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Tachyon physics with trapped ions
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It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the
speed of light. There has not been any experimental evidence for tachyons occurring naturally. Here, we propose
how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle
simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed
of light. We show that a Dirac tachyon must have spinor-motion correlation in order to be superluminal. We
also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical
simulations of realistic ion systems and show that our scheme is feasible with current technology.
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I. INTRODUCTION

In the 1960s, it was theorized that there could be particles
with imaginary mass, called tachyons, which travel faster
than light [1–5]. This is because in order for relativistic
energy E = mc2/

√
1 − (v/c)2 to be real when m is imaginary,

v must be larger than c. Note that although a tachyon
is considered to be superluminal, causality may still be
preserved [4,6]. There has been no experimental evidence of
tachyons occurring naturally [7,8]. There have been a few
proposals for engineering tachyon-like excitations that travel
faster than the effective speed of light in the system. These
include inverted optical media [6] and waveguides [9–11].
The motivation for an experimental realization is that it would
broaden the range of accessible phenomena and allow further
study of physics that would otherwise be unphysical.

Ion traps have proven to be an ideal setting for experi-
mentally realizing quantum relativistic effects [12–20]. Other
platforms have been considered as well [21–23]. Recent
trapped-ion experiments have simulated Dirac particles and
observed Zitterbewegung and Klein tunneling [16,17]. In these
experiments, the excellent control and readout capabilities
allow one to prepare and monitor the wave-packet dynamics.

In this paper, we propose a scheme to simulate Dirac
tachyons [24] with trapped ions and show that their quantum
nature distinguishes them from classical tachyons. In our
scheme, continuous measurement on a Dirac particle simulated
by a trapped ion causes it to have an imaginary mass. The Dirac
tachyon can then move faster than the effective speed of light
in the system (see Fig. 1). We perform realistic numerical
simulations with example experimental numbers and show
that this scheme is feasible with current technology. We also
describe how to measure the relevant observables.

We also obtain interesting results regarding the properties of
Dirac tachyons. We show that spinor-motion correlation plays
a crucial role in the propagation; that is, there must be spinor-
motion correlation in order for a tachyon to be superluminal.
We also consider the interaction with an external potential and
find that a tachyon exhibits significantly more Klein tunneling
than a normal particle. Then, we use a space-time duality to

show that a normal particle scattering off a spatially varying
potential is dual to a tachyon scattering off a time-varying
potential. All these features can be simulated with trapped
ions following our proposal.

Our paper is structured as follows. In Sec. II, we introduce
the Dirac equation with imaginary mass and describe our pro-
posed experimental scheme. In Sec. III, we discuss the velocity
of the wave packet and its relationship to entanglement. In
Sec. IV, we calculate Klein tunneling for a Dirac tachyon. In
Sec. V, we provide experimental numbers and comment on
the scalability of our scheme.

II. MODEL

A quantum relativistic particle is described by the Dirac
equation [25]. In one spatial dimension, it takes the form
i∂tψ = Hψ , where [26]

H = cpσx + mc2σz, (1)

with speed of light c, mass m, momentum operator p, and
Pauli matrices σk . We assume that � = 1. The wave function
ψ has both motional and spinor degrees of freedom. For the
two-component spinor, we work in the σz basis: |↑〉 and |↓〉.
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FIG. 1. (Color online) Propagation of a tachyon wave packet.
(a) Probability density |ψ(x,t)|2 is plotted on color scale. Dashed
line denotes light cone. (b) Solid line is average position 〈x〉 as a
function of t . Dashed line denotes speed of light. Initial wave function
is ψ(x) = eipoxe−x2/4�2

u+(po), with po = 3.5/� and m = 2/(c�).
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This equation was experimentally implemented with a
trapped ion by letting the ion’s electronic and vibrational
degrees of freedom correspond to a Dirac particle’s spinor
and motional degrees of freedom [12,16]. The term pσx can
be written in terms of aσ± and a†σ±, so by exciting both blue
and red motional sidebands, one obtains Eq. (1). The effective
speed of light and mass are c = 2η��̃ and mc2 = �, where η

is the Lamb-Dicke parameter, � is the size of the ground-state
wave function, �̃ is the strength of the carrier transition, and
� is the detuning.

