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Quantum interferometric measurements of temperature
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We provide a detailed description of the quantum interferometric thermometer, which is a device that estimates
the temperature of a sample from the measurements of the optical phase. We rigorously analyze the operation of
such a device by studying the interaction of the optical probe system prepared in a single-mode Gaussian state with
a heated sample modeled as a dissipative thermal reservoir. We find that this approach to thermometry is capable
of measuring the temperature of a sample in the nanokelvin regime. Furthermore, we compare the fundamental
precision of quantum interferometric thermometers with the theoretical precision offered by the classical idealized
pyrometers, which infer the temperature from a measurement of the total thermal radiation emitted by the sample.
We find that the interferometric thermometer provides a superior performance in temperature sensing even when
compared with this idealized pyrometer. We predict that interferometric thermometers will prove useful for
ultraprecise temperature sensing and stabilization of quantum optical experiments based on the nonlinear crystals
and atomic vapors.
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I. INTRODUCTION

Temperature is one of the fundamental and arguably one
of the most frequently measured physical quantities. Apart
from the central role played by the concept of temperature in
the fields of thermodynamics and statistical physics, precise
temperature measurements are important for all branches of
modern science and technology. Indeed, precise knowledge of
the temperature of a sample proved indispensable for many
advancements in physics, biology, chemistry, and atmospheric
sciences, as well as in material science and the microelectronic
industry. In this paper, we study the classical and quantum
limitations that constrain the precision with which we can
measure temperature. These limitations are imposed by the
combination of the laws of statistics, statistical physics, and
quantum mechanics.

The theoretical limit on the precision of classical ther-
mometers is known as the standard quantum limit or the shot-
noise limit, �T ∼ cSQL/

√
N̄ [1,2], where cSQL is a constant

depending on the properties of a classical thermometer and
the sample, and N̄ is the number of resources, which for
classical thermometers typically reduces to the (mean) number
of uncorrelated particles that makes up the thermometer or the
time it takes to make a measurement [3]. The standard quantum
limit predicts that in order to measure the temperature of a
sample with high precision, we need N̄ to be large, which
translates to enlarging our classical thermometer. A typical
measurement consists of bringing the thermometer into phys-
ical contact with the sample and then letting the two systems
thermalize. However, if we wish to use a large and thus a highly
precise thermometer, then this approach is not optimal, as it
will, in most cases, significantly disturb the temperature of the
sample we are probing. Fortunately, there is a way to avoid this
problem. Namely, we could measure the temperature without
putting our thermometer and the sample in direct physical
contact and thus minimize the sample’s temperature distur-
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bance that can arise from the heat exchange. In such a case,
the sample of interest is observed remotely. There are many
different techniques of the so-called noninvasive or noncontact
thermometry that are used across many branches of science
and industry. Most noninvasive techniques infer temperature
from the electromagnetic spectrum. One of the most common
optical techniques that is used for temperature measurements
is the measurement of the thermal infrared radiation naturally
emitted by all heated samples [4,5]. This is exactly the principle
used in the commercially available pyrometers.

On the other hand, recent years have witnessed a growing
interest in applying various ideas that take advantage of
quantum mechanical features of nature to the problem of
temperature measurements [3,6–13]. Specifically, in Ref. [3], it
was shown that it is possible to map the problem of measuring
the temperature onto the problem of estimating an unknown
phase. Moreover, it was further shown that by using the
techniques of phase-estimation theory, the classical standard-
quantum-limited precision in temperature estimation may be
improved to the so-called Heisenberg limit, �T ∼ cHL/N̄

[14–20], where cHL is a constant depending on the properties
of a quantum thermometer and the sample, and N̄ is the number
of resources, which for quantum thermometers usually denotes
the (mean) number of correlated particles that makes up the
thermometer [3]. Unfortunately, this improvement occurs only
for measurements in the absence of decoherence; typically, the
presence of noise reduces the Heisenberg-limited precision
back to the classical shot-noise-limited scaling, �T ∼ c/

√
N̄ ,

with a possible advantage constrained to the scaling constant
c, where c < cSQL [21,22]. Nevertheless, the prospect of using
interferometric tools of quantum-enhanced phase estimation
for temperature measurements is rather intriguing and, we
believe, has not been fully explored.

