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Vacuum high-harmonic generation in the shock regime
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Electrodynamics becomes nonlinear and permits the self-interaction of fields when the quantized nature of
vacuum states is taken into account. The effect on a plane probe pulse propagating through a stronger constant
crossed background is calculated using numerical simulation and by analytically solving the corresponding wave
equation. The electromagnetic shock resulting from vacuum high-harmonic generation is investigated and a
nonlinear shock parameter identified.
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I. INTRODUCTION

Soon after the formulation of relativistic quantum mechan-
ics, it became clear that the propagation of light through
the vacuum would be modified due to the polarizability of
virtual electron-positron pairs [1–4]. Heisenberg and Euler
derived the Lagrangian of an effective description of this
interaction for constant fields [5], which was later rederived
by Schwinger [6]. Derivative expansions of this effective
interaction [7–9] and numerical worldline calculations [10]
imply that “constant” is to be taken with respect to the
Compton time h/mc2 for electron mass m. This suggests a
good approximation of the effect for time-dependent fields
with a much longer period than the Compton time is to
simply insert them in place of the constant fields in the
Heisenberg-Euler Lagrangian. In particular, the polarized
vacuum supports the phenomenon of self-interaction when
two electromagnetic waves couple via virtual electron-positron
pairs and the principle of superposition no longer holds.

There have been several studies of the consequences of
this self-interaction. Lutzky and Toll [11] showed that if
the field invariant G = −FF ∗/4E2

cr = E · B = 0, where F ,
F ∗ are the Faraday tensor and its dual, Ecr = m2c3/�e =
1.3 × 1016 V cm−1 is the so-called “critical” field, e > 0 is
the charge of a positron, and E and B are the total electric
and magnetic fields in units of the critical field, a current
that depends nonlinearly on the invariant F = −F 2/4E2

cr =
(E2 − B2)/2 leads to the generation of an electromagnetic
discontinuity or “shock.” After identifying an application in
magnetized neutron stars, shocks were analyzed in a constant
magnetic field background using a first- [12], second- [13], and
several-order [14,15] weak-field expansion of the Heisenberg-
Euler Lagrangian with an all-order analysis performed by
Bialynicka-Birula [16]. An astrophysical environment was
further modeled by introducing nonlinear vacuum effects into
equations of relativistic magnetohydrodynamics [15] and into
a dusty plasma [17].

In the current article we analyze a pump-probe setup of
having a linearly polarized oscillating plane wave (probe)

*patrick.boehl@physik.uni-muenchen.de
†b.king@plymouth.ac.uk
‡hartmut.ruhl@physik.uni-muenchen.de

counterpropagate through a linearly polarized constant crossed
and stronger plane wave background (pump). Of particular in-
terest will be the two cases of having parallel or perpendicular
probe and pump polarizations. Observables are expressed in
terms of the electric and magnetic fields to aid comparison
with numerical simulation.

Unlike in classical electrodynamics where a superposition
of solutions to the wave equation is also a solution, when the
existence of charged virtual electron-positron vacuum states is
included, the principle of superposition is no longer valid. A
consequence of using the Heisenberg-Euler Lagrangian is that
a nontrivial vacuum “current” appears in Maxwell’s equations,
which disappears in the classical limit � → 0. If the electro-
magnetic fields are not very weak E � √

α(�ω/mc2)2 [18],
where α ≈ 1/137 is the fine-structure constant and the field
frequency is ω (corresponding to an intensity much greater
than 105 W cm−2 for an optical laser), they can be regarded
as classical. When this is the case, the methods of classical
electrodynamics can be used to solve Maxwell’s equations
with the vacuum current.

For fields much weaker than critical, the interaction with the
virtual electron-positron pairs of the vacuum permits 2n-wave
mixing for integer n > 1 such as four- and six-wave mixing,
as demonstrated in Fig. 1. One can make an analogy with
nonlinear optics, in which the polarization P of an optical
material can depend upon higher powers of the electric
field [19], which are described using different orders of the
susceptibility tensor χ (j ):

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + · · · , (1)

and analogously for the magnetization M. Being a relativistic
effect however, the magnetic and the electric fields appear
in the vacuum polarization and magnetization on an equal
footing. For weak fields and propagation lengths shorter than
the scattering length, four-wave mixing is the most probable
vacuum polarization process for colliding plane waves (with
the exception of certain special field geometries). This is often
compared to the optical Kerr effect [20], but in a pump-probe
experiment in which the probe oscillates much quicker than
the pump field, the steepening of the carrier wave [21] and not
the envelope [22] is stronger.

If the fields’ space time extent is much larger than a
single scattering length, multiple 2n-wave mixing can occur,
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FIG. 1. An illustration of the weak-field expansion of the vacuum
polarization diagram.

in which the change in field due to wave mixing influences
further changes due to wave mixing, with each mixing event
involving a potentially different n. Usually it is assumed that
the probability for multiple mixing events is much lower
than single mixing events, and multiple events are neglected.
However, if the extent of the field is large enough, this
hierarchy can be broken and it can become more probable that
multiple mixing events occur than a single mixing event so that
all orders of wave mixing events have to be taken into account.
With the generation of a large number of higher harmonics, the
shape of the electromagnetic plane waves will also change and
this leads to the possibility of shock wave generation. In the
“shock regime”, as all orders of wave mixing can play a role in
the generation of the spectrum, the spectrum is expected to be
qualitatively different to the perturbative case of having only
a single mixing event, where four-wave mixing is the most
probable and higher harmonics are exponentially suppressed.
Such a type of shock generation is also known from nonlinear
optics [23].

In contrast to this, the weak-field expansion in Fig. 1
suggests that high-harmonic generation can also occur through
single scattering events that involve large numbers of photons.
The likelihood of this happening increases with the field
strength of slowly varying weak fields. This type of vacuum
high-harmonic generation has been investigated using the full
polarization operator in [24,25] and using the lowest order of
the weak-field expansion in [26–29]. A highlight of the current
article is an investigation of vacuum high-harmonic generation
in plane wave fields in what we call the shock regime, where
the probe propagation length is much larger than the mean
scattering length. It will be shown that in certain parameter
regimes this can be a much more efficient high-harmonic
generation mechanism.

The aims of this work are: (i) to investigate vacuum
high-harmonic generation in the collision of plane waves that
are weaker than critical, for the case that the fields’ space
time extent is much larger than the mean scattering length;
(ii) to show that the higher harmonics are accompanied by
an electromagnetic shock due to the polarized vacuum; (iii)
to investigate the dependency of this shock on the colliding
fields’ mutual linear polarization; and (iv) to comment on the
similarities and differences of high-harmonic generation in
laser-irradiated plasmas.

We begin with a derivation of the modified Maxwell and
wave equations (Sec. II), summarize the analytical method
(Sec. III) and the numerical method used in computational sim-
ulation (Sec. IV) before analyzing higher harmonic generation
with just four-wave mixing (Sec. V), just six-wave mixing
(Sec. VI), and both four- and six-wave mixing (Sec. VII).
We then discuss the results, compare with high-harmonic

generation from oscillating plasmas (Sec. VIII), and conclude
(Sec. IX).

II. MODIFIED ELECTROMAGNETIC WAVE
PROPAGATION

The Heisenberg-Euler Lagrangian can be written [6,30]

LHE = − m4

8π2

∫ ∞

0
ds

e−s

s3

[
s2ab cot as coth bs − 1

+ s2

3
(a2 − b2)

]
(2)

(we have set here and throughout � = c = 1 unless they
explicitly occur), where the secular invariants a and b are
given by

a = [
√
F2 + G2 + F]1/2, b = [

√
F2 + G2 − F]1/2,

and we recall that electric and magnetic fields are in units of
the critical field Ecr. Applying the Euler-Lagrange equations
to L = LMW + LHE, where LMW = m4(E2 − B2)/8πα is the
classical Maxwell Lagrangian, gives the modified Maxwell
equations:

∂μF ∗μν = 0, (3)

(1 + C1) ∂μFμν + C2 Fμν∂μF 2 + C3 F ∗μν∂μ(FF ∗)

+C4 [F ∗μν∂μF 2 + Fμν∂μ(FF ∗)] = 0, (4)

and the general expressions for the coefficients Ci are given
in Appendix A. Expressing these equations in electric and
magnetic fields, we acquire

∇ ∧ E + ∂tB = 0, (5)

∇ ∧ B − ∂tE = J[E,B], (6)

J[E,B] = [C1(∂tE − ∇ ∧ B) + (C2E + C4B)∂tF
2

+ (C2B−C4E) ∧ ∇F 2 + (C4B−C3E) ∧ ∇(FF ∗)

+ (C3B + C4E)∂t (FF ∗)]. (7)

We restrict our analysis to the case when E 
 1, for
two reasons. First, it allows us to neglect the creation of
real electron-positron pairs, as the probability of vacuum
pair production in a volume equal to the reduced Compton
wavelength λ = �/mc cubed in the Compton time λ/c is
P = E2 exp(−π/E)/4π3 [6], which is heavily suppressed
for E 
 1. Second, it permits a perturbative expansion in E,
the so-called “weak-field expansion”, of the Heisenberg-Euler
Lagrangian.