Now suppose |↑〉 has a finite lifetime given by a linewidth
γ . Then, conditioned on the absence of a decay event, the
system evolves with a non-Hermitian Hamiltonian [27–30],

H = Ho − iγ

4
σz. (2)

This is because the null measurement of a decay event has
back-action on the wave function, which is accounted for by
the non-Hermitian term (see [31]). Letting Ho = cpσx , we
then have the Dirac equation with imaginary mass [24],

H = cpσx − imc2σz, (3)

where mc2 = γ /4. [Note that the sign of the mass term in
Eq. (3) is unimportant since it can be flipped via a unitary
transformation.] It is important to condition on the absence
of decay events; if decay events were included, the dynamics
would be described by a master equation instead of a non-
Hermitian Hamiltonian [32–34]. Thus, quantum measurement
allows one to simulate a Dirac tachyon with a trapped ion.

The experimental protocol is as follows. Starting from an
initial wave packet, one evolves the ion with Ho = cpσx by
resonantly exciting blue and red sidebands while optically
pumping |↑〉 to an auxiliary state. After a given amount of time,
one turns off Ho and the optical pumping and then measures the
population in the auxiliary state using the usual fluorescence
method. If one measures no population in the auxiliary state,
then there was no decay event, and therefore, the ion was
evolving solely according to Eq. (3). This is a probabilistic
but heralded method [35–37]: one repeats the protocol many
times and postselects on those runs without decay events since
those are the ones that simulate Eq. (3). In Sec. V, we provide
experimental numbers and numerical simulations with realistic
decoherence and show that the probability of a successful run
is reasonably high. Also, it is not necessary to efficiently detect
a single photon; instead, one only needs to efficiently measure
the population in the auxiliary state.

We distinguish our scheme from related work. If the second
term of Eq. (3) included a complex-conjugation operator, as
in the Majorana equation [14,19,23], one could simulate it by
embedding the spinor in a larger Hilbert space; however, this
does not work for the tachyon quantum simulation. Also, a
Dirac tachyon is different from a Klein-Gordon tachyon [4,6]
because of the spinor degree of freedom, which is important
to the dynamics. In addition, our scheme is different from
superluminality in an absorptive medium with anomalous
dispersion [38–40] because the latter is due to pulse reshaping
instead of imaginary mass and does not have a tachyonic
dispersion [Fig. 2(b)].
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FIG. 2. Dispersion relations (energy vs momentum) for (a)
normal massive particle and (b) tachyon. Dashed lines denote speed
of light.

We now compare the behavior of normal massive particles
[described by Eq. (1)] with tachyons [described by Eq. (3)].

III. VELOCITY

A normal massive particle travels slower than c because
the group velocity vg = dE/dp is smaller in magnitude than
c, where E = ±

√
p2c2 + m2c4 is the dispersion of Eq. (1),

plotted in Fig. 2(a). Another way to see this is from the equation
of motion for the position operator, ∂t 〈x〉 = c〈σx〉, which is
bounded above by c.

The special property of a tachyon is that its group velocity
is larger than c. This is because the dispersion of Eq. (3) is
E = ±

√
p2c2 − m2c4, as shown in Fig. 2(b). Figure 1 is a

space-time plot of a tachyon, showing that the wave packet is
indeed superluminal.

Consider the equation of motion of 〈x〉 for a tachyon. For
a non-Hermitian Hamiltonian like Eq. (3), the equation of
motion for an operator includes extra terms [41], leading to

∂t 〈x〉 = c〈σx〉 − 2mc2(〈xσz〉 − 〈x〉〈σz〉). (4)

Since the first term is bounded by c, in order to have
|∂t 〈x〉| > c, the quantity in parentheses (correlation of x and
σz) must be nonzero. In other words, in order for a Dirac
tachyon to be superluminal, the spinor and motional degrees
of freedom must be correlated. Without correlations, a Dirac
tachyon is actually subluminal. (For the case of a pure state,
superluminality requires spinor-motion entanglement, but in
an experiment, the state will be mixed.)

This explains the behavior in Fig. 1(b). The initial wave
function is ψ(x) = eipoxe−x2/4�2

u+(po), where the spinor
u+(po) is the positive-energy eigenstate of Eq. (3) for p = po.
Since this is a separable state, the tachyon is initially sub-
luminal. Over time, the wave function develops correlations
[Fig. 3(a)], so that it eventually becomes superluminal. This
oscillatory motion is an example of Zitterbewegung [25,26]
and occurs because the initial wave function contains both
positive- and negative-energy components that interfere with
each other. In momentum space, ψ(p) is a Gaussian centered
at po, but u+(po) is the positive eigenstate only for p = po.

