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Neutral kaons as an open quantum system in a second quantization approach
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We have shown that it is possible to formulate the consistent and probability-preserving description of the
CP-symmetry-violating evolution of a system of decaying particles. This has been done within the framework
of quantum mechanics of open systems. This approach allows the description of both the exponential decay and
flavor oscillations. We have solved explicitly the Kossakowski-Lindblad master equation for a system of particles
with violated CP symmetry and found the evolution of any observable bilinear in creation and annihilation
operators. The choice of a concrete observable can be done by the proper choice of initial conditions for the
system of differential equations. We have calculated the evolution as well as mean values of the observables most
interesting from the physical point of view, and we have found their lowest order difference with the CP-preserved
values.

DOI: 10.1103/PhysRevA.92.032128 PACS number(s): 03.65.Yz, 03.65.Ta, 11.30.Er, 14.40.Df

I. INTRODUCTION

In recent years Bell inequalities [1] were tested in systems
of correlated neutral K [2,3] or B mesons [4]. However,
the quantum mechanical analysis of such systems encounters
an important difficulty, namely, the irreversibility of time
evolution of unstable particles. Only the complete system con-
sisting of the decaying particle as well as the decay products
undergoes unitary evolution, which is actually described by
quantum field theory. But in Einstein-Podolsky-Rosen (EPR)
correlation experiments [5], it is more useful to consider the
decaying particles only, neglecting the evolution of decay prod-
ucts. In the usual approach one introduces a non-Hermitian
Hamiltonian, as it was done in the classical works of Weisskopf
and Wigner [6]. However, the non-Hermitian Hamiltonian
does not provide an unambiguous way of calculating the
probability of finding the system consisting of a few such
particles in a given state after the measurement (such an
approach causes also other ambiguities, see, e.g., [7] for a
discussion). Indeed, using this approach, we must reinterpret
quantum mechanical results with the help of probability theory,
especially if we would like to analyze correlation experiments
with unstable particles, namely, neutral K or B mesons [8].
From the quantum mechanical point of view, this means that
unit trace and positivity of the density matrix for the system
under consideration must be preserved [9]. Fortunately, it is
possible to resolve the above-mentioned problems using the
open quantum systems theory [10]. The idea that unstable
particles can be treated as open quantum systems was proposed
first by Alicki [11] and was developed by various authors in
different contexts (see, e.g., [12,13]). Recently, this approach
was successfully applied to the system of particles with
flavor oscillations (like in the case of neutral kaons or B

mesons) [14–16], and it has been used successfully in the
description of EPR correlations and evolution of entanglement
in K0K0 systems [17,18].
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In this theory the evolution of a quantum system is described
by the master equation [19], which can be treated as the
replacement for either von Neumann or Heisenberg equations,
for the picture of quantum mechanics in use. Here, we follow
the approach presented in [16], where systems with an arbitrary
number of particles were described with the use of the second
quantization formalism, which seems to be the most natural
language for a system with varying number of particles.

The paper is organized as follows. In Sec. II we introduce
the notation and conventions used through the paper. In Sec. III
we introduce the master equation for a system of neutral kaons
with violated CP symmetry and we find the evolution of the
observables in the Heisenberg picture, and, in Sect. IV, we
analyze the evolution of the total number of particles and
strangeness observable as well as the number of each of neutral
kaon flavor. Finally, we conclude the paper in Sec. V.

II. PRELIMINARIA

We start with introducing some notations, conventions,
and definitions used throughout the paper, as well as give
experimental values of some parameters important in the
description of the systems of K0 and K0.

