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Observing the Casimir-Lifshitz force out of thermal equilibrium
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The thermal Casimir-Lifshitz force between two bodies held at different temperatures displays striking features
that are absent in systems in thermal equilibrium. The manifestation of this force has been observed so far only in
Bose-Einstein condensates close to a heated substrate, but never between two macroscopic bodies. Observation
of the thermal Casimir-Lifshitz force out of thermal equilibrium with conventional Casimir setups is very difficult
because for experimentally accessible separations the thermal force is small compared to the zero-temperature
quantum Casimir force unless prohibitively large temperature differences among the plates are considered. We
describe an apparatus that allows for direct observation of the thermal force out of equilibrium for submicron
separations and for moderate temperature differences between the plates.
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I. INTRODUCTION

Casimir-Lifshitz forces [1,2], i.e., dispersion forces be-
tween polarizable bodies originating from quantum and
thermal fluctuations of the electromagnetic (em) field, play an
important role in different fields of science (physics, biology,
and chemistry) and in technology. The first comprehensive
theory of dispersion forces was developed in the 1950s by
Lifshitz [3], on the basis of Rytov’s theory of electromagnetic
fluctuations [4,5]. Still today, Lifshitz theory is routinely used
to interpret experiments on dispersion forces.

In its original formulation, Lifshitz theory dealt with two
material slabs in thermal equilibrium. Recently, the theory
has been generalized by Antezza et al. [6–8] to situations
out of equilibrium, in which the interacting bodies may have
different temperatures. The study of the thermal component
of the Casimir-Lifshitz force has attracted much interest in
recent years. Observing the thermal force is very difficult, as
it becomes visible only at distances of the order of the thermal
wavelength λT = �c/kBT (about 7 μm at room temperature).
At such large distances both the quantum Casimir force
and the thermal force are very small and thus very difficult
to measure. On the other hand, for smaller distances the
thermal force is masked by the much stronger T = 0 quantum
component of the Casimir-Lifshitz force and therefore it
is difficult to separate it unambiguously. As of now, only
two experiments have observed the thermal Casimir-Lifshitz
force. The first one is the experiment by Obrecht et al. [9],
which observed the thermal Casimir-Polder force between
an ultracold atomic cloud placed at a distance of a few
microns from a dielectric substrate. In order to enhance the
thermal force, the measurement was done out of thermal
equilibrium by heating the substrate and was found to be
in agreement with the theory developed in [6]. The second
experiment by Sushkov et al. [10] observed the equilibrium
thermal Casimir force between a large Au sphere and a
Au plate, in the wide range of separations from 0.7 to
7.3 μm. The theoretical interpretation of the experiment by
Sushkov et al. is controversial [11] because of the presence
in the signal of a ten times larger force of unclear origin
that was attributed to large electrostatic patches on the gold
surfaces.

Out of thermal equilibrium the Casimir-Lifshitz force
displays remarkable features that disappear when the system
is brought in a state of thermal equilibrium [6–8]. These
features originate from a peculiar contribution F̄ (neq)(T1,T2)
to the nonequilibrium force, which is antisymmetric under an
exchange of the body temperatures T1 and T2. The presence of
such a term, first pointed out in [6] for the case of a polarizable
small particle in front of a flat dielectric surface and then in [7]
for two plane-parallel slabs, was later shown to be a general
feature of the nonequilibrium force between two bodies of any
shape and composition [12–15]. Being antisymmetric in the
body temperatures, this term can have either sign and it can be
harnessed to tune the force in both strength and sign [16] and to
realize self-propelling systems [17]. This thermal force enjoys
more striking features: It vanishes identically for two bodies
with identical scattering matrices [8,12–15] and it is nonaddi-
tive in the limit where one of the two bodies is a rarefied gas
[6,7]. In view of its unique features, it would be clearly of great
interest to observe the effect of this term in the Casimir force
between two macroscopic bodies held at different tempera-
tures. So far this has been an impossible task, because in order
to observe this term by current Casimir setups it would be nec-
essary to achieve a large temperature difference between the
plates (hundreds of degrees) and to go to separations of several
microns. Both things are very difficult to realize in practice.