The entangled state

ψ(x) =
∫

dp e−�2(p−po)2
eipxu+(p) (5)

032129-2



TACHYON PHYSICS WITH TRAPPED IONS PHYSICAL REVIEW A 92, 032129 (2015)

−2 −1 0 1 2
0

0.1

0.2

x  (units of Δ)

po
pu

la
tio

n

(b)

0 0.5 1 1.5
−0.2

−0.15

−0.1

−0.05

0

t (units of Δ/c)

〈x
σ z〉 −

 〈x
〉〈σ

z〉

(a)

FIG. 3. (Color online) (a) Correlation of x and σz for Fig. 1(b).
(b) Population in |↑〉 (solid line) and |↓〉 (dashed line) for the state in
Eq. (5) with po = 3.5/� and m = 2/(c�).

contains only positive-energy components because the spinor
u+(p) is the positive eigenstate for each p. Thus, this wave
packet travels superluminally with group velocity vg(po) and
without Zitterbewegung. For motion to the right, x and σz are
negatively correlated; that is, the peak of |ψ↓(x)|2 is ahead
of |ψ↑(x)|2, as shown in Fig. 3(b). In the limit of po � mc,
〈xσz〉 − 〈x〉〈σz〉 = −mc/2p2

o . In contrast, for a normal particle
in the state given by Eq. (5), 〈xσz〉 − 〈x〉〈σz〉 = 0.

IV. SCATTERING OFF A POTENTIAL

Here, we consider the scattering off a repulsive electric
potential that is linear in space, eφ(x) = gx, where e is the
charge and g > 0. It is well known that a normal Dirac particle
can tunnel through such a barrier and propagate undamped due
to the negative-energy branch of the dispersion [Fig. 2(a)].
An incoming wave packet splits into a reflected component
and a tunneling component [Fig. 4(a)], and the tunneling
probability is Ptunnel = exp(−πm2c3/g) [42]. This is known as
Klein tunneling [43] and is surprising because a nonrelativistic
Schrödinger particle would not tunnel without attenuation. In
the trapped-ion implementation, a linear potential can be engi-
neered by using a second ion, as demonstrated recently [13,17].

Now consider a tachyon scattering off a linear electric
potential [Fig. 4(b)],

i∂tψ = (cpσx − imc2σz + gx)ψ. (6)

Suppose an initial wave packet moves to the right with p =
po > 0 and E > 0. We work in momentum space and write
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FIG. 4. (Color online) Probability density |ψ(x,t)|2 scattering
off a linear electric potential for (a) normal massive particle and
(b) tachyon. For both plots, m = 1/(c�) and g = 2c/�2.

x = i∂p and ψ(p,t) = ξ (po = p + gt,t) [13]:

i∂t ξ = [c(po − gt)σx − imc2σz]ξ. (7)

Thus, the motion of the wave packet is equivalent to a
Landau-Zener process with a magnetic field c(po − gt) that
decreases linearly in time [44]. The energy levels of this
process are given by the dispersion in Fig. 2(b). At t = 0, the
system starts at p = po on the positive-energy branch. p is then
ramped to negative values, and the question is how the final
population is distributed between the branches. The population
in the positive-energy branch corresponds to the (left-moving)
reflected component, while the population in the negative-
energy branch corresponds to the (right-moving) tunneling
component. [Note that the eigenvalues for p ∈ (−mc,mc) are
complex and not plotted in Fig. 2(b).]

However, this is a non-Hermitian Landau-Zener process
due to the imaginary field in Eq. (7). By extending Zener’s
original solution [44] to the non-Hermitian case, we find that
the tunneling probability is

Ptunnel =
exp

(
πm2c3

g

)
2 exp

(
πm2c3

g

) − 1
. (8)

This result differs from that for a normal particle: the tunneling
probability for a tachyon is larger and is always at least 1/2.
For example, Fig. 4 shows that a lot more population tunnels
through for a tachyon than a normal particle. Physically, this
is because the tachyonic dispersion does not have an energy
gap, while the normal dispersion does (Fig. 2).