We define one-particle states |K0〉 and |K0〉 as

|K0〉 = a† |0〉, (1a)

|K0〉 = b† |0〉, (1b)

where a and b fulfills the usual canonical commutation
relations

[a,a†] = [b,b†] = 1, (2a)

[a,b] = [a†,b†] = 0. (2b)

States |K0〉 and |K0〉 are orthonormal, i.e.,

〈K0|K0〉 = 〈K0|K0〉 = 1, (3a)

〈K0|K0〉 = 0, (3b)
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KORDIAN ANDRZEJ SMOLIŃSKI PHYSICAL REVIEW A 92, 032128 (2015)

and they are eigenstates of the strangeness operator S = a†a −
b†b:

S |K0〉 = |K0〉 , (4a)

S |K0〉 = − |K0〉 . (4b)

For our convenience we will use the following short-hand
notation for multiparticle states:

|#K0 = n,#K0 = n̄〉 ≡ |n,n̄〉. (5)

Therefore

|n,n̄〉 = 1√
n!n̄!

(a†)n(b†)n̄ |0〉, (6)

and

S |n,n̄〉 = (n − n̄) |n,n̄〉 . (7)

However, the states |K0〉 and |K0〉 are not eigenstates
of time evolution. Actually, under time evolution the “well
behaving” states are |K0

S〉 and |K0
L〉, defined as follows:∣∣K0

S

〉 = p |K0〉 + q |K0〉 , (8a)∣∣K0
L

〉 = p |K0〉 − q |K0〉 , (8b)

with mean lifetimes τS = 0.8954 × 10−10 s and τL = 5.116 ×
10−8 s, respectively [20]. Moreover, if p �= q then CP symme-
try is violated. Indeed,

p

q
= 1 + ε̃

1 − ε̃
, (9)

with

|p|2 + |q|2 = 1, (10a)

|p|2 − |q|2 = AL, (10b)

and AL = 2Re(ε)/(1 + |ε|2) is a measure of violation of CP
symmetry (hereafter we use the so-called Wu-Yang phase
convention [21] in which ε̃ = ε). Experimentally obtained
values are AL = 0.332% and |ε| = 2.228 × 10−3 [20]. Notice
also that the basis (8) is not orthogonal since〈

K0
S

∣∣K0
L

〉 = AL. (11)

III. MASTER EQUATION

The aim of this section is to find the evolution of the
multiparticle system of K0 and K0. We know that the evolution
of a single neutral kaon can be described as an open system
obeying the Kossakowski-Lindblad master equation [15]. In
this case the one-particle Hamiltonian for this master equation
was written in the base (8) and reads

H = 1

1−A2
L

{
mS

∣∣K0
S

〉 〈
K0

S

∣∣+mL

∣∣K0
L

〉 〈
K0

L

∣∣
−AL

[(
m − i

4
��

) ∣∣K0
S

〉 〈
K0

L

∣∣
+

(
m + i

4
��

) ∣∣K0
L

〉 〈
K0

S

∣∣ ]}
, (12a)

while Lindbladians are of the form

L1 = 1

1 − A2
L

√
�S − A2

L

�2 + �m2

�L

× (|0〉 〈
K0

S

∣∣ − AL |0〉 〈
K0

L

∣∣), (12b)

L2 = 1

1 − A2
L

[(√
�L − A2

L

� − i�m√
�L

)
|0〉 〈

K0
L

∣∣
−AL

(√
�L − � − i�m√

�L

)
|0〉 〈

K0
S

∣∣ ], (12c)

and K ≡ −(L†
1L1 + L

†
2L2)/2, where m = (mS + mL)/2 =

497.614 MeV/c2 is the K0 mean mass, �m =
mL − mS = 0.5293 × 1010

�/s [20], � = (�S + �L)/2, and
�� = �S − �L.

The state of a single-particle system under the evolution
given by the master equation with operators (12) is in general
a mixed state of a single particle and vacuum (see [15]). After
the projection of this state on the single-particle sector one
gets the state obtained by the non-trace-preserving equations,
considered usually in the literature (see, e.g., [3]).