Although all electromagnetic fields are classical, it is useful
to envisage the corresponding quantum process involving
photons and this is depicted for the weak-field expansion of
the vacuum polarization operator in Fig. 1. (Indeed, it has
been shown that the leading-order term of the weak-field
expansion agrees with the direct calculation of the four-photon
box diagram in the low-frequency limit �ω 
 mc2 [31].) The
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weak-field expansion of Eq. (2) for E 
 1 is then

LHE = m4

α

∞∑
i=1

Li , (8)

L1 = μ1

4π
[(E2 − B2)2 + 7(E · B)2], (9)

L2 = μ2

4π
(E2 − B2)[2(E2 − B2)2 + 13(E · B)2], (10)

L3 = μ3

4π
[3(E2 − B2)4 + 22(E2 − B2)2(E · B)2

+ 19(E · B)4], (11)

where μ1 = α/90π , μ2 = α/315π , μ3 = 4α/945π [although
α occurs in the denominator in Eq. (8), as fields are in units of
the critical field, when � → 0, LHE → 0]. The coefficients Ci

in Eq. (4) that follow from L1 and L2 are given by Eqs. (A5)–
(A10) in Appendix A.

In the scenario we consider, the initial electric field is
E(0)(ϕp,ϕs) = E(0)

p (ϕp) + E(0)
s (ϕs) and the initial probe and

strong electric waves are given by

E(0)
p (ϕp) = εεεp Ep e

−(
ϕp

�p
)2

cos ϕp, (12)

E(0)
s (ϕs) = εεεs Es Rect

(
ϕs

�s

)
, (13)

where the rectangular function Rect(ϕ/�) = θ (ϕ + �/2) −
θ (ϕ − �/2) and θ (·) is the Heaviside function [32], ϕp =
kpx = ωpx−, ϕs = ksx = ωsx

+, x± = t ± z, �p = ωpτp,
�s = ωsτs with the probe and strong field polarization vectors
εεεp, εεεs obeying εεεp · εεεp = 1, εεεs · εεεs = 1, kp · εεεp = 0, ks · εεεs =
0 and the probe pulse is assumed to be much weaker than
the strong background Ep 
 Es . Initially, the probe and strong
fields are well separated: limt→−∞ F ,G = 0. We define the or-
thonormal polarization vectors (εεε‖,εεε⊥), where εεε‖ ≡ εεεp defines
“parallel” polarization, and εεε⊥ “perpendicular” polarization
with εεε⊥ · εεε‖ = 0, εεε⊥ · kp = 0.

Since the vacuum current is a function of the relativistic
invariants F = (E2 − B2)/2 and G = E · B, for single plane
waves, there is no effect on propagation due to vacuum
polarization [6,33,34]. Therefore, the only contributions will
come from cross terms between the probe and strong field. As
the weak-field expansion is an expansion in powers of F and
G, for our scenario, each order scales as Ln ∼ (EsEp)n+1.

The initial probe E(0)
p and strong E(0)

s fields satisfy the
classical vacuum wave equation independently:

� E(0)
p = 000, � E(0)

s = 000,

where � = c−2∂2
t − ∇2. The effect of the polarized vacuum

can be included with a source term T = T[E,B] occurring
on the right-hand side of the wave equation. The source is
related to the current J in Maxwell’s equations via T = ∂tJ.
We will assume that solutions to this equation are also plane
waves propagating along the same axis as the pump and probe
waves. This allows us to write T = T[E]. Since a single plane

wave cannot polarize the vacuum [33,34]:

T[Ep] = 000, T[Es] = 000.

However, since two counterpropagating plane waves can
polarize the vacuum, the wave equation we will solve is

� (Ep + Es) = T[Ep + Es]. (14)

In particular, we are interested in solutions which include the
self-action of the probe that lead to a plasmalike vacuum insta-
bility and corresponding electromagnetic shock. Equation (14)
will be solved in two ways. First, the scattered probe will be
solved for using an analytical method based on an iterative
procedure that ignores changes to the stronger background:

� E(n+1)
p = T

[
E(n)

p + E(0)
s

]
. (15)

Second, Eq. (14) will be solved consistently in a numerical
simulation that uses tools based on the pseudocharacteristic
method of lines, which are applied to the corresponding
Maxwell equations. In this way, the “asymptotic” state of the
probe field after it has passed through the strong field and
T ≈ 000 (in contrast to the “overlap” dynamics when T �= 000 [28])
will be studied.

As we are considering the collision of counterpropagating
plane waves, the general Maxwell’s equations in Eqs. (5)
and (6) reduce to one spatial (z) and one temporal (t)
dimension. To determine which terms in the full weak-field
expansion for the current Eq. (8) should be considered
when calculating high-harmonic generation, we employ the
following scaling argument. As explained in [28], the change
in the field due to interaction with the vacuum that propagates
with the probe (“forward” scattering) is

�Ep(x−) =
∫ z

−∞

dz′

2
J(t ′ = x− + z′,z′), (16)

where the vacuum current is

J =
∞∑
i=1

Ji , Ji = 4π [̂kp ∧ ∂zMi + ∂tPi]. (17)

k̂p = kp/|kp| and the dimensionless vacuum polarization
Pi = ∂Li/∂E and magnetization Mi = ∂Li/∂B (as used in,
e.g., [16] or [35]). The forward-scattered signal is zero if
the vectorial part of Pi or Mi is from the probe field. As
already explained, Ln ∼ (EsEp)n+1, but in the wave equation
that results from this, the vacuum current contains derivatives
with respect to Es and Ep. Since the current containing
the derivative with respect to Es vanishes in the asymptotic
signal for forward scattering in plane waves [28,36], we
see that the remaining current and hence the scattered field
Jn ∝ μnEn+1

s En
p . The integration over z′ is over the strong field

and so contributes a factor τs and the differentials in Eq. (17)
contribute approximately a factor ωp, so that one can estimate
�E(1)

p ∝ μnEn+1
s En

p�, for � = ωpτs . Since we assume E 

1, and since we are interested in the case when the change in the
probe is of the same order as the probe field and self-interaction
becomes important, we require � � 1. We also note that
the coefficients μn diverge with n because the weak-field
expansion is asymptotic (see, e.g., [37]), so we do not expect
the series can be truncated for arbitrarily large n and still
yield a useful approximation. Although purely four-photon
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scattering does allow the generation of higher harmonics in
this setup, this first occurs for double four-photon scattering.
The contribution from this twice-iterated process appears in
�E(2)

p and scales as ∝(μ1)2E3
s E2

p�, which when compared to
the leading contribution to second harmonic generation from
six-photon scattering in �E(1)

p ∝ μ2E3
s E2

p�, is suppressed by
a factor (μ1)2/μ2 
 1. Therefore, when considering higher
harmonic generation along the probe propagation axis in the
regime E 
 1, � � 1, the leading contribution originates
from six-photon scattering. In Sec. V this simple scaling
argument will be seen to agree with the full numerical analysis.
An argument for neglecting eight-photon scattering will be
forthcoming.

III. ANALYTICAL METHOD

To solve the inhomogeneous wave equation[
∂2
t − ∂2

z

]
Ep = T

[
Ep + E(0)

s

]
, (18)

we employ an iterative ansatz:

E(n+1)
p = E(0)

p + �E(n)
p , (19)

where

�E(n)
p (t,z) =

∫
dt ′ dz′G(t − t ′,z − z′)T(n)(t ′,z′),

and in general

T(n)(t,z) =
∞∑
i=1

Ti

[
E(n−1)

p (ϕp) + E(0)
s (ϕs)

]
,

where the subscript i is the order of the weak-field expansion
and the retarded Green’s function is [38]

G(t,z) = n
2
θ (t)θ

(
t

n
− |z|

)
,

for refractive index n. If n = 1, one acquires Eq. (16), where
∂tJ(n)(t,z) = T(n)(t,z). These equations can be iterated to
calculate the generation of higher harmonics due to multiple
scattering as outlined in the section Introduction. Within this
analytical approach, we assume ωpτp � 1 and ωpτs � 1, so
that the derivative of the probe and background envelopes can
be neglected with respect to the derivative of the oscillating
part of the probe in J. When studying the generation of higher
harmonics, we will be particularly interested in taking

T(n)(t,z) = T2
[
E(n−1)

p (ϕp) + E(0)
s (ϕs)

]
,

which corresponds to considering purely six-photon scattering
(this will be further justified shortly).