There is a useful duality between normal Dirac particles
and tachyons. Suppose ψ(x,t) is a solution to the Dirac
equation for a normal particle with electric potential φ(x) and
vector potential A(x) [13,25]. One can show that ψ(x ′,t ′) =
U−1ψ(x = t ′,t = x ′) is a solution to the Dirac equation for a
tachyon with electric potential φ′(t ′) = −A(x = t ′) and vector
potential A′(t ′) = −φ(x = t ′), where U = (I + iσx)/

√
2 is

a unitary transformation. Thus, a normal particle scattering
off a spatially varying electric potential is dual to a tachyon
scattering off a time-varying vector potential.

V. EXPERIMENTAL CONSIDERATIONS

A. Probabilities

The tachyon protocol is probabilistic (i.e., conditioned on
no decay event), so it is important to estimate the probability
of a successful experimental run. To do this, we note that the
average number of decay events during time t is

μ = γ (〈σz〉 + 1)t

2
≈ γ t

2
, (9)

where we have used the fact that the eigenstates of Eq. (3)
satisfy 〈σz〉 = 0. The number of decay events is a Poissonian
random variable. Thus, the probability of a successful run (zero
decay events during time t) is

Psuccess = e−μ ≈ e− γ t

2 . (10)

[To calculate Psuccess exactly, one would use the instantaneous
value of 〈σz〉, but we have found that setting 〈σz〉 = 0 in Eq. (9)
results in a very good estimate.]
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FIG. 5. (Color online) (a) Level scheme for 171Yb+. (b) Numer-
ical simulation of trapped-ion implementation for different rates of
optical-pumping errors.

We recall from Eq. (3) that γ = 4mc2. We also note that m

is in units of 1/(c�), while t is in units of �/c (since � = 1):

m = m′
(

1

c�

)
, t = t ′

(
�

c

)
, (11)

where m′,t ′ are dimensionless. Thus,

μ ≈ 2m′t ′, Psuccess ≈ e−2m′t ′ . (12)

As an example, consider Fig. 1, where m′ = 2. The particle
is superluminal by t ′ = 0.5, which corresponds to Psuccess =
e−2 ≈ 0.14. A time of t ′ = 1 corresponds to Psuccess = e−4 ≈
0.018. These probabilities are reasonably high enough for the
scheme to be feasible. Psuccess can be easily increased by
decreasing m′. Also, we note from Eq. (4) that if the initial
wave function is suitably entangled [45], the initial velocity
can be larger than c, so that superluminality occurs earlier.
For the case of an external potential, one can observe Klein
tunneling with Psuccess ≈ 0.03 by using a large g.

B. Example numbers

We provide example numbers for 171Yb+. See the level
scheme in Fig. 5(a). To implement the first term of Eq. (3),
one drives the red and blue sidebands of the |↓〉-| ↑〉 transition
(either directly or via a P1/2 state). To implement the second
term of Eq. (3), one optically pumps |↑〉 to the auxiliary
state |a〉 via the |P3/2,F = 2〉 state. Due to dipole-selection
rules, |P3/2,F = 2〉 decays into |a〉 instead of |↓〉. Also,
the branching ratio of |P3/2,F = 2〉 to |↑〉 is less than
0.002 [46,47], so these dephasing errors can be neglected
[Fig. 5(b)]. To measure the population in |a〉, one excites |a〉
to |P1/2,F = 0〉 and looks for fluorescence. To measure the
ion position over time, one uses the procedure described in
Refs. [16,17].

Setting η = 0.05, � = 3.4 nm, and �̃ = 2π × 100 kHz
means an effective speed of light c = 2 × 10−4m/s and time
scale �/c = 16 μs. For optical pumping γ = 2π × 80 kHz,
the mass is m = 2/(c�). These numbers are readily accessible
in current experiments.

C. Numerical simulations

We have performed numerical simulations of the tachyon
protocol including realistic decoherence present in ion traps.
The carrier term is eliminated by using two counterpropagating

laser fields for red and blue sidebands, Ho = i�̃(σ−eiδt −
σ+e−iδt )[sin φ + η cos φ(ae−iνt + a†eiνt )], where ν is the trap
frequency and the laser phase φ is chosen such that sin φ = 0.
For the tachyon protocol, the intrinsic source of decoherence is
optical pumping errors, i.e., when |P3/2,F = 2〉 decays back
to |↑〉, which leads to dephasing with rate γd . Figure 5(b)
shows that the optical pumping errors are negligible for
171Yb+ since γd = 0.002γ . We have also found that since
γd is much larger than other sources of decoherence (mo-
tional heating, spontaneous emission, and laser dephasing)
in current experiments, the latter have even less effect.
Thus, the tachyonic behavior is preserved with realistic
decoherence.