A. Master equation in second quantization formalism

Now, let us go to the description of a multiparticle system.
We achieve this by the replacement of intertwining operators
with the appropriate combinations of annihilation and creation
operators, as was done in [16]. In the base (1) this Hamiltonian
and these Lindbladians take the form

H = m(a†a + b†b) − pq∗

1 − A2
L

(
�m + i

2AL��
)
a†b

− qp∗

1 − A2
L

(
�m − i

2AL��
)
b†a, (13a)

and

L1 =
√

�S − A2
L

�2 + �m2

�L

(
p∗

1 + AL

a + q∗

1 − AL

b

)
,

(13b)

L2 = p∗

1 + AL

(√
�L + AL

� − i�m√
�L

)
a

− q∗

1 − AL

(√
�L − AL

� − i�m√
�L

)
b, (13c)

K = −1

2
�(a†a + b†b) − pq∗

1 − A2
L

(
1

2
�� − iAL�m

)
a†b

− qp∗

1 − A2
L

(
1

2
�� + iAL�m

)
b†a. (13d)

Let us consider a single-particle state described by a density
matrix of the form

ρ = p1 |K0〉 〈K0| + p2 |K0〉 〈K0| + w |K0〉 〈K0|
+w∗ |K0〉 〈K0| + (1 − p1 − p2) |0〉 〈0| (14)

with 0 � p1 � 1, 0 � p2 � 1, 0 � p1 + p2 � 1, and |w|2 �
p1p2. The evolution of this state in the Schrödinger picture is
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governed by the master equation

∂tρ(t) = −i[H,ρ(t)] + {K,ρ(t)} +
∑

i

Liρ(t)L†
i . (15)

By a straightforward calculation, using relation (8) between
the bases {|K0

S〉 , |K0
L〉} and {|K0〉 , |K0〉}, one can check that

the choices of Eqs. (12) and (13) for operators appearing in
Eq. (15) lead to the same evolution equation for ρ(t).

Moreover, the evolution of the two-particle system obtained
from Eqs. (13) and (15) lead to the evolution of the two-particle
state obtained by taking a symmetrized (the particles are
indistinguishable) tensor product of single-particle evolution
(see [17]).

Now, consider the Kossakowski-Lindblad master equation
for the evolution of observable �(t) in the Heisenberg picture

∂t�(t) = L[�(t)], (16)

where

L[�(t)] = i[H,�(t)]

+ 1

2

∑
i

{[L†
i ,�(t)]Li +L

†
i [�(t),Li]}, (17)

and we choose H and Li (i = 1,2) in the form (13). We assume
that �(t) can be written as a bilinear form in annihilation and
creation operators

�(t) = ωaa(t)a†a + ωab(t)a†b + ωba(t)b†a + ωbb(t)b†b,

(18)

with the condition ωba(t) = ω∗
ab(t) to guarantee that �(t) is

Hermitian.

B. General solution

Here we want to find the evolution of any observable �(t)
which is bilinear in annihilation and creation operators. To
achieve this aim, we begin with the following observation:

L[a†a] = −�a†a − pq∗

1 − AL

(
1
2�� − i�m

)
a†b − qp∗

1 − AL

(
1
2�� + i�m

)
b†a, (19a)

L[a†b] = −�a†b − qp∗

1 + AL

(
1
2�� − i�m

)
a†a − qp∗

1 − AL

(
1
2�� + i�m

)
b†b, (19b)

L[b†a] = −�b†a − pq∗

1 + AL

(
1
2�� + i�m

)
a†a − pq∗

1 − AL

(
1
2�� − i�m

)
b†b, (19c)

L[b†b] = −�b†b − pq∗

1 + AL

(
1
2�� + i�m

)
a†b − qp∗

1 + AL

(
1
2�� − i�m

)
b†a. (19d)

We see that if �(t) is of the form (18) at a given moment of time t0, it must preserve this form for all the time t � t0.
If we take into account the linearity of �(t) and linear independence of operators a†a, a†b, b†a, and b†b, we get the

following system of first-order differential equations for ω:

ω̇aa(t) = −�ωaa(t) − qp∗

1 + AL

(
1
2�� − i�m

)
ωab(t) − pq∗

1 + AL

(
1
2�� + i�m

)
ωba(t), (20a)

ω̇ab(t) = − pq∗

1 − AL

(
1
2�� − i�m

)
ωaa(t) − �ωab(t) − pq∗

1 + AL

(
1
2�� + i�m

)
ωbb(t), (20b)

ω̇ba(t) = − qp∗

1 − AL

(
1
2�� + i�m

)
ωaa(t) − �ωba(t) − pq∗

1 − AL

(
1
2�� − i�m

)
ωbb(t), (20c)

ω̇bb(t) = − qp∗

1 − AL

(
1
2�� + i�m

)
ωab(t) − pq∗

1 − AL

(
1
2�� − i�m

)
ωba(t) − �ωbb(t). (20d)

Using straightforward methods we can find that the general solution of Eq. (20) is of the form

ωaa(t) = e−�t

2

{[
cosh

(
1
2��t

) + cos(�mt)
]
ωaa(0) − q

p

[
sinh

(
1
2��t

) − i sin(�mt)
]
ωab(0)

− 1 − AL

1 + AL

p

q

[
sinh

(
1
2��t

) + i sin(�mt)
]
ωba(0) + 1 − AL

1 + AL

[
cosh

(
1
2��t

) − cos(�mt)
]
ωbb(0)

}
, (21a)

ωab(t) = e−�t

2

{
− p

q

[
sinh

(
1
2��t

) − i sin(�mt)
]
ωaa(0) + [

cosh
(

1
2��t

) + cos(�mt)
]
ωab(0)

+ 1 − AL

1 + AL

(
p

q

)2[
cosh

(
1
2��t

) − cos(�mt)
]
ωba(0) − 1 − AL

1 + AL

p

q

[
sinh

(
1
2��t

) + i sin(�mt)
]
ωbb(0)

}
, (21b)
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KORDIAN ANDRZEJ SMOLIŃSKI PHYSICAL REVIEW A 92, 032128 (2015)

ωba(t) = e−�t

2

{
−1 + AL

1 − AL

q

p

[
sinh

(
1
2��t

) + i sin(�mt)
]
ωaa(0) + 1 + AL

1 − AL

(
q

p

)2[
cosh

(
1
2��t

) − cos(�mt)
]
ωab(0)

+ [
cosh

(
1
2��t

) + cos(�mt)
]
ωba(0) − q

p

[
sinh

(
1
2��t

) − i sin(�mt)
]
ωbb(0)

}
, (21c)

ωbb(t) = e−�t

2

{
1 + AL

1 − AL

[
cosh

(
1
2��t

) − cos(�mt)
]
ωaa(0) − 1 + AL

1 − AL

q

p

[
sinh

(
1
2��t

) + i sin(�mt)
]
ωab(0)

−p

q

[
sinh

(
1
2��t

) − i sin(�mt)
]
ωba(0) + [

cosh
(

1
2��t

) + cos(�mt)
]
ωbb(0)

}
. (21d)

The Hermicity of �(t) is preserved (i.e., the condition
ωab(0) = ω∗

ba(0) implies ωab(t) = ω∗
ba(t) for all the time t �

0), since from Eqs. (9) and (10) we have(
p

q

)∗
= 1 + AL

1 − AL

q

p
. (22)

Now let us observe that the different choices of initial
conditions for ω allow us to get the time evolution of different
physically interesting observables of the form (18).

IV. EVOLUTION OF OBSERVABLES AND THEIR
AVERAGES

Now we are prepared to find the evolution of some physi-
cally interesting observables, as well as the time dependence of
their mean values. We begin with the total number of particles
and strangeness observables, next we analyze the numbers of
each neutral kaon flavor.