A diagrammatic approach is useful to understand the
physical processes described by different iterations of the
probe field E(n)

p . First, since we are interested in harmonic
generation and since the background is constant, we suppress
strong-field photon legs. Furthermore, as the Heisenberg-Euler
Lagrangian is “effective” in that all fermion dynamics have
been integrated out, all vacuum loops are reduced to effective
vertices. Then the diagram representing six-photon scattering,
which is the leading order harmonic-generating process, is
given in Fig. 2. The iterative ansatz in Eq. (19) is illustrated in
Table I.

±ωp

±ωp

±ωs

±ωs

±ωs

±ωj −→
±ωp

±ωp

0, ±2ωp

FIG. 2. In the left-hand diagram, ωj ∈ {ωs,3ωs,2ωp ± ωs,2ωp ±
3ωs}. If the strong field is approximated as constant and the three
strong-field photon legs are suppressed, in an effective approach,
six-photon scattering of the probe can be represented as a triple inter-
action. The ± refer to incoming and outgoing photons respectively.

The diagrammatic equation in Table I in some ways
resembles the Schwinger-Dyson equation [39] but in this case
the left-hand side is the self-consistent solution of the probe
field at a particular order of iteration, and the double line on
the right-hand side is where the scattered probe field from the
previous order is applied. In Table I it is shown how the number
of diagrams rapidly increases with iteration order (as the square
of the number in the previous order plus one, although many
are equivalent). It also demonstrates that terms of a much
higher perturbative order (number of vertices) are generated at
a given iterative order [E(n) contains terms from the (2n − 1)th
perturbative order, but is only accurate to the nth perturbation
order].

On all the diagrams with at least one vertex, one leg is
the scattered field and the rest are incoming or outgoing
probe photons. An example is given in Fig. 3 where the ±
sign refers to the energy added to the system by incoming

TABLE I. Diagrammatic representation of the first iterations of
the probe wave equation.

E(n+1)
p = E(0)

p + ΔE(n)
p

= +

E
(0)
p :

E
(1)
p : +

E
(2)
p : + +

+ +
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±ωp

±ωp

±ωp

±ωp

ωp, ±40, ±2 ωp

FIG. 3. An example of the harmonics generated in the probe due
to effective self-interaction in a slowly varying background.

and outgoing photons respectively. By summing the series
that occurs in limn→∞ E(n)

p , we will arrive at an analytical
expression for the asymptotic probe field and in doing so
identify a shock parameter that signifies when self-action
effects become important.

For the example of parallel probe and strong field polariza-
tion, the second iteration shown in Table I is

E(2)
p = εεεp Epe

−(
ϕp

�p
)2
[(

1 −
(v

2

)2
g(11)(ϕs)

)
cos ϕp

− v

2
g(1)(ϕs) sin 2ϕp − 3

(v

2

)2
g(11)(ϕs) cos 3ϕp

+ 2
(v

2

)3
g(2)(ϕs) sin 4ϕp

]
, (20)

where v = ν2 exp[−(ϕp/�p)2] and the shock parameter ν2 =
192μ2E3

s Ep�. The functions of ϕs describe how the particular
term is generated during the passage of the probe through the
strong background (all fields are classical) and originate from
repeated integration of the interaction over coordinate. Here

g(1)(ϕs) =
∫ ϕs/�s

−∞
dy Rect (y),

g(11)(ϕs) =
∫ ϕs/�s

−∞
dy Rect (y)g(1)(y), (21)

g(2)(ϕs) =
∫ ϕs/�s

−∞
dy Rect (y) [g(1)(y)]2,

and these are plotted in Fig. 4.
As mentioned in the section Introduction, we are mainly

interested in the asymptotic state of the probe:

E(2)
p (ϕp) = lim

ϕs→∞ E(2)
p (ϕp,ϕs), (22)

where we note limϕs→∞ g(1)(ϕs) = 1, limϕs→∞ g(11)(ϕs) =
1/2, and limϕs→∞ g(2)(ϕs) = 1/3.

As previously remarked, using this method, E(n)
p contains

powers of v from 0 to 2n − 1 but is only accurate to O(vn).
We also note that the nth iteration generates harmonics from
1 to 2n. A power series in v multiplies each harmonic so we
can write a given iteration as

E(n)
p (ϕp,ϕs) = εεεp Epe

−(
ϕp

�p
)2

∞∑
j=1

[
a

(n)
2j (v,ϕs) sin 2jϕp

+ a
(n)
2j−1(v,ϕs) cos(2j − 1)ϕp

]
. (23)

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
ϕs/Φs

0.0

0.2

0.4

0.6

0.8

1.0
g(1)(ϕs)

g(11)(ϕs)

g(2)(ϕs)

FIG. 4. (Color online) A plot of how the functions describing
how the occurrence of higher harmonics varies with probe propaga-
tion length.

Of most interest is the asymptotic state of the full solution:

Ep(ϕp) = lim
ϕs→∞ lim

n→∞ E(n)
p (ϕp,ϕs),

and we find that for the parallel setup:

lim
ϕs→∞ lim

n→∞ a
(n)
j (v,ϕs) = aj (v) = 2(−1)�j/2� Jj (jv)

jv
, (24)

where �j� = floor(j ) and Jl(·) is the lth-order Bessel function
of the first kind [40]. We note that the all-order solution
Eq. (24) for a plane probe propagating through a constant
crossed, parallel-polarized background, resembles the Fubini
solution [41] for the propagation of lossless finite-amplitude
planar acoustic waves in nonlinear media [42].

The all-order solution can be derived from a probe-
dependent refractive index: n = 1 + δn2 with ν2 = δn2�

where

δn2(ϕs,ϕp) = 192μ2E
3
s (ϕs)Ep(ϕp). (25)

So the scattered probe field due to just six-photon scattering
can be written:

Ep(ϕp) = E(0)
p (ϕp + ν2[Ep(ϕp)]). (26)

To justify when it is a good approximation to only con-
sider six-photon scattering, let us consider first eight-photon
scattering. The shock parameter for eight-photon scattering
is ν3 = 1536μ3E4

s E2
p�. In order that this is much less than

ν2, we require EsEp 
 3/32, and since Es 
 1 and Ep 

1, this is fulfilled. Therefore, the individual effect of the
next higher-order terms in the weak-field expansion should
be negligible. In contrast, the importance of four-photon
scattering can be quantified by the parameter υ1 = 16μ1E2

s �

but this corresponds to the process of one incoming and one
outgoing photon from a scattering event and therefore will
not contribute directly to harmonic generation. Nevertheless, it
does lead to a refractive index alteration, which in combination
with multiple six-photon scattering, could potentially influence
the generated spectrum. To ignore this in our analysis would
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require EsEp � 7/24, which is not fulfilled. To explore this
point, the simulation results are split into three cases: (i)
purely four-photon scattering, (ii) purely six-photon scattering,
and (iii) both four- and six-photon scattering. We consider
two polarization scenarios: the “parallel setup” and the
“perpendicular setup”, which refer to the initial strong field
polarization being in the εεε‖ and εεε⊥ mode, respectively. In the
parallel setup, we will find all harmonics are generated in the
parallel polarization mode εεε‖, whereas for the perpendicular
setup, each odd harmonic will be generated in a perpendicular
mode εεε⊥ and each even harmonic in a parallel one εεε‖.

IV. NUMERICAL METHOD

For the scenario of two colliding plane wave pulses, the
modified Maxwell equations in Eqs. (5) and (6) can be written
in matrix form

(14 + X)∂t f + (Q + Y)∂zf = 0, (27)

where f = (Ex,Ey,Bx,By)T , 14 is the identity matrix in
four dimensions, Q = adiag(1, − 1, − 1,1) is an antidiagonal
matrix, and X and Y are the perturbations due to vacuum
interaction given in a general form in Appendix B.

Our numerical method, which was first employed by the
authors in [28] and will be explained in more detail in the
following, is based on inverting the matrix (14 + X) to convert
Eq. (27) to a system of ordinary differential equations (ODEs),
discretizing in space using the “pseudocharacteristic method of
lines” (PCMOL) [43] and integrating the equations of motion
using the ODE solver CVODE [44].

Our analysis is valid when Es ,Ep 
 1 and the single
parameter relevant to high-harmonic generation in the shock
regime that depends on the field strength is ν2 = 192μ2E3

s Ep�.
We wish to simulate the occurrence of a shock wave, for
which ν2 → 1, implying � must be very large in order
to compensate for the weak field strengths. However, a
large � is computational expensive to simulate. To compare
analytical and numerical results, we will therefore extrapolate
the theoretical result to values of Es �
 1, allowing a simulation
for smaller � to be performed, with the condition that the
physical prediction is only valid for a particular value of ν2

when Es 
 1. For this reason, we will often quote simulation
parameters in terms of shock parameters rather than absolute
field strengths and spatial extensions.