D. Dependence on detector efficiency

Since our scheme is conditioned on the absence of a
decay event, one must reliably measure whether a decay event
occurred. In a typical ion-trap experiment, the efficiency of
detecting a single photon is very low. Fortunately, the scheme
described in Sec. V B does not rely on detecting a single
photon. The key is to have |↑〉 decay into |a〉 instead of |↓〉. To
determine whether a decay event occurred, one measures the
population in |a〉 by continuously exciting it to |P1/2,F = 0〉.
If the atom is in |a〉, it will scatter many photons; otherwise,
it will not scatter any photons. This way, one can efficiently
read out the population in |a〉 and thereby determine whether a
decay event occurred, even though the single-photon efficiency
is low. In other words, instead of detecting the single photon
created during the decay from | ↑〉, one can just measure the
many photons that are scattered when the atom is in |a〉.

How high should the readout fidelity be to observe
tachyonic behavior? If there is a readout error, it is similar
to an optical pumping error discussed in Sec. V C; that is, one
measures that there was not a decay event even though there
really was. According to Fig. 5, a readout fidelity of 99.5%
is sufficient for observing that the group velocity exceeds the
effective c. For comparison, a readout fidelity of 99.99% has
been achieved with a trapped ion [48].

E. Measurements

Spinor-motion correlation is important to tachyonic dynam-
ics [Eq. (4)], so we describe a protocol to directly measure it.
It is well known that single-qubit observables 〈σx,y,z〉 can be
measured by resonance fluorescence of a cycling transition.
This procedure can also be used to measure vibrational degrees
of freedom by mapping them onto spinor ones. The expectation
value 〈xσz〉 is measured by observing 〈σz〉 as follows. A
combination of red and blue sidebands, Hr = η�(aσ+eiφr +
a†σ−e−iφr ) and Hb = η�(a†σ+eiφb + aσ−e−iφb ), implements
a state-dependent displacement when the phases are properly
tuned. The corresponding dynamics, U = e−ikxσx , acts on
σz according to UσzU

† = cos(kx)σz + sin(kx)σy ≡ O. For
k〈x〉 � 1, this can be approximated by 1σz + kxσy . There-
fore, the derivative of the expectation value of O, ∂k〈O〉,
corresponds to 〈xσy〉, which can be transformed into 〈xσz〉
with a rotation of the spinor.
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F. Scalability

In this paper, we discussed how to simulate a single Dirac
tachyon using a single trapped ion. Here, we consider the
possibility of generalizing the scheme to N ions. Suppose
there is a one-dimensional array of N trapping potentials
(as in a segmented trap), each with an ion inside. Due to
the normal-mode structure from the Coulomb interaction, one
applies lasers to induce a mode-mode coupling. Further lasers
drive blue and red sidebands, and one conditions on the absence
of a decay event. In this way, one implements a non-Hermitian
many-body system. There are two questions. First, how large
could N be in a realistic experiment? Second, how large does
N have to be in order to be difficult to simulate on a classical
computer?

For N ions, Psuccess ≈ e−2m′t ′N . Suppose we set m′ = 0.25
and t ′ = 1. Then for N = 5, Psuccess = 0.08. This is still
reasonably high to be experimentally realistic.

Now, to simulate such a system on a classical computer
would require representing the wave function on a Hilbert
space. The spin-1/2 degree of freedom has dimension 2. For
the vibrational degree of freedom, the Hilbert space has to
be truncated at some number of phonons, but there should
be enough phonons to accurately represent the wave function.
For example, a wave packet with a moderate value of p would
require 30 phonons. Thus, the Hilbert space for each ion has
dimension 60, and the total Hilbert space has dimension 60N .
For N = 5, the dimension is 8 × 108, which is difficult to

simulate on a classical computer. (This is equivalent to having
30 spin-1/2 particles.) Thus, it is possible to reach a regime
where N is large enough to be difficult to simulate classically.
This is due to the large number of phonons that must be tracked.