The main advantages of interferometric thermometry are
a very fast response time of interferometric devices, which
means that rapid variations in temperature can be measured, the
ability to measure a wide range of temperatures, and the high
spatial resolution allowing for temperature measurements of
micrometer- and even nanometer-size spots [4,5]. When com-
bined in a single measurement setup, these advantages open up
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a possibility of preparing temperature maps with very high spa-
tial and temporal resolutions that could find a wide range of im-
portant applications in the microelectronic industry, and in the
material and life sciences. Surprisingly, in spite of those most
immediate benefits, interferometric thermometry met with
limited attention in the past. Interferometric thermometry was
used mostly in the microelectronic industry for temperature
measurements of the semiconductor electronic devices; in in-
dustry, this approach to thermometry is used not only for local
temperature measurements but also as a kind of scanning de-
vice for measuring the thermal expansion coefficient [4,23]. In
academia, apart from the theoretical proposal discussed above,
the idea of interferometric thermometry realized with atomic
quantum dots was most recently employed to study tempera-
ture measurements of the Bose-Einstein condensates [24].

This work rigorously studies the interferometric approach
to thermometry. We determine the fundamental precision of
optical interferometric thermometers. To this end, we use the
single-mode Gaussian states of light to probe the temperature
variations in a general medium modeled as a dissipative
thermal reservoir. We then compare our precision limits against
the theoretical limit on the precision offered by commonly
used classical noninvasive temperature sensors, the so-called
pyrometers. This comparison is provided for one of the most
important classes of materials used in many quantum tech-
nologies, namely, the nonlinear crystals. A precise sensing of
tiny temperature variations followed by an active temperature
stabilization is required in many experimental setups based
on the nonlinear crystals such as the PPKTP crystal. The
nonlinear crystals are used as a source of indistinguishable
photons generated via the spontaneous parametric down-
conversion process and the quality of those photons depends
strongly on the temperature of the crystal [25,26]. Hence,
new practical methods for ultraprecise temperature sensing
and stabilization, which could be easily incorporated into the
existing experimental setups, are of paramount importance for
the development of various optical quantum technologies that
rely heavily on the bright sources of truly indistinguishable
photons. The interferometric approach to thermometry that
we study appears ideal for such applications.

The paper is organized as follows. In Sec. II, we introduce
the basic concepts of the classical and quantum estimation
theory. In Sec. III, we derive the fundamental precision limits
for the idealized classical noninvasive pyrometers that we use
as a benchmark to judge the usefulness of the interferometric
thermometry. Section IV introduces in detail the idea of
interferometric thermometry. In Sec. V, we find the precision
of temperature estimation obtained via the interferometric
phase measurement in the presence of a dissipative thermal
reservoir focusing on temperature measurements in nonlinear
crystals. In Sec. VI, we conclude with final remarks.

II. CLASSICAL AND QUANTUM ESTIMATION THEORY

The task of temperature measurement can be translated
applying the language of estimation theory to the problem of
parameter estimation [1,2]. The generic scheme for such a
problem is depicted in Fig. 1. In order to estimate the value
of parameter θ , we send a probe system prepared in an initial
quantum state ρ0 through a sample, which depends on θ . The

ρ0 Πx

ρθ
θ̃(x)Λθ

FIG. 1. (Color online) A general parameter estimation scheme in
which a probe system prepared in an initial quantum state ρ0 evolves
under the quantum channel �θ to the output quantum state ρθ . Note
that �θ takes into account all decoherence processes that may be
present in the setup. Following the evolution stage, the probe system
is subjected to a general quantum measurement described by a POVM
{�x}, which produces the measurement results x. These measurement
results are then used to make an estimate of the parameter θ via the
estimator function θ̃ (x).

interaction between our probe system and the sample can then
be modeled as an evolution under a quantum channel �θ .
Hence, following the interaction, the probe system is left in
the output quantum state ρθ = �θ [ρ0]. Next, we subject the
probe system to a general quantum measurement, described
by a positive operator-valued measure (POVM) {�x}, which
produces the measurement results x. Finally, we use a special
function θ̃ (x) called an estimator to calculate the estimated
value of θ . This scheme describes not only the quantum
estimation tasks, but also the classical ones [27,28].