A. Linear case

Let us first consider (27) with X = Y = 000, which is the
� → 0 limit. This system is hyperbolic [45], which means that
we can find a basis u := S f such that the matrix � = SQS−1 =
diag(−1, − 1,1,1) is diagonal with real eigenvalues:

S = 1√
2

⎛⎜⎝−1 0 0 1
0 1 1 0
1 0 0 1
0 −1 1 0

⎞⎟⎠, u := S f = 1√
2

⎛⎜⎝By − Ex

Ey + Bx

Ex + By

Bx − Ey

⎞⎟⎠.

(28)

In this new basis we have an uncoupled system of advection
equations:

∂tu(t,z) + � ∂zu(t,z) = 0.

The diagonal elements λi of � are called the “characteristic
speeds” of the system, where λi = ±1 corresponds to a
component traveling along the characteristics x± with the
speed of light. We proceed by introducing a co-located grid for
the components ui with N grid points. The field components ui

on the grid are arranged blockwise in a large 4N -dimensional
vector ũ = (· · · ul−1

4 ul
1u

l
2u

l
3u

l
4u

l+1
1 · · · ), where ul

i = ui(l�z)
and 0 < l � N is the index of the grid point. The PCMOL
uses biased differencing for each component ui according
to the sign of the corresponding characteristic speed λi ,
where the component ui with λi > 0 (λi < 0) is thereby
differentiated using backward (forward) finite differences
using fourth-order accuracy. In [46] it is argued that this biased
differencing using five-point-stencils is an effective fixed grid
method for first order hyperbolic partial differential equations
because it shows a good balance between introducing minimal
numerical diffusion and oscillations in the solution where steep
gradients are present. The derivatives at the boundary are also
approximated using only field values inside the box. Instead
of transforming the system back to f̃ (the tilde in this section
indicates the discretized version on the grid), which is normally
done in the PCMOL, the system is solved for ũ. This has
the advantage of having open boundary conditions since the
components ui are only allowed to flow in one direction. If we
take the system to be of size L and a spatial resolution of N grid
points, then distance is measured in units of �z = L/(N − 1),
where N − 1 corresponds to the boundary conditions being
taken into account. We are left with a system of ODEs
ũ′(t) = g[ũ(t),t], where g[ũ(t),t] = −�̃ D ũ, with the 4 × 4
matrix � being mapped onto a 4N × 4N dimensional block-
diagonal one, �̃ = 1N ⊗ � (⊗ is the Kronecker product [47])
and D being the 4N × 4N matrix representing the biased
differencing explained above. For the detailed action of D
on ũ see Appendix C.

The initial conditions are set up in f̃, the system is integrated
in ũ using CVODE and transformed back for output. CVODE
is an ODE solver that offers variable-order, variable-step
multistep methods. Initially we supply the “right-hand-side
function” g[ũ(t),t] as above. Since both the linear and
nonlinear cases are nonstiff (no rapidly damped modes are
expected), we apply the Adams-Moulton methods together
with the variational method to solve the resulting linear
system. This provides higher accuracy with less computational
effort compared to the offered Newton iterations, since
neither approximations nor an analytical expression for the
Jacobian have to be provided. We always use the parallel
implementation of CVODE together with “extended” (long
double) precision.

B. Nonlinear case

By discretizing the full nonlinear system (27), the matrices
X and Y also become 4N × 4N dimensional. The system
then can also be brought into ODE form ũ′(t) = g[ũ(t),t] by
inverting the matrix (14N + X̃). Since X depends only on the
field components, the full matrix can be written as X̃ = ⊕N

l=1Xl
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(⊕ is the direct sum [47]) and the upper index denotes the
former 4 × 4 matrix X at grid point l. This can be used to reduce
the inversion of X̃ to N times the inversion of a 4 × 4 matrix.
The structure of Xl allows us to rewrite Xl as Xl = G Hl with

G =

⎛⎜⎝1 0
0 1
0 0
0 0

⎞⎟⎠, Hl =
(

xl
11 xl

12 xl
13 xl

14

xl
21 xl

22 xl
23 xl

24

)
,

where the xl
ij are the values of the nonvanishing matrix

elements of X given in Appendix B, evaluated at position
l. Then we can apply the Woodbury formula [48]

(14 + Xl)−1 = 14 − G(12 + HlG)−1Hl ,

to further reduce the inversion to one of the 2 × 2 matrix

(12 + HlG) =
(

1 + xl
11 xl

12
xl

21 1 + xl
22

)
.

This is performed for all grid points using an LU factorization
at each evaluation of the function g[ũ(t),t].

For the parameters considered, the nonlinear corrections X
and Y do not change the signs of the characteristic speeds, so
we use the same biased differencing as in the linear case. The
nonlinear ODE system is then given by

ũ′(t) = −S̃(14N + X̃)−1(Q̃ + Ỹ)S̃−1D ũ,

where S̃ = 1N ⊗ S, Q̃ = 1N ⊗ Q, and Ỹ = ⊕N
l=1Yl in analogy

to X̃. All fields are normalized by Ecr. The parameters for
CVODE are the same as in the linear case. The signals are
analyzed under the assumption ω = |k| using a spatial Fourier
transform in Wolfram Mathematica [49].

C. Simulational setup

Recalling the form of the probe and strong pulses [Eqs. (12)
and (13)], we consider a Gaussian probe pulse with base
frequency ωp and a “constant” strong pulse. We consider
the two cases of parallel and perpendicular setups which
are characterized by parallel and perpendicular polarizations,
respectively, of the probe and the strong pulse with εεεp · εεεs = 1
and εεεp · εεεs = 0. The rectangular shape of the strong pulse is
approximated using a mirrored Fermi-Dirac distribution in the
simulation box. The function FD(y) is given by

FD(y) = 1

1 + exp
( |y|−ωszm

ωszb

) . (29)

The parameters zb and zm play the role of the “temperature”
and “chemical potential,” controlling the steepness and width
of the strong pulse. Typical values are zb = 5 × 10−5 cm and
zm = 100 · zb.

A snapshot of the simulation box for t = 0 is shown in
Fig. 5. The use of a Fermi-Dirac distribution instead of a Rect
function follows the advice in [46], where it is recommended
to avoid sharp gradients (which is infinite for a Rect function)
because of numerical diffusion and spurious oscillations. To
ensure the accuracy of the simulations, we use a sufficiently
high number of grid points for the Fermi-Dirac function
and generated shock waves in order to resolve the gradients
properly so that spurious effects are suppressed.

0 5 10 15 20 25
z/τp

0.005

0.015

0.025

E

FIG. 5. (Color online) The simulational setup for the collision of
a Gaussian probe pulse with a constant pulse of various strengths
(indicated by different line styles) and identical polarization. The
size of the system is taken to be 3.2 × 10−2 cm.

The initial conditions are

Ep(φp,φ0p) = εεεpEp e
− (φp−φ0p )2

�p cos(φp − φ0p),

Es(φs,φ0s) = εεεsEsRect[(φs − φ0s)/�s]

≈ εεεsEsFD(φs − φ0s),

Bi(φi,φ0i) = k̂i ∧ Ei(φi,φ0i),

with φi = ωiz, φ0i = ωiz0i , �i = ωiτi , and i ∈ {p,s}.
To define the pulse duration τs of the strong pulse when

using the Fermi-Dirac function, we equate the calculation of
the first iteration for the simulational parallel setup with the
analytical model [see Eqs. (16) and (21)]:

�E(1)
p (ϕp) = lim

ϕs→∞ −εεεsEpe
−(

ϕp

�p
)2 v

2

h(1)(ϕs)

τs

sin 2ϕp

= −εεεsEpe
−

(
ϕp

�p

)2
v

2
sin 2ϕp,

where h(1)(ϕs) is given by

h(1)(ϕs) = 1

ωs

∫ ϕs

−∞
dy FD3(y).

The duration τs is then defined by τs = limϕs→∞ h(1)(ϕs). The
initial conditions are chosen such that the field invariants and
the field values at the boundary are essentially zero initially
and the system is simulated until the pulses are again well
separated.

Results of the simulation were compared to the analytical
result for asymptotic lowest order second harmonic generation
in the parallel and perpendicular setups [28], where the
Gaussian strong background in [28] is replaced with the
mirrored Fermi-Dirac distribution Eq. (29). The excellent
agreement is displayed in Fig. 6, where the log-log plot of
the ratio I (2ωp)/I (0)

p (ωp) for various values of the strong field
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10−2 10−1
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10−22

10−20

10−18

10−16

10−14

10−12

I
(2

ω
p
)/

I
(0

)
p

(ω
p
)

set-up (num.)
set-up (theor.)