VI. CONCLUSION

We have proposed a quantum simulation of tachyons with
current ion-trap technology. This ability to experimentally
observe tachyonic physics opens the door to many possibilities.
For example, one can study how imaginary mass affects bound
states in a confining potential [49] or the Dirac oscillator [50].
One can also consider a tachyon interacting with another
tachyon or a normal particle [2]. By including more ions,
one can study many-body physics [36,37,51]. Finally, tachyon
physics in conjunction with metamaterials may lead to new
applications in manipulating the propagation of light [9].

ACKNOWLEDGMENTS

We thank P. Zoller, T. Pfau, and R. Islam for useful discus-
sions. T.E.L. was supported by NSF through a grant to ITAMP.
We also acknowledge support from Basque government
IT472-10 and BFI-2012-322, Spanish MINECO FIS2012-
36673-C03-02, Ramón y Cajal Grant No. RYC-2012-11391,
UPV/EHU Project No. EHUA14/04, UPV/EHU UFI 11/55,
and PROMISCE and SCALEQIT European projects.

[1] O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan,
Am. J. Phys. 30, 718 (1962).

[2] G. Feinberg, Phys. Rev. 159, 1089 (1967).
[3] O. M. P. Bilaniuk and E. C. G. Sudarshan, Phys. Today 22(5),

43 (1969).
[4] Y. Aharonov, A. Komar, and L. Susskind, Phys. Rev. 182, 1400

(1969).
[5] A. Chodos, A. I. Hauser, and V. A. Kostelecký, Phys. Lett. B
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[7] T. Alväger and M. N. Kreisler, Phys. Rev. 171, 1357

(1968).
[8] C. Baltay, G. Feinberg, N. Yeh, and R. Linsker, Phys. Rev. D 1,

759 (1970).
[9] A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev,

Phys. Rev. A 84, 021806 (2011).
[10] S. Longhi, Appl. Phys. B 104, 453 (2011).
[11] A. Marini, T. X. Tran, S. Roy, S. Longhi, and F. Biancalana,

Phys. Rev. A 89, 023840 (2014).
[12] L. Lamata, J. León, T. Schätz, and E. Solano, Phys. Rev. Lett.

98, 253005 (2007).
[13] J. Casanova, J. J. Garcı́a-Ripoll, R. Gerritsma, C. F. Roos, and

E. Solano, Phys. Rev. A 82, 020101 (2010).
[14] J. Casanova, C. Sabı́n, J. León, I. L. Egusquiza, R. Gerritsma,

C. F. Roos, J. J. Garcı́a-Ripoll, and E. Solano, Phys. Rev. X 1,
021018 (2011).

[15] C. Noh, B. M. Rodrı́guez-Lara, and D. G. Angelakis, Phys. Rev.
A 87, 040102 (2013).

[16] R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt,
and C. F. Roos, Nature (London) 463, 68 (2010).

[17] R. Gerritsma, B. P. Lanyon, G. Kirchmair, F. Zähringer, C.
Hempel, J. Casanova, J. J. Garcı́a-Ripoll, E. Solano, R. Blatt,
and C. F. Roos, Phys. Rev. Lett. 106, 060503 (2011).

[18] U. Alvarez-Rodriguez, J. Casanova, L. Lamata, and E. Solano,
Phys. Rev. Lett. 111, 090503 (2013).

[19] X. Zhang, Y. Shen, J. Zhang, J. Casanova, L. Lamata, E. Solano,
M.-H. Yung, J.-N. Zhang, and K. Kim, Nat. Commun. 6, 7917
(2015).

[20] L. Lamata, J. Casanova, R. Gerritsma, C. F. Roos, J. J. Garcı́a-
Ripoll, and E. Solano, New J. Phys. 13, 095003 (2011).

[21] J. Otterbach, R. G. Unanyan, and M. Fleischhauer, Phys. Rev.
Lett. 102, 063602 (2009).

[22] T. Salger, C. Grossert, S. Kling, and M. Weitz, Phys. Rev. Lett.
107, 240401 (2011).

[23] R. Keil, C. Noh, A. Rai, S. Stützer, S. Nolte, D. G. Angelakis,
and A. Szameit, Optica 2, 454 (2015).