A. Total number of particles and strangeness

For the total number of particles observable N , we have
N (0) = a†a + b†b, so ωaa(0) = ωbb(0) = 1 and ωab(0) =
ωba(0) = 0, and finally we get

N (t) = e−�t

{
1

1 + AL

[
cosh

(
1
2��t

) + AL cos(�mt)
]
a†a

− 1

1 + AL

p

q

[
sinh

(
1
2��t

) − iAL sin(�mt)
]
a†b

− 1

1 − AL

q

p

[
sinh

(
1
2��t

) + iAL sin(�mt)
]
b†a

+ 1

1 − AL

[
cosh

(
1
2��t

) − AL cos(�mt)
]
b†b

}
. (23)

The expectation value of N (t) in the state |n,n̄〉 is

〈N (t)〉 = e−�t

1 − A2
L

{[
cosh

(
1
2��t

) − A2
L cos(�mt)

]
(n + n̄)

−AL

[
cosh

(
1
2��t

) − cos(�mt)
]
(n − n̄)

}
(24)

and is depicted in Fig. 1. If we take AL = 0 in Eq. (24), we
obtain the case with preserved CP symmetry, for which we
recover the usual result for mean number of particles

〈N (t)〉CP = 1
2

(
e−�St + e−�Lt

)
(n + n̄). (25)

The leading part of the difference between CP-violated and
CP-preserved values is

〈N (t)〉 − 〈N (t)〉CP

= −AL

[
1
2

(
e−�St + e−�Lt

) − e−�t cos(�mt)
]

× (n − n̄) + O
(
A2

L

)
, (26)

and is shown in Fig. 1, too.
For strangeness S we have S(0) = a†a − b†b, so ωaa(0) =

−ωbb(0) = 1, ωab(0) = ωba(0) = 0, and

S(t) = e−�t

{
1

1 + AL

[
AL cosh

(
1
2��t

) + cos(�mt)
]
a†a

− 1

1 + AL

p

q

[
AL sinh

(
1
2��t

) − i sin(�mt)
]
a†b

− 1

1 − AL

q

p

[
AL sinh

(
1
2��t

) + i sin(�mt)
]
b†a

+ 1

1 − AL

[
AL cosh

(
1
2��t

) − cos(�mt)
]
b†b

}
. (27)

The expectation value of S(t) in the state |n,n̄〉 is therefore

〈S(t)〉 = e−�t

1 − A2
L

{[
cos(�mt) − A2

L cosh
(

1
2��t

)]
(n − n̄)

+AL

[
cosh

(
1
2��t

) − cos(�mt)
]
(n + n̄)

}
(28)

and is shown in Fig. 2.

FIG. 1. (Color online) Mean number of particles vs time for n +
n̄ = 1, . . . ,5 (bottom-up) and the difference between 〈N (t)〉 for CP-
violated and CP-preserved case vs time for n + n̄ = 4 and n − n̄ =
0, . . . ,4 (top-down).
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FIG. 2. (Color online) Mean strangeness vs time for n + n̄ = 4
and n − n̄ = 0, . . . ,4 (bottom-up) with the strangeness oscillation
phenomenon explicitly visible when n − n̄ �= 0 and the difference
between 〈S(t)〉 for CP-violated and CP-preserved cases vs time for
n + n̄ = 1, . . . ,5 and n − n̄ = 0 (bottom-up).

As previously, when AL = 0 we get the CP-preserved value

〈S(t)〉CP = e−�t cos(�mt)(n − n̄), (29)

so the leading term of the difference between CP-violated and
CP-preserved values is

〈S(t)〉 − 〈S(t)〉CP = AL

[
1
2

(
e−�St + e−�Lt

) − e−�t cos(�mt)
]

× (n + n̄) + O
(
A2

L

)
(30)

and is shown also in Fig. 2.