⊥ set-up (num.)
⊥ set-up (theor.)

FIG. 6. (Color online) The relative intensity of the second har-
monic generated by single six-photon scattering for Ep = 10−3.

amplitude is calculated using

I (ω)

I
(0)
p (ωp)

=
[

|Ẽp(ω)|
|Ẽ(0)

p (ωp)|

]2

, Ẽp(ω) =
∫ ∞

−∞
dx−Ep(x−) eiωx−

.

(30)

V. ALL-ORDER FOUR-PHOTON SCATTERING

For the parameter regime of interest, the most probable
effect on the probe pulse due to four-photon scattering is that
from the well-studied modified vacuum indices of refraction
n‖,⊥

1 = 1 + δn‖,⊥
1 given by [50,51]

δn‖,⊥
1 = 2(11 ∓ 3)μ1E2

s , (31)

which can be written in a phase-dependent way n1(ϕs) = 1 +
δn1(ϕs):

δn1(ϕs) = 4μ1
[
E(0)

s (ϕs)
]2

[4(εεεp · εεεs)
2 + 7(εεεp ∧ εεεs)

2]. (32)

Following the analytical method in Sec. III, summing all
perturbative orders, one finds due to purely four-photon
scattering [corresponding to using T = T1 in Eq. (18)], in
the parallel setup:

Ep(ϕp) =
∞∑

j=0

υ
j

1

j !

dj

dϕ
j
p

E(0)
p (ϕp) = e

υ1
d

dϕp E(0)
p (ϕp),

which is just a shift operator in the phase that is applied to the
initial probe pulse giving

Ep(ϕp) = E(0)
p (ϕp + υ1),

where the multiscale parameter for the parallel and perpendic-
ular cases υ1 = υ

‖,⊥
1 :

υ
‖,⊥
1 = 2(11 ∓ 3)μ1E2

s � = δn‖,⊥
1 �. (33)

This all-order solution to the phase shift in a plane wave
propagating through a constant background derived from the

1 2 3 4 5
ω/ωp

10−30

10−25

10−20

10−15

10−10

10−5

1

I
(ω

)/
I

(0
)

p
(ω

p
)

εεε , set-up

εεε ,⊥ set-up

εεε⊥,⊥ set-up

FIG. 7. (Color online) High-harmonic generation from multiple
four-photon scattering for ν1 = 3.3 × 10−4.

Heisenberg-Euler Lagrangian complements a recent example
solution of the phase shift derived from the Schwinger-Dyson
equation applied to the polarization operator [52].

Photon merging via single four-photon scattering is pro-
hibited in a plane wave counterpropagating parallel to the
background [28,36]. However, when the possibility of multiple
four-photon scattering is taken into account, high-harmonic
generation can take place. The modified refractive index
Eq. (32), experienced by the probe due to the strong field
and conversely the modified refractive index experienced by
the strong field due to the probe, leads to the electromagnetic
invariants F , G no longer vanishing for the probe and
strong fields separately. A log-log plot of the normalized
spectrum I (ω)/I (0)

p (ωp) for various cases of high-harmonic
generation through purely four-photon scattering is displayed
in Fig. 7.

The perpendicular setup leads to even harmonics being
generated in the εεε‖ mode and odd harmonics being generated
in the εεε⊥ mode. All higher harmonics in the perpendicular
setup are suppressed compared to the parallel setup, with
odd harmonics being suppressed more than even ones. In the
parallel setup, all photons are scattered into the εεε‖ mode. As
will become clear in Sec. VI, compared to the six-photon
channel, harmonic generation via four-photon scattering is
considerably suppressed. The scaling argument given at the
end of Sec. III can now be understood in the following way.
For purely four-photon scattering, one scattering event must
have occurred to change the electromagnetic variants (a factor
δn1 = 16μ1E2

s ) and one further scattering with a probe photon
(a factor υ1 = 16μ1EsEp�), which yields the combination

ν1 = (16μ1)2E3
s Ep�. (34)

If one takes this to be the shock parameter for purely
four-photon scattering, for the parameters of the parallel
setup in Fig. 7, following Eq. (20), one would expect the
second harmonic at relative intensity (ν1/2)2 = 10−7.6, third
harmonic at (3ν2

1/8)2 = 10−14.8, and the fourth harmonic at
(ν3

1/12)2 = 10−23.0, which correctly predict the numerical
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results to within an order of magnitude. For comparison, the
shock parameter for purely six-photon scattering for this setup
would be ν2 = 2.7 � ν1.

VI. ALL-ORDER SIX-PHOTON SCATTERING

As already hinted, six-photon scattering is the dominant
process in the generation of higher harmonics for E 
 1 in the
plane wave setup we are considering. For this reason we choose
here to analyze six-photon scattering as the single vacuum
interaction. Many of the features of the following harmonic
spectra will be common to the combined four- and six-photon
scattering case in Sec. VII.

The parameter v2 = ν2 exp[−(ϕp/�p)2] is bounded by
v2 � ν2, so the different behavior of the scattered probe will
be quantified using the shock parameter ν2. As ν2 is increased
from zero, two regimes become apparent: (i) the perturbative
regime ν2 
 1, where the occurrence of higher harmonics is
exponentially suppressed; and (ii) the shock regime, where the
intensity of the j th harmonic is proportional to a power-law
jγ (v), with γ (v) < −2.

To highlight the nature of the harmonic generation sur-
rounding shock formation, we refer in the following to the
parallel setup for simplicity, and discuss differences in the
perpendicular setup in Sec. VI C.

In Fig. 8 are log-log plots of three different types of
normalized spectrum I (ω)/I (0)

p (ωp) in the parallel setup. In
the first panel (a) ν2 = 0.05 
 1 and the perturbative regime
can be recognized by the exponential suppression of higher
harmonics. In the middle panel (b) ν2 = 0.6 and a transition
regime can be identified in which the lower harmonics are
no longer exponentially suppressed but obey a power-law
behavior and the leading-order perturbative expansion is
inaccurate for higher harmonics. In the final panel (c) ν2 = 1
and the entire plotted spectrum has a power-law behavior,
distinctive of the shock regime, in which an all-order expansion
is required to even reach a correct qualitative conclusion. Since
we are considering only six-photon scattering, we set ν2 = ν

and v2 = v in the following discussion.

A. Perturbative regime

If ν 
 1, the amplitude of each harmonic in the scattered
electric field is

|aj (ν)| = 1

�(1 + j )

(
νj

2

)j−1

+ O(νj+1). (35)

For νj 
 1 but j � 1, using Stirling’s approximation [53]
�(1 + j ) ≈ √

2πj (j/e)j , we see

|aj (ν)| = (νe)j

νj 3/2
√

2π
,

∣∣∣∣aj+1(ν)

aj (ν)

∣∣∣∣ ≈ νe, (36)

and the exponential dependency of each harmonic becomes
manifest. In the first panel of Fig. 8, the dots denote the
intensities of the harmonics when only the leading perturbative
order is taken into account. The excellent agreement is typical
of the perturbative regime, in which only a small proportion
of probe photons have scattered, and double scattering is
much less probable than single scattering. In the transition
regime, the leading-order terms of the perturbative expansion
overestimate the intensity of the higher harmonics. In the shock
regime, the leading-order perturbation terms both qualitatively
and quantitatively disagree with the numerical solution and
all-order analytical solution.

B. Shock regime

In this regime, ν no longer fulfills ν 
 1 and all orders
of the perturbative expansion must be summed in order
to calculate the spectrum of generated harmonics. This is
demonstrated in the third panel of Fig. 8 which shows
excellent agreement between the numerical and analytical
solution Eqs. (23) and (24). We note that even though the
all-orders solution includes the phase-dependent parameter
v = ν exp[−(ϕp/�p)2], we can still arrive at a qualitative
understanding of this regime by considering the effect on the
probe pulse at the point ϕp = 0. In this case, v = ν and the
relative amplitude of consecutive harmonics is∣∣∣∣aj+1(ν)

aj (ν)

∣∣∣∣ =
∣∣∣∣Jj+1[(j + 1)ν]

Jj (jν)

∣∣∣∣ j

j + 1
. (37)

1 10 20
ω/ωp
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10−24
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I

(0
)

p
(ω

p
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(a)

1 10 20
ω/ωp
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FIG. 8. (Color online) Harmonic spectra in the parallel setup for different regimes of solution: (a) ν2 = 0.05, (b) ν2 = 0.6, and (c) ν2 = 1.
The dots show the leading-order perturbative term, the dashed line is the all-order analytical solution, and the solid line is from numerical
simulation.
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ϕp

−Ep

0

Ep

Ep(ν2 = 0)

Ep(ν2 = 1)

FIG. 9. (Color online) After passing through the polarized vac-
uum in the parallel setup, the probe pulse wave fronts can steepen
significantly.