[24] H. Lemke, Nuovo Cimento A 35, 181 (1976).
[25] B. Thaller, The Dirac Equation (Springer, Berlin, 1992).
[26] B. Thaller, arXiv:quant-ph/0409079.
[27] J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580

(1992).
[28] K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10,

524 (1993).
[29] R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A 45, 4879 (1992).
[30] A. J. Daley, Adv. Phys. 63, 77 (2014).
[31] The non-Hermitian term is usually written as a projector

σ+σ− = σz/2 + 1/2. The additional constant 1/2 only affects

032129-5

http://dx.doi.org/10.1119/1.1941773
http://dx.doi.org/10.1119/1.1941773
http://dx.doi.org/10.1119/1.1941773
http://dx.doi.org/10.1119/1.1941773
http://dx.doi.org/10.1103/PhysRev.159.1089
http://dx.doi.org/10.1103/PhysRev.159.1089
http://dx.doi.org/10.1103/PhysRev.159.1089
http://dx.doi.org/10.1103/PhysRev.159.1089
http://dx.doi.org/10.1063/1.3035574
http://dx.doi.org/10.1063/1.3035574
http://dx.doi.org/10.1063/1.3035574
http://dx.doi.org/10.1063/1.3035574
http://dx.doi.org/10.1103/PhysRev.182.1400
http://dx.doi.org/10.1103/PhysRev.182.1400
http://dx.doi.org/10.1103/PhysRev.182.1400
http://dx.doi.org/10.1103/PhysRev.182.1400
http://dx.doi.org/10.1016/0370-2693(85)90460-5
http://dx.doi.org/10.1016/0370-2693(85)90460-5
http://dx.doi.org/10.1016/0370-2693(85)90460-5
http://dx.doi.org/10.1016/0370-2693(85)90460-5
http://dx.doi.org/10.1103/PhysRevLett.77.1254
http://dx.doi.org/10.1103/PhysRevLett.77.1254
http://dx.doi.org/10.1103/PhysRevLett.77.1254
http://dx.doi.org/10.1103/PhysRevLett.77.1254
http://dx.doi.org/10.1103/PhysRev.171.1357
http://dx.doi.org/10.1103/PhysRev.171.1357
http://dx.doi.org/10.1103/PhysRev.171.1357
http://dx.doi.org/10.1103/PhysRev.171.1357
http://dx.doi.org/10.1103/PhysRevD.1.759
http://dx.doi.org/10.1103/PhysRevD.1.759
http://dx.doi.org/10.1103/PhysRevD.1.759
http://dx.doi.org/10.1103/PhysRevD.1.759
http://dx.doi.org/10.1103/PhysRevA.84.021806
http://dx.doi.org/10.1103/PhysRevA.84.021806
http://dx.doi.org/10.1103/PhysRevA.84.021806
http://dx.doi.org/10.1103/PhysRevA.84.021806
http://dx.doi.org/10.1007/s00340-011-4628-7
http://dx.doi.org/10.1007/s00340-011-4628-7
http://dx.doi.org/10.1007/s00340-011-4628-7
http://dx.doi.org/10.1007/s00340-011-4628-7
http://dx.doi.org/10.1103/PhysRevA.89.023840
http://dx.doi.org/10.1103/PhysRevA.89.023840
http://dx.doi.org/10.1103/PhysRevA.89.023840
http://dx.doi.org/10.1103/PhysRevA.89.023840
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1103/PhysRevLett.98.253005
http://dx.doi.org/10.1103/PhysRevA.82.020101
http://dx.doi.org/10.1103/PhysRevA.82.020101
http://dx.doi.org/10.1103/PhysRevA.82.020101
http://dx.doi.org/10.1103/PhysRevA.82.020101
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://dx.doi.org/10.1103/PhysRevA.87.040102
http://dx.doi.org/10.1103/PhysRevA.87.040102
http://dx.doi.org/10.1103/PhysRevA.87.040102
http://dx.doi.org/10.1103/PhysRevA.87.040102
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.106.060503
http://dx.doi.org/10.1103/PhysRevLett.111.090503
http://dx.doi.org/10.1103/PhysRevLett.111.090503
http://dx.doi.org/10.1103/PhysRevLett.111.090503
http://dx.doi.org/10.1103/PhysRevLett.111.090503
http://dx.doi.org/10.1038/ncomms8917
http://dx.doi.org/10.1038/ncomms8917
http://dx.doi.org/10.1038/ncomms8917
http://dx.doi.org/10.1038/ncomms8917
http://dx.doi.org/10.1088/1367-2630/13/9/095003
http://dx.doi.org/10.1088/1367-2630/13/9/095003
http://dx.doi.org/10.1088/1367-2630/13/9/095003
http://dx.doi.org/10.1088/1367-2630/13/9/095003
http://dx.doi.org/10.1103/PhysRevLett.102.063602
http://dx.doi.org/10.1103/PhysRevLett.102.063602
http://dx.doi.org/10.1103/PhysRevLett.102.063602
http://dx.doi.org/10.1103/PhysRevLett.102.063602
http://dx.doi.org/10.1103/PhysRevLett.107.240401
http://dx.doi.org/10.1103/PhysRevLett.107.240401
http://dx.doi.org/10.1103/PhysRevLett.107.240401
http://dx.doi.org/10.1103/PhysRevLett.107.240401
http://dx.doi.org/10.1364/OPTICA.2.000454
http://dx.doi.org/10.1364/OPTICA.2.000454
http://dx.doi.org/10.1364/OPTICA.2.000454
http://dx.doi.org/10.1364/OPTICA.2.000454
http://dx.doi.org/10.1007/BF02730049
http://dx.doi.org/10.1007/BF02730049
http://dx.doi.org/10.1007/BF02730049
http://dx.doi.org/10.1007/BF02730049
http://arxiv.org/abs/arXiv:quant-ph/0409079
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1103/PhysRevLett.68.580
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1103/PhysRevA.45.4879
http://dx.doi.org/10.1103/PhysRevA.45.4879
http://dx.doi.org/10.1103/PhysRevA.45.4879
http://dx.doi.org/10.1103/PhysRevA.45.4879
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1080/00018732.2014.933502