In this paper we describe an apparatus that should allow for
a direct observation of the antisymmetric component of the
nonequilibrium thermal Casimir-Lifshitz force at submicron
distances, with small temperature differences between the
plates. The scheme is based on a differential force measure-
ment of the Casimir force between a gold-coated sphere and
two dissimilar sectors of a flat surface, one made of gold and the
other of silicon. The crucial feature of the proposed setup is the
presence of a uniform gold overlayer covering the plate, which
filters out the otherwise dominant T = 0 component of the
Casimir force. Due to the filtering property of the gold layer,
the signal in our setup originates entirely from the thermal
component of the Casimir force, thus making its observation
unambiguous. The scheme described in this paper is similar
to setups recently proposed by the author [18–21] to probe the
equilibrium thermal Casimir force between magnetodielectric
or superconducting surfaces.
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The plan of the paper is as follows. In Sec. II we describe
our setup and explain its workings. In Sec. III we present our
computations of the differential Casimir force. We summarize
in Sec. IV.

II. SETUP

The setup, schematically shown in Fig. 1, consists of a gold
sphere of radius R at temperature T2 placed at a (minimum)
distance a from a planar slab at temperature T1, divided into
two regions made of gold and of (high-resistivity) silicon,
respectively. The key feature of the apparatus is the gold
overlayer of thickness w, covering both the gold and the silicon
regions of the plate. For any fixed sphere-plate separation a,
we consider measuring the difference

�F (T1,T2) = FSi(T1,T2) − FAu(T1,T2) (1)

between the values FAu(T1,T2) and FSi(T1,T2) of the (normal)
Casimir force on the sphere (negative forces correspond to
attraction towards the plate) that is obtained when the tip of
the sphere is respectively above a point q deep in the Au
region and a point p deep in the Si region.1 The principle
behind this differential measurement can be easily explained.
One considers that em quantum fluctuations contributing to
the T = 0 Casimir force have characteristic frequencies of
the order of ωc = c/2a = 5 × 1014 rad/s, for a separation
of 300 nm. Photons with this frequency have a penetration
depth δ0 in Au of 20 nm or so. On the other hand, inspection
of the spectrum of the thermal Casimir-Lifshitz force [and
in particular of the antisymmetric contribution F̄ (neq)(T1,T2)
that is our main interest] reveals that the important photon
frequencies are smaller than 0.05(kBT /�) � 2 × 1012 rad/s
for temperatures T around 300 K. The penetration depth δT of
these thermal photons in Au is around 160 nm. Therefore, if
the thickness w of the gold overlayer is chosen such that

δ0 � w � δT , (2)

it is clear that the overlayer filters out from the signal �F

the uninteresting T = 0 component of the Casimir force,
which would otherwise mask the much weaker thermal force.
In contrast, low-frequency thermal photons contributing to
F̄ (neq)(T1,T2), being able to traverse the Au overlayer, are
sensitive to the different optical properties of the Au-Si
substrates. In our computations we took w = 100 nm and we
found that for a large sphere radius R � a the signal �F (a) is
essentially equal (as it will be better explained in the remainder
of the paper) to the antisymmetric component F̄

(neq)
Si (T1,T2) of

the thermal force that is obtained when the sphere is above the
Si sector:

�F (T1,T2) � F̄
(neq)
Si (T1,T2). (3)

This shows that by our measurement scheme it is possible to
directly observe the nonequilibrium thermal force discovered