The procedure described above naturally never returns the
true value of θ . We quantify the discrepancy between the
estimated value and the true value of θ with the root-mean-
square error �θ = {〈[θ̃(x) − θ ]2〉}1/2, where the average is
taken with respect to the probability distribution p(x|θ ) of the
measurement outcomes x. In the most common case when we
have a specific POVM measurement {�x}, corresponding to
an observable A, and we wish to estimate the value of θ from
the mean value of A, the precision is given by the standard
error propagation formula [27,28],

�θ = �A

|d〈A〉/dθ | , (1)

where �A is the standard deviation of the observable A

calculated for the output state ρθ . We remind the reader that A

may as well be a classical observable.
The above equation is valid for any observable, but it

explicitly assumes an estimation from the mean value of A.
It may happen that this is not the optimal approach and we
could improve the precision by choosing another estimator.
Moreover, it may also happen that the measurement we choose
is not optimal either. In order to avoid such problems, we
need to optimize Eq. (1) over all possible measurements and
estimators, which is not an easy task. Fortunately, the solution
to this optimization problem is provided by the classical and
quantum Cramér-Rao inequalities [27–29], which state that
for any unbiased estimator,

�θ � 1√
kFθ

� 1√
kQθ

, (2)

where k is the number of independent experimental repetitions
and Fθ is the classical Fisher information defined as

Fθ =
∑

x

1

p(x)

[
∂p(x)

∂θ

]2

. (3)
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The classical Fisher information gives a lower bound on
the precision optimized over all unbiased estimators for a
specific POVM measurement {�x}. Further optimization over
all conceivable measurements gives a lower bound on the
precision expressed via the quantum Fisher information (QFI)
Qθ , which can be computed from Qθ = Tr[ρθL

2
θ ], where

Lθ is a Hermitian operator called the symmetric logarithmic
derivative (SLD) that is implicitly defined via

dρθ

dθ
= ρθ ◦ Lθ, (4)

where we used the notation of the symmetric product for
operators, A ◦ B = 1

2 (AB + BA). In a situation where the
parameter is encoded by a unitary transformation, i.e., ρθ =
�θ [ρ0] = Uθ�[ρ0]U †

θ , where Uθ is unitary and � is a
θ -independent quantum channel describing possible decoher-
ence processes, then Lθ = UθL0U

†
θ , where L0 is the SLD for

the state �[ρ0]. In such a case, the QFI does not depend on θ ,
that is, Qθ = Q.

The quantum Cramér-Rao bound (QCRB) and its classical
counterpart are known to be saturable in the limit of a large
number of repetitions, k → ∞. The optimal measurement
consists of a set of projectors on the eigenbasis of the SLD
and outputs the measurement results, which are then processed
with the maximum-likelihood estimator [1,2]. Such projective
measurements are typically very hard to implement reliably in
the laboratory; however, very often it is possible to saturate
the quantum Cramér-Rao bound with a more natural set of
measurements, for example, with the optical homodyne or
the parity detection [2,30,31]. Since the QCRB is already
optimized over all possible POVMs and unbiased estimators,
we are usually only left with the optimization over all possible
input quantum states ρ0.

III. NONINVASIVE CLASSICAL THERMOMETERS

As we have already mentioned, one of the most widely
used optical noninvasive temperature sensors relies on a
measurement of thermal infrared radiation naturally emitted
by all heated samples [4,5]. This measurement principle is used
in the commercially available pyrometers. Before we explain
the operation of these devices in detail, let us explain what
we understand by the term noninvasive. Pyrometers measure
the temperature of a sample by probing the thermal radiation
that the sample emits, but not the sample itself. This thermal
radiation and the sample are in thermal contact, resulting in
a thermal equilibrium state. In the following, we assume that
the presence of the pyrometer (and a short probing time) has
a negligible influence on this equilibrium state, and hence, in
this sense, we can consider pyrometers as noninvasive.

What is the fundamental precision of this type of tempera-
ture sensors? Pyrometers estimate temperature by measuring
the flux of thermal radiation emitted by a sample modeled as a
blackbody in thermal equilibrium and, using the well-known
Stefan-Boltzmann law, infer the temperature [4,5]. Typically,
those devices take into account the nonunit emissivity ε of most
physical samples; however, for the purpose of this derivation,
we assume that we are dealing with a perfect blackbody. The
flux of thermal radiation 	, that is, the total energy radiated
per unit surface area of a blackbody across all wavelengths per

unit time, is quantified by the Stefan-Boltzmann formula,

	 = σT 4 with σ = π2k4
B

60�3c2
, (5)

where σ is the Stefan-Boltzmann constant and T is the
temperature of the sample. In order to calculate the precision
of temperature estimation based on the Stefan-Boltzmann
law, we use the error propagation formula given in Eq. (1)
with 〈A〉 = 	. Using the definition of the variance in the
thermal photon number (�N )2 = N (N + 1), with N being
the mean number of thermal photons distributed according to
the Bose-Einstein statistics [32],

