for this experiment consists of 4450 trials.
The settings for each trial were chosen randomly. Each
party’s measurement outcome consists of a sequence of
time-tagged detections. The source was pulsed with the pulses
synchronized with a clock whose “ticks” were also recorded
for each trial. There were approximately 12500 pulses per
trial before preprocessing. The original analysis of the data
reported in Ref. [9] analyzed each pulse as a trial. To consider
the results of this analysis as evidence against local realism
requires an assumption such as that each pulse is independent
and identical. Defining trials so that they contain all the
measurements that occur while the settings are fixed avoids
making this assumption.

The sequences of timetags from each trial were prepro-
cessed as follows: We first corrected for the time offset of
A as we did for the data from the continuously emitting
source. We then removed detections outside narrow windows
containing each pulse. The windows were determined relative
to the recorded clock ticks and have a width of 16 000
time units. The pulses are separated by about 256 000 time
units. We dropped the first 200 pulses and saved the 12 200
subsequent pulses, dropping the rest. To correct for intermittent
interference causing excess detections, we “blanked out”
(removed detections in) pulses where there was an excess
number (three or more) of detections outside pulse windows
in the period spanning three pulses before and after. Note that
the preprocessing is local in the sense that the parties can in
principle perform it without communicating, given that they
have synchronized clocks.

As in the case of the continuously emitting source, there
were several analysis attempts. In the first attempt, the order
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of the trials was randomized and we only confirmed that
the violation based on distance-based analysis was consistent
with the results reported in Ref. [9]. The PBR analysis was
not performed at this time. Later analyses were performed in
parallel with the analysis of the continuously emitting source,
with the final analysis correcting the same problem with our
original implementation of Bell-function truncation.

For the final analysis, we did not perform a version of the
conventional coincidence analysis as the pulsed nature of the
source made this unnecessary. Applying the distance-based
analysis using the distance-based Bell functions of Ref. [8]
failed to show a violation; we attribute this to the presence
of an excess of multiple detections during pulses and the
sensitivity of the analysis to detection-rate changes. (We
attribute most multiple detections to local detection artifacts,
such as detector after-pulsing, rather than photons. These
local effects confuse the distance-based analysis by adding
nonviolating LR signals.) We therefore used a simpler Bell
function with no parameters. This Bell function is obtained
by adding the Bell function derived from the Bell inequality
used in Ref. [9] over the detections for each pulse. For this
purpose, multiple detections in a pulse are counted as one. This
is an instance of a general strategy for pulsed sources where
the settings are not changed for every pulse. Consider a Bell
function B for the detections from one pulse satisfying the Bell
inequality 〈B(T ,S)〉LR � 0, where T is the detection pattern
and S the measurement settings. If we have a sequence of
pulses at fixed measurement settings S with detection patterns
Ti , we can define a Bell function B ′(T,S) = ∑

i B(Ti,S),
where T is the sequence of detection patterns Ti . The Bell
inequality 〈B ′(T,S)〉LR � 0 is also satisfied by B ′. To avoid
assuming that trials are i.i.d., one can analyze the violation of
B ′ instead of B. This change of view enables the PBR analysis:
As noted in Ref. [8], all Bell functions for two parties and two
settings can be derived from a set of distancelike functions
satisfying an iterated triangle inequality. This makes it possible
to apply the PBR analysis as we have done here. Although the
parameters of the Bell function require no training, the total
violation was computed using the procedure of Appendix B
with an initial set of 200 trials set aside for initializing the
predictions. In each step, the predictions in the procedure
were updated using the previous 200 trials to account for
experimental drift. The distance-based analysis found a total
violation of 1.41(18) × 103, corresponding to a nominal SNR
of 7.8.

For the PBR analysis, we computed the necessary trun-
cation and mixture parameters adaptively based on the Bell-
function values obtained in the Bell-function analysis. The
first 400 trials were reserved for training. Starting with the
401st trial, we updated the parameters every 200 trials based
on the previous 1600 trials (or less, initially). We found a
log2(p)-value bound of 33, equivalent to a one-sided Gaussian
SNR of 6.3.

3. Classical source

The experiment on the classical source consisted of nine
groups of four trials at each of the four settings choices. The
settings were not chosen randomly. Thus the interpretation of
an apparent violation requires i.i.d. assumptions. Of course,
the source was designed to be LR, so no real violation can be
observed. The data from this experiment were analyzed just
once, after the distance-based analysis matured. Each trial has
approximately 97 000 detections for each party, independent of
the settings. The first group was set aside for training. A first
step in all our analyses was to determine systematic timing
offsets and an estimate of the time jitter; both were done
by checking timetag differences on apparent coincidences.
For this source, the timetag differences immediately revealed
that there was an “unexpected” pattern in the detections.
That is, since there was no attempt at hiding that the source
was exploiting the coincidence-time loophole, the resulting
characteristic detection delays are obvious. (Reference [8]
demonstrates a simulated source that can successfully hide
these detection patterns.)

For the purpose of demonstrating that a standard coinci-
dence analysis (windows determined by Alice’s detections) is
deceived by this source, we optimized the coincidence window
as usual on the training set and applied the coincidence analysis
to the rest. The total violation found was 6.6488(24) × 105

for a large nominal SNR of 2781. We optimized the Bell
function for the distance-based analysis but were unable to
detect a violation. In fact, the estimated total Bell function
was significantly negative. We cannot exclude the possibility
that a better choice of parameters for the timetag Bell function
exists, though we know on theoretical grounds that a violation
should not be observable according to the distance-based
analysis. Given the absence of violation, the PBR analysis
is guaranteed to use trivial test factors, giving a log2(p)-value
bound of 0.
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