1Out of thermal equilibrium, the force difference �F (T1,T2) in-
cludes in general an uninteresting distance-independent contribution
originating from the thermal radiation of the environment [8], which
we subtracted from the signal.
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FIG. 1. (Color online) The setup consists of a gold sphere at
temperature T2 above a planar slab at temperature T1. The planar
slab is divided in two regions made of gold and (high-resistivity)
silicon, respectively, and is fully covered with a plane-parallel gold
overlayer of uniform thickness w = 100 nm.

by Antezza et al. Another important virtue of the proposed
scheme is that it is immune by design from the problem
of electrostatic patch forces that represent a major diffi-
culty in conventional Casimir absolute force measurements
[22–27]. This is so because electrostatic forces originating
from patches on the exposed surface of the gold overlayer
are on average independent of the position of the sphere tip
above the Au overlayer and therefore cancel out from �F .
Possible electrostatic patches existing at the Si-Au interface
are also harmless, because the resulting electrostatic fields are
screened out by the gold overlayer and thus cannot reach the
gold sphere. In this regard our scheme is similar to recent
differential experiments where the effect of the Casimir force
is minimized (so-called “Casimir-less” experiments) [28,29]
searching for non-Newtonian gravity in the submicron range,
which also utilized Au overlayers of thicknesses similar to ours
to screen out both electrostatic and Casimir forces. It has been
estimated recently [30] that for separations larger than 200 nm
random fluctuations of the patch potential from point to point
on the surface of the Au overlayer imply a limit of 0.1 fN on
the sensitivity of the apparatus of López and co-workers.

III. COMPUTING THE NONEQUILIBRIUM FORCE
DIFFERENCE

Over the past fifty years, the theory of dispersion forces
has reached a remarkable degree of generality, which now
allows us to describe these forces in a wide variety of physical
situations. We recall that in the original version of Lifshitz
theory, the material boundaries of the system were considered
to be planar dielectrics in thermal equilibrium, fully described
by the respective frequency-dependent (complex) permittivity
ε(ω). The extension of Lifshitz theory to plane-parallel
layered slabs consisting of an arbitrary number of layers
made of different magnetodielectric materials was developed
in [31–33] (see also Ref. [2], p. 290). Lifshitz theory was
later generalized to surfaces of arbitrary shapes [31,34,35].
The theory of dispersion forces between two plane-parallel
dielectric slabs at different temperatures was developed in
[6–8]. This nontrivial generalization of Lifshitz theory is based
on the assumption that the correlator of the fluctuating dipole
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moments within two plates that are in local thermal equilibrium
has the same expression as the one that holds in systems that are
in global thermal equilibrium [4,5]. It should be stressed that
this assumption, while plausible because of the local character
of the source correlators, has a hypothetical character and as
such it needs further theoretical and experimental validation
[7]. The same assumption was used by Polder and Van Hove
[36] to calculate the radiative heat transfer between two bodies
at different temperatures and since then it has been universally
adopted in theoretical and experimental investigations of
radiative heat transfer (see [15], and references therein). On the
basis of a scattering approach, the out-of-equilibrium theory of
[6–8] was generalized to (possibly layered) plates of arbitrary
shapes and constitutions in [12,15].

We can turn now to the computation of �F for our appara-
tus. In [8] it was shown that the Casimir pressure F (PP)(T1,T2)
between two homogeneous plane-parallel plates at different
temperatures is equal to the average of the equilibrium Casimir
pressures corresponding to the two temperatures plus an extra
term F̄ (neq)(T1,T2), which is antisymmetric in the temperatures.
By using scattering methods, it was shown in [12,15] that an
analogous formula holds for one or two layered plates (of
any shapes) provided the appropriate reflection coefficients
of the layered plates are used. We will see below that the
sphere-plate force difference �F for our setup has a similar
structure. To make the computation simple, we make two
assumptions. First, we assume that both points p and q at
which the force is measured are at a horizontal distance s

from the Au-Si boundary of the plate, which is much larger
than the typical radius ρ = √