Using the asymptotic form for jν → ∞, |Jj (jν)| ∼ (2πj )−1/2

(when phase terms are neglected) [54], we see that for large
enough argument, the ratio of harmonic amplitudes becomes

|aj (ν)| ∼ 1

ν j 3/2

√
2

π
,

∣∣∣∣aj+1(ν)

aj (ν)

∣∣∣∣ ∼
(

j

j + 1

)3/2

, (38)

and the power-law behavior is manifest. For ν = 1, this gives
a ratio of the intensity of the j th harmonic to the initial probe
intensity, I

(j )
p (ϕp)/I (0)

p (ϕp) = [E(j )
p (ϕp)/E(0)

p (ϕp)]2 of

log10

(
I

(j )
p (ϕp = 0)

I
(0)
p (ϕp = 0)

)
∼

jv→∞
− log10

2

π
− 3 log10 j. (39)

The predicted gradient of γ = −3 should be an overestimate
because v < ν for all parts of the probe apart from at ϕp = 0. In
fact, the full result in the third panel of Fig. 8 yields γ = −3.4.

A plot of the scattered probe field and induced electromag-
netic shock is displayed in Fig. 9. Those parts of the probe field
that are positive and have a larger amplitude are decelerated
more than those that are positive with a smaller amplitude.
Where the field is positive, this leads to a steepening behind
the peaks. Those parts of the probe that are negative but have
a larger amplitude are decelerated less than those that are
negative but have a smaller amplitude, hence leading to a
steepening in the opposite direction where the field is negative.
The result is the development of a sawtooth wave form shown
in Fig. 9, which is typical of a second-order susceptibility [55].

The coefficient of the j th harmonic is weighted with the
Bessel function Jj (jv). When v is small, Jj (jv) is a rapidly
decaying function of j so higher harmonics are strongly
suppressed. As v → 1−, the decay becomes much shallower.
So a simplified picture of what type of shock is generated for
the scenario explored in this paper can be made by setting
the Bessel function to a constant. In the parallel setup, a
discontinuous electric field with a backwards-leaning wave

0.8 0.9 1.0 1.1 1.2 1.3 1.4
ν

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

γ
(ν

)

FIG. 10. (Color online) Comparison of the power-law exponent
γ (ν) for different values of the shock parameter ν, as calculated using
the fourth and tenth harmonics from the analytical (dashed line) and
numerical (points) solutions.

form of the form Fig. 9 is generated with

E(ϕ) = εεεE
∞∑

j=1

(−1)j
[

cos(2j − 1)ϕ

2j − 1
+ sin 2jϕ

2j

]
, (40)

with polarization εεε and amplitude E , and the corresponding
intensity spectrum has a power law ∼j−2 for harmonic j .
Indeed we find on a plot of γ (ν) (see Fig. 10), that as ν

increases above 1, the power-law exponent in the numerical
spectrum increases, tending toward a theoretical maximum of
−2, at which point the lack of a unique solution to Maxwell’s
equations would halt further propagation of the probe. For ν >

1, the numerical spectrum displays a variable power law, which
is shallower for higher harmonics where the agreement with
the analytical solution Eqs. (23) and (24) becomes increasingly
worse. The power-law exponent calculated using the fourth
and tenth harmonic is displayed in Fig. 10, where unlike
in the numerical solution, in which the spectrum becomes
progressively shallower, the analytical solution reaches a
maximum shallowness. It is unclear what physical mechanism
would cause this maximum to occur, which suggests this is
a limitation of the viability of the analytical solution. Indeed
when v > 1 in the analytical solution, Jj (jv) can oscillate
with j , and the ordering of harmonics can become no longer
monotonic.

As the numerical spectrum becomes shallower, very high
harmonics appear, which questions the validity condition
jωp 
 m for using the Heisenberg-Euler Lagrangian to
describe the vacuum interaction, and questions how steep the
power law can become before relaxation processes would take
over.

C. Polarization dependency

The previous sections are for the parallel setup. For
the perpendicular setup, even harmonics are generated
in the parallel mode εεε‖ and odd harmonics in the perpendicular
mode εεε⊥. This is demonstrated in the spectrum in Fig. 11,
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FIG. 11. (Color online) Harmonic spectra from numerical simulation of the perpendicular setup for different regimes of solution: (a)
ν2 = 0.05, (b) ν2 = 0.6, and (c) ν2 = 1. The thick blue (thin green) peaks are harmonics parallel to the probe (strong) pulse.

where the thick and thin lines distinguish how the generated
harmonics are polarized.

The shock wave generated in the perpendicular setup is
displayed in Fig. 12. The scattered field in the εεε‖ mode
demonstrates a shock of a different nature to in the parallel
setup, tending towards a square rather than a sawtooth wave
form. Such a wave form can be generated with the sum

Esquare(ϕ) = εεεE
∞∑

j=1

(−1)j
cos(2j − 1)ϕ

2j − 1
, (41)

which is just the odd frequencies of Eq. (40).
In the εεε⊥ mode, a similar shock to in the parallel setup is

seen, only with double the frequency. Such a sawtooth electric
field is given by the sum [53]

Esaw(ϕ) = εεεE
∞∑

j=1

(−1)j
sin 2jϕ

2j
, (42)

ϕp

−Ep

0

Ep

FIG. 12. (Color online) A probe that is initially polarized per-
pendicular to the background (blue dashed line) experiences different
shocks in the εεε⊥ (dot-dashed red line) and εεε‖ (solid green line) modes.

which is just the even frequencies of Eq. (40), beginning at
double the frequency of the seed probe field.

VII. ALL-ORDER FOUR- AND SIX-PHOTON SCATTERING

Although six-photon scattering is the most efficient process
in generating high harmonics, for the parameter regime we
are interested in, the effect of four-photon scattering as a
modified vacuum refractive index cannot be neglected. Since
the interaction with the vacuum includes powers of the
probe field, the effects of phase lag and harmonic generation
can mix in a highly nonlinear way. In this section we
give the results of numerical simulations that include both
processes.

For the parallel setup, the spectrum generated by six-photon
scattering (for example, as shown in Fig. 8), is not visibly
affected by the inclusion of four-photon scattering. However,
for the perpendicular setup, since even and odd harmonics
are in different polarization modes and since the vacuum is
birefringent so each polarization mode experiences a different
phase lag, the inclusion of four-photon scattering was found to
increase the asymmetry between the even and odd harmonics
compared with the purely six-photon scattering case. This is
demonstrated in Fig. 13 for the case υ1 = 100, ν2 = 1, which
compares the spectrum of harmonics generated when: (i) only
four-photon scattering is included (left-hand panel); (ii) only
six-photon scattering is included (middle panel), and (iii)
four- and six-photon scattering are included (right-hand panel).
The right-hand panel demonstrates the increased asymmetry
between even and odd harmonics.

As the case of four- and six-photon scattering differs from
the six-photon scattering case only for the perpendicular setup,
we focus our discussion on this. Then there are three cases of
interest: (i) weakly dispersive: υ1 
 ν2; (ii) dispersive: υ1 ≈
ν2; and (iii) strongly dispersive: υ1 � ν2. The first case of weak
vacuum dispersion is within the parameter regime of interest,
but outside of the regime that can be numerically simulated as
it would require μ2� � 0.1 if the hierarchy Es � Ep were to
be maintained. In the limit of vanishing dispersion, we expect
the results from purely six-photon scattering case to be valid
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P. BÖHL, B. KING, AND H. RUHL PHYSICAL REVIEW A 92, 032115 (2015)

1 5 10
ω/ωp

10−28

10−24

10−20

10−16

10−12

10−8

10−4

1

I
(ω

)/
I

(0
)

p
( ω

p
)

(a)

1 5 10
ω/ωp

(b)

1 5 10
ω/ωp

(c)

FIG. 13. (Color online) High-harmonic generation for the perpendicular setup when four- and six-photon scattering are present and
four-photon scattering is much more prevalent than six-photon scattering (υ1 = 100, ν2 = 1). The first panel (a) is for just four-photon
scattering, the second panel (b) for just six-photon scattering, and the third panel (c) for when both are present. The thick blue (thin green)
peaks are again harmonics parallel to the probe (strong) pulse.

(this will be seen to be implied from the results of a dispersive
vacuum).