B. Number of K 0 and K 0

For the numbers of K0 and K0 we have NK0 (0) = a†a and
N

K0 (0) = b†b, so

NK0 (t) = e−�t

2

{[
cosh

(
1
2��t

) + cos(�mt)
]
a†a

−p

q

[
sinh

(
1
2��t

) − i sin(�mt)
]
a†b

−1 + AL

1 − AL

q

p

[
sinh

(
1
2��t

) + i sin(�mt)
]
b†a

+1 + AL

1 − AL

[
cosh

(
1
2��t

) − cos(�mt)
]
b†b

}
, (31a)

and

N
K0 (t) = e−�t

2

{
1 − AL

1 + AL

[
cosh

(
1
2��t

) − cos(�mt)
]
a†a

−1 − AL

1 + AL

p

q

[
sinh

(
1
2��t

) + i sin(�mt)
]
a†b

− q

p

[
sinh

(
1
2��t

) − i sin(�mt)
]
b†a

+ [
cosh

(
1
2��t

) + cos(�mt)
]
b†b

}
. (31b)

FIG. 3. (Color online) Mean number of K0 vs time for n = 1,2,3
(bundles bottom-up) and n̄ = 0,1,2 (bottom-up inside bundles).

Their mean values are

〈NK0 (t)〉 = e−�t

2

{[
cosh

(
1
2��t

) + cos(�mt)
]
n

+ 1 + AL

1 − AL

[
cosh

(
1
2��t

) − cos(�mt)
]
n̄

}
(32a)

and

〈N
K0 (t)〉 = e−�t

2

{
1 − AL

1 + AL

[
cosh

(
1
2��t

) − cos(�mt)
]
n

+ [
cosh

(
1
2��t

) + cos(�mt)
]
n̄

}
, (32b)

respectively. We show these time evolution in the Figs. 3
and 4. Notice that after a suitable period of time (approx.
8 ns) different initial states can give the same mean number of
K0 or K0.

FIG. 4. (Color online) Mean number of K0 vs time for n = 1,2,3
(bottom-up inside bundles) and n̄ = 0,1,2 (bundles bottom-up).
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If we put AL = 0, we get again CP-preserved values

〈NK0 (t)〉CP = e−�St + e−�Lt

2

n + n̄

2
+ e−�t cos(�mt)

n − n̄

2
(33a)

and

〈N
K0 (t)〉CP = e−�St + e−�Lt

2

n + n̄

2
− e−�t cos(�mt)

n − n̄

2
.

(33b)

The leading term of the differences for the CP-violated and
CP-preserved values are

〈NK0 (t)〉 − 〈NK0 (t)〉CP

= AL

[
1
2

(
e−�St + e−�Lt

) − e−�t cos(�mt)
]
n̄ + O

(
A2

L

)
,

(34a)

〈N
K0 (t)〉 − 〈N

K0 (t)〉CP

= −AL

[
1
2

(
e−�St + e−�Lt

) − e−�t cos(�mt)
]
n + O

(
A2

L

)
.

(34b)

C. Number of K 0
S and K 0

L

Let us return to the short and long living states of neutral
kaon, |K0

S〉 and |K0
L〉, respectively. If we define another two

pairs of annihilation and creation operators, such that

∣∣K0
S

〉 = c
†
S

∣∣0〉
, (35a)∣∣K0

L

〉 = c
†
L

∣∣0〉
, (35b)

we can find, with the use of Eq. (8), that

cS = p∗a + q∗b, (36a)

cL = p∗a − q∗b. (36b)

The operators cS and cL fulfill almost the usual canonical
commutation relations with the following exception:

[cS,c
†
L] = [cL,c

†
S] = AL. (37)

This reflects the fact that |K0
S〉 and |K0

L〉 are not orthogonal,
see Eq. (11).