Ra of the circular region around
the sphere tip that contributes significantly to the Casimir
force. The force FAu(T1,T2) can then be identified with the
force F̃Au(T1,T2) between a gold sphere and a homogenous
gold plate, while FSi(T1,T2) becomes identical to the force
F̃Si(T1,T2) between the same gold sphere and a two-layer
plane-parallel slab, consisting of a gold layer of thickness
w deposited over a uniform Si slab. The forces FAu/Si(T1,T2)
can in principle be computed using the scattering formalism
described in [12,15]. Here, for simplicity, we avoid the
mathematical complexities of the scattering formulas and

assume, as it is usually the case in Casimir experiments, that the
sphere radius R is much larger than the separation a, R � a.
Under this assumption it is possible to use the proximity force
approximation (PFA) [1,2] to estimate both F̃Au(T1,T2) and
F̃Si(T1,T2). According to the PFA, the force F (sp) between
a large sphere and a plate can be expressed in terms of the
potential U (PP) for the unit-area force F (PP) = −∂U (PP)/∂a of
the corresponding plane-parallel system:

F (sp) = 2πRU (PP). (4)

The PFA formula (4) holds for any short-range interaction
between gently curved surfaces and is valid also for the Casimir
force out of thermal equilibrium. The PFA has been widely
used to interpret Casimir experiments [2] (see [37] for more
applications of the proximity approximation). It is now known
that the PFA represents the leading term in a gradient expansion
of the Casimir force, in powers of the slopes of the bounding
surfaces [38–40]. By the PFA equation (4) one gets

�F (T1,T2) = 2πR
[
U (PP)

Si (T1,T2) − U (PP)
Au (T1,T2)

]
, (5)

where U (PP)
Au (T1,T2) is the Casimir potential for two Au slabs

at temperatures T1 and T2, respectively, and U (PP)
Si (T1,T2)

is the potential for a Au slab at temperature T2 in front
of a two-layer Au-Si slab at temperature T1. The potential
U (PP)(T1,T2) for two plane-parallel dielectric slabs at different
temperatures can be found easily by integrating the formula
for the nonequilibrium unit-area force F (PP)(T1,T2) provided
in [8]:

U (PP)(T1,T2) = 1
2 [F(T1) + F(T2)] + Ū (neq)(T1,T2). (6)

In this formula,F(T ) denotes the well-known Lifshitz formula
for the equilibrium unit-area Casimir free energy:

F(T ) = kBT

2π

∞∑
l=0

(
1 − 1

2
δl0

) ∫ ∞

0
dk⊥k⊥

×
∑

j=TE,TM

ln
[
1−e−2aql R

(1)
j (iξl,k⊥)R(2)

j (iξl,k⊥)
]
, (7)

while Ū (neq)(T1,T2) has the expression

Ū (neq)(T1,T2) = �

4π2

∫ ∞

0
dω[n(ω,T1) − n(ω,T2)]

∫ ∞

0
dk⊥k⊥

∑
j=TE,TM

Im
[

ln
(
1 − e2iakzR

(1)
j R

(2)
j

)]

×
[
θ (ω/c − k⊥)

∣∣R(2)
j

∣∣2 − ∣∣R(1)
j

∣∣2

1 − ∣∣R(1)
j R

(2)
j

∣∣2 + θ (k⊥ − ω/c)
Im

(
R

(1)
j R

(2)∗
j

)
Im

(
R

(1)
j R

(2)
j

)
]
. (8)

In Eqs. (7) and (8) R
(1)
j and R

(2)
j denote the reflection

coefficients of the slabs for polarization j , kB is Boltzmann
constant, ξl = 2πlkBT /� are the (imaginary) Matsubara fre-
quencies, k⊥ is the modulus of the in-plane wave vector,
ql =