LEE, ALVAREZ-RODRIGUEZ, CHENG, LAMATA, AND SOLANO PHYSICAL REVIEW A 92, 032129 (2015)

normalization: since the wave function is normalized when
calculating expectation values, this constant does not affect the
physics. So we have omitted the constant in Eq. (2).

[32] T. E. Lee and H. R. Sadeghpour, Phys. Rev. Lett. 111, 234101
(2013).

[33] L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmied-
mayer, J. Majer, and P. Rabl, Phys. Rev. Lett. 113, 023603
(2014).

[34] M. R. Hush, W. Li, S. Genway, I. Lesanovsky, and A. D. Armour,
Phys. Rev. A 91, 061401 (2015).

[35] J. A. Sherman, M. J. Curtis, D. J. Szwer, D. T. C. Allcock, G.
Imreh, D. M. Lucas, and A. M. Steane, Phys. Rev. Lett. 111,
180501 (2013).

[36] T. E. Lee and C.-K. Chan, Phys. Rev. X 4, 041001 (2014).
[37] T. E. Lee, F. Reiter, and N. Moiseyev, Phys. Rev. Lett. 113,

250401 (2014).
[38] C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305

(1970).
[39] S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).

[40] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett.
71, 708 (1993).

[41] E. M. Graefe, H. J. Korsch, and A. E. Niederle, Phys. Rev. Lett.
101, 150408 (2008).

[42] F. Sauter, Z. Phys. 69, 742 (1931).
[43] O. Klein, Z. Phys. 53, 157 (1929).
[44] C. Zener, Proc. R. Soc. London A 137, 696 (1932).
[45] H.-Y. Lo, D. Kienzler, L. de Clercq, M. Marinelli, V. Negnevit-

sky, B. Keitch, and J. P. Home, Nature (London) 521, 336 (2015).
[46] E. Biémont, J.-F. Dutrieux, I. Martin, and P. Quinet, J. Phys. B

31, 3321 (1998).
[47] S. M. Olmschenk, Ph.D. thesis, University of Michigan, 2009.
[48] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M.

J. Curtis, G. Imreh, J. A. Sherman, D. N. Stacey, A. M. Steane,
and D. M. Lucas, Phys. Rev. Lett. 100, 200502 (2008).

[49] J. R. Hiller, Am. J. Phys. 70, 522 (2002).
[50] M. Moshinsky and A. Szczepaniak, J. Phys. A 22, L817 (1989).
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