A. Dispersive vacuum υ1 ≈ ν2

When vacuum dispersion is significant, one might expect
the nature of the shock wave to change. Two cases were
simulated: (i) when υ1 = ν2 = 1 and (ii) when υ1 = 5, ν2 = 1.
For the first case of equal parameters, the shock wave in Fig. 14
was generated. This bears a close resemblance to the shock
wave generated in the perpendicular setup for a dispersionless
vacuum (υ1 → 0), i.e., when only six-photon scattering is
present, but with a noticeable lag due to the now nonunitary

ϕp

−Ep

0

Ep

FIG. 14. (Color online) The weakly dispersive case for the per-
pendicular setup. The initially εεε‖ polarized probe (blue dashed line)
experiences the mixture of the probe-independent vacuum refractive
index (here υ1 = 1) and the shock-inducing probe-dependent vacuum
refractive index (here ν2 = 1). The εεε‖ mode (dot-dashed red line) and
εεε⊥ mode (solid green line) behave differently.

refractive index. However, when the amount of dispersion is
increased, setting υ1 = 5 and ν2 = 1, the shock wave takes
on the different form shown in Fig. 15. In this dispersive
case, the parallel mode develops a shock reminiscent of an
optical Kerr medium, in which the polarization contains a cubic
nonlinearity Pi = χ

(1)
ij Ej + χ

(3)
ijklEjEkEl . This is in some

ways unsurprising because the parallel mode only contains
odd harmonics and therefore odd powers of the field, and the
largest nonlinear term originates from an E3

p term. Therefore,
the symmetry of the scattered field when the field direction is
swapped Ep → −Ep is different for the parallel field (which
contains only even powers of Ep) and the perpendicular field
(which contains only odd powers of Ep).

ϕp

−Ep

0

Ep

FIG. 15. (Color online) When the dispersion is increased (υ1 =
5, ν2 = 1), a different type of shock is formed in the εεε‖ mode (dot-
dashed red line) and the shock in the εεε⊥ mode (solid green line) is
reduced, where the initially εεε‖ polarized probe is plotted by the blue
dashed line.

032115-12



VACUUM HIGH-HARMONIC GENERATION IN THE SHOCK . . . PHYSICAL REVIEW A 92, 032115 (2015)

Carrier-wave shocking also occurs in nonlinear optical
materials. Our findings are similar to those reported in [56],
where excellent agreement was obtained between theory and
simulation in the dispersionless limit of a Kerr-like nonlinear
material, but where it was noted how involved the analysis
becomes if there is a complicated phase dependency between
the generated harmonics. In the current work, in the parallel
setup with dispersion (i.e., four- and six-photon scattering
present), all harmonics experience the same refractive index
so a shock wave can build up. In the perpendicular setup, the
refractive index in the εεε⊥ mode is different to in the εεε‖ mode.
We are studying a regime in which harmonics are generated by
a chain of scattering processes. Since in each chain of processes
that lead to the generation of a specific harmonic, the probe
spends a different amount of time in the εεε⊥ than in the εεε‖
mode, the probability for each chain will be multiplied by a
different phase. When the probability of all possible chains is
summed over, it is reduced compared to the parallel setup due
to each probability being added incoherently. This leads to a
suppression of shock wave generation.

B. Strongly dispersive vacuum υ1 � ν2

To investigate shock wave generation in the strongly
dispersive regime, we set υ1 = 100 and ν2 = 1. A new type
of behavior becomes apparent, namely the deformation of
the probe pulse envelope. The bandwidth of the probe is
of the order 1/τp but due to dispersive effects, frequencies of
this magnitude can no longer be neglected. Since υ1 = δϕp =
ωpT , where T is the duration of propagation, frequencies from
the probe envelope separated by 1/τp will acquire a temporal
separation relative to the duration of the pulse of υ1/ωpτp �
 1.
Furthermore, the second harmonic is considerably suppressed
when dispersion is included, such that it is of the same order of
magnitude as the scattering of the probe envelope frequency.
For this reason, the effect on the probe envelope can be seen
so clearly in the εεε⊥ component in Fig. 16.

−Φp 0 Φp

ϕp

−2

−1

0

1

2

E
⊥ p
/E

p

×10−3

FIG. 16. (Color online) The probe pulse after having scattered in
the strong background when υ1 = 100, ν2 = 1.

VIII. DISCUSSION

A. Comparison with high-harmonic generation
in oscillating plasmas

There is a certain similarity between high-harmonic gen-
eration due to the relativistic movement of electrons in the
plasma of laser-irradiated foil experiments and the virtual
electron-positron “plasma” of the laser-irradiated vacuum. The
vacuum is transparent when the invariants E2 − B2 and E · B
are zero. Therefore, the vacuum is transparent to a pure plane
wave and these invariants also typically remain much smaller
for a single focused pulse than for counterpropagating pulses.
So unlike with the plasma present in a foil, the vacuum plasma
must first be “activated” by being polarized by some second
“pump” pulse, similar to in a pump-probe experiment. In the
current work, the vacuum was polarized by a background with
the profile of a rectangular function. As the leading-order
nonlinear polarization was proportional to the applied field
cubed, it suggests that the local charge density is also nonzero
in this region. The rectangular function is used to model the
electron density in a solid before it is exposed to a laser
pulse [57] and also to represent the laser’s profile and in
capillary discharge waveguides [58]. The difference with the
vacuum is that the polarized material can in some way be
“formed” by the pump pulse in the moment it is traversed by
a probe.

For the parallel setup, all harmonics were generated in the
parallel mode, but for the perpendicular setup odd harmonics
were generated in the parallel mode with even harmonics in
the perpendicular one. Just as in single nonlinear Compton
scattering [59], the generation of the parallel mode is more
probable than the perpendicular one. The relationship between
polarization and harmonic order is reminiscent of selection
rules for harmonics generated in laser-foil experiments, for
example in the “p-polarized” (parallel to plane of incidence)
and ‘‘s-polarized” (perpendicular to plane of incidence)
harmonics in the widely used oscillating mirror model [60].

In the harmonic spectrum generated by a real plasma in
laser-foil experiments, there is also a region of power-law
decay and a region of exponential decay, as found here
for vacuum high-harmonic generation. For the oscillating
mirror model, power-law exponents of γ = −5/2 [61] and
γ = −8/3 [62] have been postulated, and experiments on
solid targets have recorded intensity-dependent power-law
exponents, for example in [63] of −5.50 < γ < −3.38. These
values are close to the analytical and numerical values found in
the current work for vacuum high-harmonic generation in the
shock regime −4.5 � γ < −2 (the lower limit corresponds to
the gradient when the power-law behavior becomes manifest
at ν2 ≈ 0.85). Moreover, the power-law exponent γ = γ (ν2)
is also a function of the shock parameter ν2 ∝ � and
therefore increases with further propagation of the probe
through the polarized vacuum, up to a theoretical maximum
of γ (ν2) < −2. In contrast to the overdense plasma case, with
our plane wave model and increasing shock parameter, we
found no indication of a frequency cutoff, although at some
frequency, pair-creation processes will play a role. By this we
mean that higher harmonics can seed tunneling pair creation
in the background field [64,65] or colliding photons with
wave vectors k1 and k2 satisfying k1k2 � 2m2 would lead to
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multiphoton pair creation (the Breit-Wheeler process [66,67]).
This would presumably deplete the higher harmonics that are
directly related to the steepening of the wave fronts and act as
a wave-breaking mechanism for the shock wave.

In the parallel setup, each harmonic has a regular phase
relationship to the others and so a shock wave can build up
as the amplitude of higher harmonics increases. In contrast to
this, in the perpendicular setup, since there are many different
chains of processes that can lead to the creation of a given
harmonic, and since in each chain a different amount of time
is spent in each polarization, which leads to different dispersion
relations, the phase of each harmonic is related to the others
in a nontrivial way and they are summed incoherently. This
behavior is similar to that found in studies of nonlinear optical
materials [56], and leads to the suppression of shock wave
generation.

Although high-harmonic generation is present in laser-gas
and laser-liquid experiments, the spectrum generated is of a
completely different form. As harmonics are generated via the
three-step recombination mechanism undergone by an electron
in the Coulomb field of a nucleus, the electrons’ trajectory and
hence harmonics generated, are of a fundamentally different
nature and demonstrate a genuine “plateau” region in spectra
that is not present in vacuum high-harmonic generation as
studied in the present work [68].

B. Validity of approach

By considering colliding plane waves, scattering in the
transverse direction was ignored. One can estimate when
this is a good approximation by defining the diffraction
parameter l = w2/λpτs , where w is the width of the probe
pulse in the transverse plane (assumed smaller than the
width of the background). When l � 1 one is in the “near
zone” and diffraction effects should be negligible, whereas
l 
 1 represents the “far zone” and diffraction effects become
important [69].