√
ξ 2
l /c2 + k2

⊥, kz =
√

ω2/c2 − k2
⊥, θ (x) is the unit step

function [θ (x) = 0 for x < 0 and θ (x) = 1 for x > 0], and
n(ω,T ) = [exp(�ω/kBT ) − 1]−1 is the Bose-Einstein distri-
bution. According to Eq. (6), out of equilibrium the potential
U (PP)(T1,T2) is equal to the average of the equilibrium Casimir
free energies F(T ) at temperatures T1 and T2 plus a genuinely

nonequilibrium contribution Ū (neq)(T1,T2). The latter term is
antisymmetric in the temperatures T1 and T2 and vanishes
identically if the slabs have identical reflection coefficients.
Remarkably, this structure of the Casimir-Lifshitz force out
of thermal equilibrium has been shown to be valid also for
nonparallel plates of arbitrary shapes and constitution [12–15].
In order to evaluate Eq. (5), one substitutes in Eqs. (7) and (8)
the reflection coefficient R(2)

j by the reflection coefficient R(Au)
j

of a Au slab and R
(1)
j by either R

(Au)
j or the reflection coefficient

R
(Si)
j of a Si slab covered by a gold layer of thickness w.
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The reflection coefficient R
(Au)
j is equal to the Fresnel coeffi-

cient r
(0Au)
j given in Eqs. (10) and (11) below with a = 0 and

b = Au, while R
(Si)
j is provided by the following formula:

R
(Si)
j (ω,k⊥) = r

(0Au)
j + e2iwk

(Au)
z r

(AuSi)
j

1 + e2iwk
(Au)
z r

(0Au)
j r

(AuSi)
j

. (9)

Here r (ab)
α are the Fresnel reflection coefficients for a planar

interface separating medium a from medium b:

r
(ab)
TE = k(a)

z − k(b)
z

k
(a)
z + k

(b)
z

, (10)

r
(ab)
TM = εb(ω)k(a)

z − εa(ω)k(b)
z

εb(ω)k(a)
z + εa(ω)k(b)

z

, (11)

where k(a)
z =

√
εa(ω)ω2/c2 − k2

⊥, εa denotes the electric
permittivity of medium a, and we define ε0 = 1. In our
computations, we used the tabulated optical data of Au and
Si [41]. The data of Au were extrapolated towards zero
frequency via the Drude model εDr = 1 − ω2

p/[ω(ω + iγ )],
with ωp = 8.9 eV/� and γ = 0.035 eV/�.2 We are now in a
position to better justify Eq. (3), showing that �F measures the
nonequilibrium thermal Casimir-Lifshitz force. We remarked
earlier that if the thickness w of the gold overlayer is chosen
in the range in Eq. (2), the T = 0 component of the Casimir
force, which is included in the first two terms on the right-hand
side of Eq. (6), is filtered out from �F . As to the thermal
component of the Casimir-Lifshitz force, a distinction has to
be made between the thermal correction to the equilibrium
force, which is again included in the first two terms of Eq. (6),
and the truly nonequilibrium contribution provided by the
last term on the right-hand side of Eq. (6). The equilibrium
thermal correction has a characteristic frequency of the order of
the first Matsubara mode ξ1 = 2πkBT /� = 2.5 × 1014 rad/s
at room temperature. Since this radiation has a penetration
depth in Au δ

(eq)
T � 20 nm � w, it is clear that the equilibrium

thermal component of the force is filtered out as well by
the overlayer. The situation with the nonequilibrium force
proportional to Ū (neq)(T1,T2) is remarkably different. When the
sphere tip is above the gold sector of the plate this contribution
is zero because Ū (neq)(T1,T2) vanishes identically for two
surfaces made of the same material. When the sphere tip is
instead above the Si sector of the plate, the nonequilibrium
contribution Ū (neq)(T1,T2) is different from zero and by
inspection of its spectrum we estimated that for submicron
separations it receives its main contribution from evanescent
waves with TE polarization in the frequency range around
0.05(kBT /�) � 2 × 1012 rad/s for temperatures T around
300 K. Since the penetration depth δT of such a radiation
in Au, around 160 nm, is much larger than w = 100 nm, this
contribution to the thermal force is strongly affected by the
Au-Si interface. The conclusion of all these considerations,
fully confirmed by numerical computations, is that for our