Now we define multiparticle states for K0
S and K0

L as

∣∣#K0
S = n

〉 ≡ |nS〉 = (c†S)n√
n!

|0〉, (38a)

∣∣#K0
L = n

〉 ≡ |nL〉 = (c†L)n√
n!

|0〉. (38b)

These states can be expressed in terms of the sates |n,k〉 as
follows

|nS〉 =
n∑

k=0

√(
n

k

)
pn−kqk |n − k,k〉, (39a)

|nL〉 =
n∑

k=0

(−1)k
√(

n

k

)
pn−kqk |n − k,k〉. (39b)

For the number of K0
S , NK0

S
(0) = c

†
ScS = 1+AL

2 a†a +
1−AL

2
p

q
a†b + 1+AL

2
q

p
b†a + 1−AL

2 b†b, so

NK0
S
(t) = e−�t

2

{
1

1 + AL

[
e
− 1

2 ��t + A2
Le

1
2 ��t + 2AL cos(�mt)

]
a†a + 1

1 + AL

p

q

[
e
− 1

2 ��t − A2
Le

1
2 ��t + 2iAL sin(�mt)

]
a†b

+ 1

1 − AL

q

p

[
e
− 1

2 ��t − A2
Le

1
2 ��t − 2iAL sin(�mt)

]
b†a + 1

1 − AL

[
e
− 1

2 ��t + A2
Le

1
2 ��t − 2AL cos(�mt)

]
b†b

}
.

(40)

Similarly, for the number of K0
L, NK0

L
(0) = c

†
LcL = 1+AL

2 a†a − 1−AL

2
p

q
a†b − 1+AL

2
q

p
b†a + 1−AL

2 b†b, and

NK0
L
(t) = e−�t

2

{
1

1 + AL

[
e

1
2 ��t + A2

Le
− 1

2 ��t + 2AL cos(�mt)
]
a†a − 1

1 + AL

p

q

[
e

1
2 ��t − A2

Le
− 1

2 ��t − 2iAL sin(�mt)
]
a†b

− 1

1 − AL

q

p

[
e

1
2 ��t − A2

Le
− 1

2 ��t + 2iAL sin(�mt)
]
b†a + 1

1 − AL

[
e

1
2 ��t + A2

Le
− 1

2 ��t − 2AL cos(�mt)
]
b†b

}
.

(41)

Now we are prepared to find the expectation values of NK0
S
(t) and NK0

L
(t) in the states |nS〉 and |nL〉, respectively.

First, observe that

a†b |nS〉 = q

p
a†a |nS〉, a†b |nL〉 = − q

p
a†a |nL〉, (42a)

b†a |nS〉 = p

q
b†b |nS〉, b†a |nL〉 = −p

q
b†b |nL〉. (42b)
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Thus

NK0
S
(t) |nS〉 = e−�t

1 − A2
L

[(
e− 1

2 ��t − A2
Lei�mt

)
N (0) − AL

(
e− 1

2 ��t − ei�mt
)
S(0)

] |nS〉 (43a)

and

NK0
L
(t) |nL〉 = e−�t

1 − A2
L

[(
e

1
2 ��t − A2

Le−i�mt
)
N (0) − AL

(
e

1
2 ��t − e−i�mt

)
S(0)

] |nL〉. (43b)

Of course |nS〉 and |nL〉 are eigenvectors of N (0):

N (0) |nS〉 = n |nS〉, (44a)

N (0) |nL〉 = n |nL〉, (44b)

but they are not eigenvectors of S(0) since

S(0) |nS〉 = n |nS〉 − 2
n∑

k=0

k

√(
n

k

)
pn−kqk |n − k,k〉, (45a)

S(0) |nL〉 = n |nL〉 − 2
n∑

k=0

(−1)kk

√(
n

k

)
pn−kqk |n − k,k〉.