The numerical simulation and analytical calculation predict
a self-steeping of the probe wave fronts, which increases with
shock parameter ν, until the wave fronts reach a theoretical
maximum of becoming infinitely steep at which point the
solutions to the wave equation are no longer unique. Since
the Heisenberg-Euler Lagrangian is expected to be valid when
the typical scale of a field inhomogeneity is much larger
than the reduced Compton wavelength, this infinite steepening
is not expected to be physically realizable. Moreover, no relax-
ation processes are included. If transverse dimensions would
be taken into account, since six-photon scattering depends on
the probe amplitude, self-focusing effects should be present.
Furthermore, self-focusing can also occur via four-photon
scattering as the probability for asymptotic second-harmonic
generation via four-photon scattering becomes nonzero when
the colliding probe photons do not propagate in parallel.
So when transverse dimensions are included, as the probe
propagates, it becomes less like a plane wave and the higher
harmonics can seed real electron-positron pair creation as
previously described.

The polarization of other vacuum virtual particle species
such as muons, pions, and quarks was neglected, as the energy
scale associated with these particles is much higher [70]. For

that reason, we confined our discussion to the polarization of
virtual electron-positron pairs.

C. Measurability

Vacuum high-harmonic generation in the shock regime
becomes important when the shock parameter ν ≈ 1. Taking
as an example six-photon scattering for the parallel setup
ν = ν2 = 192μ2E3

s Ep�. The current record for the highest
electric field of a laser pulse produced in a laboratory [71] is of
the order 3 × 10−4Ecr. Recalling that fields are written in units
of the critical field, and that μ2 = α/315π 
 1, it is clear that
the shock regime is currently well out of the reach of optical
laser-based experiments. Vacuum polarization effects that can
more likely be measured in laser-based experiments include
elastic photon-photon scattering [29,72–83] or lowest-order
photon merging [26,27,84,85]. (A review of strong-field QED
effects can be found in [86,87].) The current best experimental
limits for photon-photon scattering in an all-optical laser
setup [88] and combining magnetic fields with resonant optical
cavities [89,90] are still orders of magnitude above the QED
prediction.

Where such vacuum electromagnetic shocks and accom-
panying harmonic generation might play a role, is in the
evolution of x-ray pulsars and strongly magnetized neutron
stars or “magnetars” [91–93]. Photons are emitted from the
surface of such objects and propagate through magnetic fields
of strength up to and beyond Ecr (in the system of units we
use Bcr = Ecr), in plasmas of around 0.1–10 cm in depth [94].
The current results were derived for a constant crossed field
background, but can be generalized to a constant magnetic
field, which should be a good approximation to the local field
in strongly magnetic pulsars, which is expected to be that of a
dipole [94] on the stellar scale.

IX. CONCLUSION

When the quantum nature of the vacuum is taken into ac-
count, an electromagnetic shock accompanies high-harmonic
generation in an oscillating plane probe pulse counterprop-
agating through a stronger slowly varying plane pulse. We
have identified a nonlinear shock parameter that indicates
when the self-interaction of the probe due to the polarized
vacuum becomes important and have shown that this can
be consistently described using a probe-dependent vacuum
refractive index.

As the shock parameter increases from zero, the spectrum
of generated harmonics moves from an exponential decay to
a power-law decay. The intensity of the j th harmonic in the
shock regime was found in an all-order analytical solution
and numerical simulation to be jγ , where γ increases with
propagation distance. A power-law behavior was observed
for −4.5 � γ � −2.4, where the exponent is theoretically
limited by γ < −2 as the probe pulse wave fronts would
become infinitely steep and could no longer propagate. Due
to the very high generated frequencies, the Heisenberg-Euler
approach is no longer applicable at this point. Moreover,
relaxation processes such as photon-seeded and Breit-Wheeler
pair creation should then become probable.
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When the polarization of the probe and background is
parallel, all harmonics are generated in the parallel mode, but
when the probe is perpendicularly polarized to the background,
odd and even harmonics are split into probe and background
polarization modes, respectively. Due to the birefringence
of the vacuum, the probe polarization mode is generated
more abundantly than in the background polarization mode.
Moreover, due to the separation of frequencies, the parallel
setup displays a sawtooth shock in the parallel mode, whereas
the perpendicular setup displays a Kerr-like shock.

Both the simulational and analytical methods presented can
be generalized to more complicated probe and background
fields.
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APPENDIX A: COEFFICIENTS FOR MODIFIED
MAXWELL EQUATIONS

We define Lxy = ∂2LHE/∂x∂y and r2 = a2 + b2:

C1 = 4π
aLa − bLb

r2
, (A1)

C2 = π
1

r6
[a(a2 − 3b2)La + b(b2 − 3a2)Lb

− r2(a2 Laa − 2abLab + b2Lbb)], (A2)

C3 = π
1

r6
[a(3b2 − a2)La + b(3a2 − b2)Lb

− r2(b2 Laa + 2abLab + a2 Lbb)], (A3)

C4 = π
1

r6
{b(3a2 − b2)La + a(a2 − 3b2)Lb

− r2[abLaa + (a2 − b2)Lab − abLbb]}. (A4)

For the first order (box diagram) and the second order (hexagon
diagram) in the weak-field expansion, we find the following
coefficients:

C1,Box = 2α

45π
(E2 − B2), C2,Box = − α

45π
, (A5)

C3,Box = 7
4C2,Box, C4,Box = 0, (A6)

C1,Hex = 2α

315π
[6(E2 − B2)2 + 13(E · B)2], (A7)

C2,Hex = − 4α

105π
(E2 − B2), (A8)

C3,Hex = 13
24C2,Hex, (A9)

C4,Hex = − 13α

315π
|(E · B)|. (A10)

APPENDIX B: MATRIX FORM OF MODIFIED MAXWELL
EQUATIONS

The modified Maxwell equations (5) and (6) can be written
in matrix form:

(14 + X)∂t f + (Q + Y)∂zf = 0, (B1)

where f = (Ex,Ey,Bx,By)T , 14 is the identity in four dimen-
sions, Q = adiag(1, − 1, − 1,1), and X = (xij ), Y = (yij )
are the vacuum perturbation, where the nonzero elements are
given by

x11 = C1 − C2ρ11 − C3ρ33 − 2C4ρ13,

x12 = −C2ρ12 − C3ρ34 − C4(ρ14 + ρ23),

x13 = (C2 − C3)ρ13 + C4(ρ33 − ρ11),

x14 = C2ρ14 − C3ρ23 + C4(ρ34 − ρ12),

x21 = −C2ρ12 − C3ρ34 − C4(ρ14 + ρ23),

x22 = C1 − C2ρ22 − C3ρ44 − 2C4ρ24,

x23 = C2ρ23 − C3ρ14 + C4(ρ34 − ρ12),

x24 = (C2 − C3)ρ24 + C4(ρ44 − ρ22),

y11 = −C2ρ14 + C3ρ23 + C4(ρ12 − ρ34),

y12 = −(C2 − C3)ρ24 + C4(ρ22 − ρ44),

y13 = C2ρ34 + C3ρ12 − C4(ρ14 + ρ23),

y14 = C1 + C2ρ44 + C3ρ22 − 2C4ρ24,

y21 = (C2 − C3)ρ13 + C4(ρ33 − ρ11),

y22 = C2ρ23 − C3ρ14 + C4(ρ34 − ρ12),

y23 = −C1 − C2ρ33 − C3ρ11 + 2C4ρ13,

y24 = −C2ρ34 − C3ρ12 + C4(ρ14 + ρ23),

where we define ρij := 4fifj , such that, e.g., ρ14 = 4ExBy .

APPENDIX C: BIASED FINITE DIFFERENCES

The action of the matrix D on the vector ũ can be encoded
in the use of an adaption of the DSS020 function from [46]

Dũ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d−
(
u1

1

)
d−

(
u1

2

)
d+

(
u1

3

)
d+

(
u1

4

)
d−

(
u2

1

)
d−

(
u2

2

)
d+

(
u2

3

)
d+

(
u2

4

)
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where the function d−(ul) is defined as

d−(ul) :=
l = 1 :

q(−25u1 + 48u2 − 36u3 + 16u4 − 3u5),

l = N − 2 :

q(uN−4 − 8uN−3 + 8uN−1 − uN ),

l = N − 1 :

q(−uN−4+6uN−3−18uN−2+10uN−1+3uN ),

l = N :

q(3uN−4−16uN−3+36uN−2−48uN−1+25uN ),

else

q(−3ul−1 − 10ul + 18ul+1 − 6ul+2 + ul+3),

with q = 1/12�z and d+(ul) as

d+(ul) :=
l = 1 :

q(−25u1 + 48u2 − 36u3 + 16u4 − 3u5),

l = 2 :

q(−3u1 − 10u2 + 18u3 − 6u4 + u5),

l = 3 :

q(u1 − 8u2 + 8u4 − u5),

l = N :

q(3uN−4−16uN−3+36uN−2−48uN−1 + 25uN ),

else

q(−ul−3 + 6ul−2 − 18ul−1 + 10ul + 3ul+1).
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