2For the temperatures that we consider, the temperature variation of
γ has a negligible effect.
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FIG. 2. (Color online) Force difference �F (in fN) versus sep-
aration a in nm, for a Au sphere of radius R = 150 μm. The
three solid curves, from top to bottom, correspond to a fixed sphere
temperature T2 = 300 K and to three temperatures of the Au-Si plate
T1 = 350, 325, and 300 K, respectively. The dashed line represents
the equilibrium force difference for T1 = T2 = 350 K.

setup:

�F � 2πRŪ (neq)
Si (T1,T2). (12)

In Fig. 2 we show a plot of �F (in fN) versus separation a in
nm, for a sphere radius R = 150 micron and a Au overlayer
of thickness w = 100 nm. The three solid curves, from top to
bottom, correspond to a fixed sphere temperature T2 = 300 K
and to three temperatures of the Au-Si plate T1 = 350, 325,
and 300 K, respectively. The plot displays also (dashed line)
the equilibrium force difference for T1 = T2 = 350 K.

The close proximity of the two equilibrium curves con-
firms that the force difference �F seen for T1 	= T2 arises
entirely from the nonequilibrium thermal force proportional to
Ū (neq)

Si (T1,T2), in accordance with Eq. (12). The isoelectronic
“Casimir-less” experiments by López and co-workers [28,29]
searching for non-Newtonian gravity in the submicron range
measured dynamically the differential force between a Au
sphere glued to a microtorsional oscillator and a rotating disk
consisting of alternating Au and Si regions covered by a Au
overlayer. A sensitivity better than 0.3 fN in force differences
was reported in the separation range from 200 to 1000 nm
for an integration time of 3000 s. If this level of sensitivity
can be preserved in the presence of a temperature difference
between the sphere and the disk of a few tens of degrees,
it should be easily possible to adapt the setup by López
and co-workers to measure precisely the out-of-equilibrium
thermal force displayed in Fig. 2.

An ongoing controversy in Casimir physics concerns the in-
fluence of relaxation processes of conduction electrons on the
thermal Casimir force [2,42–45]. Surprisingly, several Casimir
experiments appear to be in agreement with Lifshitz theory
only if conduction electrons are modeled by the dissipationless
plasma model of infrared optics, while inclusion of dissipation
via the plausible Drude model results in predictions of the
Casimir force that are inconsistent with the data. In Fig. 3
we show the plasma model prediction of �F (in fN) versus
separation a (in nm) computed for the same temperatures
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FIG. 3. Force difference �F (in fN) versus separation a in nm, for
a Au sphere of radius R = 150 μm at a fixed temperature T2 = 300 K.
The three curves, from top to bottom, correspond to temperatures of
the Au-Si plate equal to T1 = 300, 325, and 350 K, respectively. For
this plot the conduction electrons of Au have been modeled as a
dissipationless plasma.

T1 and T2 as in Fig. 2. Contrary to the Drude model result
shown in Fig. 2, the plasma model predicts that �F should
shift towards negative values as the temperature of the plate is
increased. The widely different values of �F predicted by the
two prescriptions should be easily detectable. Our apparatus
should thus allow for a definitive experimental resolution of
the Drude model versus plasma model conundrum.

IV. CONCLUSION

We have described an apparatus by which it should
be possible to observe the thermal Casimir-Lifshitz force
between two macroscopic surfaces out of thermal equilibrium.
The sensitivity achieved by recent isoelectronic Casimir-less
experiments should allow for a precise measurement of
the thermal Casimir force in the submicron region and for
moderate temperature differences between the plates. Apart
from shedding light on the elusive thermal Casimir force, such
an experiment might also allow us to resolve a long-standing
controversy regarding the role of dissipation in the Casimir
effect.
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