(45b)

Notice that in view of Eq. (45) the states |nS〉 and |nL〉
are not eigenvectors of NK0

S
and NK0

L
, respectively, as one can

naı̈vely expect. However, the expectation values of S(0) in the
states |nS〉 and |nL〉 are well established and can be calculated
as

〈nS | S(0) |nS〉 = ALn, (46a)

〈nL| S(0) |nL〉 = ALn, (46b)

because
n∑

k=0

k

(
n

k

)
|p|2(n−k)|q|2k = n|q|2(|p|2 + |q|2)n−1 = n|q|2.

(47)

In conclusion, we get that the mean number of K0
S and K0

L in
the states |nS〉 and |nL〉, respectively, evolves in time according
to the Geiger-Nutall law

〈nS | NK0
S
(t) |nS〉 = ne−�St , (48a)

〈nL| NK0
L
(t) |nL〉 = ne−�Lt . (48b)

The states |nS〉 and |nL〉 are not orthogonal, thus we expect
nonzero expectation values of NK0

S
(t) and NK0

L
in the states

|nL〉 and |nS〉, respectively. Indeed,

NK0
S
(t) |nL〉 = e−�tAL

1 − A2
L

[(
e−i�mt − A2

Le
1
2 ��t

)
S(0)

−AL

(
e−i�mt − e

1
2 ��t

)
N (0)

] |nL〉 (49a)

and

NK0
L
(t) |nS〉 = e−�tAL

1 − A2
L

[(
ei�mt − A2

Le− 1
2 ��t

)
S(0)

−AL

(
ei�mt − e− 1

2 ��t
)
N (0)

] |nS〉, (49b)

thus,

〈nL| NK0
S
(t) |nL〉 = nA2

Le−�Lt , (50a)

〈nS | NK0
L
(t) |nS〉 = nA2

Le−�St . (50b)

So, finally we see that we can detect a fraction of order A2
L

of the other flavor in multiparticle short- or long-lived neutral
kaon states.

V. CONCLUSIONS

We have shown that it is possible to formulate the consistent
and probability-preserving description of the CP-symmetry-
violating evolution of a system containing any number of
decaying particles. This has been done within the framework
of quantum mechanics of open systems based on the approach
developed in [15,16]. To achieve this aim we have considered
master equations built up from creation and annihilation
operators which generate dynamical semigroups that can
describe the exponential decay and flavor oscillations for a
system of many particles. It should be noted that this dynamical
semigroup was used for the description of the entire system
of unstable particles, and not only for decoherence effects, as
was done in, e.g., [9,14].

We have used the fact that the decay of the particle can
be regarded as a Markov process (the probability of decay of
a particle is constant, so it does not depend on its history)
and we have solved explicitly the Kossakowski-Lindblad
master equation for a system of particles with violated CP
symmetry. To avoid working with infinite numbers of density
matrix elements we performed calculations in the Heisenberg
picture of quantum mechanics. This allowed us to deal with
a low-dimensional system of linear differential equations
for evolution of any observable bilinear in creation and
annihilation operators. The choice of a concrete observable
is then reduced to the proper choice of initial conditions for
the system of differential equations. To show explicitly the
effectiveness of the introduced approach we have calculated
the evolution of the observables which are most interesting
from the physical point of view. We have also found the
evolution of mean values of these observables as well as their
lowest order difference with the CP-preserved values.

It seems to us that the presented analysis of time evolution
of neutral kaons could be applied to the description of EPR
states. Of course one must construct such a state by labeling
annihilation and creation operators either by a discrete index,
as done in quantum optics, or by a continuous parameter, as
done in quantum field theory (beware that in the latter case
annihilation and creation operators are actually operator valued
distributions).
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Moreover, we think that our approach would be interesting
and helpful also in the analysis of mechanical systems and
electric circuits. This follows from the fact that there is a strong
analogy with nonreversible classical mechanics and quantum
systems with CP violation [22].

Finally, we would like to point out that all the presented
results are also valid for neutral B mesons after appropriate
change of notation and values of physical quantities. This

follows from the fact that B mesons evolve according to the
same scheme as kaons.
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