N =
[

exp

(
�ω

kBT

)
− 1

]−1

, (6)

and assuming for simplicity that pyrometers are sensitive to
all frequencies of electromagnetic radiation [33] and excluding
all sources of loss in the detection process, we can calculate

�	 =
√∫ ∞

0
(�ω�N )2℘(ω)dω =

√
4kBσT 5, (7)

where ℘(ω) = ω2/(4π2c2) is the density of modes per unit
interval in ω in a unit area. This allows us to find the funda-
mental precision in temperature estimation for the idealized
pyrometer. However, the error that we obtain from the error
propagation formula represents the square root of the inverse
of the information collected per unit surface area, per unit
measurement time. In order to include the total information
collected by the pyrometer, we need to divide this error by√

Sδt , where S is the surface area of the sample we are probing,
which we assume is optimized to be equal to the size of the
detector area used in our pyrometer, and δt is the response time
of the device, that is, the time it takes to make a measurement.
This leads to the following theoretical limit on the precision
in temperature estimation for the idealized pyrometer:

�T =
√

kB

4σSδtT
. (8)

This result has a standard-quantum-limited scaling with
respect to the response time δt , which here corresponds
to the amount of resources N̄ we discussed in Sec. I [34];
therefore, the longer we probe the sample, the more photons
the detector registers. Modern pyrometers operate in the ms
regime; hence, we assume δt = 10 ms. Now further assuming
that we measure the temperature of a surface with S = 1 cm2,
we find that the local precision of such a measurement near
T = 298 K is �T = 452 nK. Therefore, at the fundamental
level, pyrometers are highly precise devices. Naturally, a
real commercially available pyrometer estimates temperature
with a much lower precision; a typical precision at the
room-temperature range is, at best, 0.1 K.

Is the measurement of the total thermal radiation the
most optimal measurement we can perform? Surely, this is
not the only way we could use thermal light to infer the
temperature of a sample. We could, for example, imagine a
more sophisticated device that estimates temperature based
on the detailed knowledge of the spectral photon-number
distribution of thermal radiation. Such a device would measure
the photon-number probability distribution for each frequency.
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This kind of measurement would provide more information
about the character of the thermal light and, therefore,
should allow for improved temperature estimation. In order
to calculate this enhanced precision, we need to find the
classical Fisher information for a photon-number-resolving
measurement. This is a measurement that allows us to estimate
the photon-number probability distribution p(n), which enters
into the definition of the thermal state,

ρN =
∞∑

n=0

p(n)|n〉〈n| with p(n) = Nn

(1 + N )n+1
, (9)

where N is the mean number of photons present in the thermal
state given in Eq. (6). The classical Fisher information for p(n)
for a single frequency ω is

FT (ω) =
(

�ω

kBT 2

)2

N (N + 1). (10)

Surprisingly, when we calculate the total Fisher information
per unit area for all frequencies,

FT =
∫ ∞

0
FT (ω)℘(ω)dω, (11)

where ℘(ω) = ω2/(4π2c2) is the density of modes per unit
interval in ω in a unit area, we obtain via the classical Cramér-
Rao inequality the very same expression as in Eq. (8), that is,

�T � 1√
δtSFT

=
√

kB

4σSδtT
. (12)

This result means that inferring temperature from the total flux
of thermal radiation is already optimal. Any additional knowl-
edge of the photon-number distribution does not contribute
to the information about temperature. Furthermore, as can be
easily checked, the calculation of the QFI for ρN returns the
same result because the thermal state is diagonal in the Fock
basis and so is the corresponding SLD [3,35]. Therefore, it is
always optimal to measure the mean number of photons at the
output for each frequency, as we have effectively done in the
derivation of Eq. (12), or simply to measure the total flux of
thermal radiation.

IV. QUANTUM INTERFEROMETRIC THERMOMETERS

Having explained how the noninvasive classical thermome-
ters work, we now describe in detail the operation of quantum
interferometric thermometers. It may be somewhat confusing
to consider the interferometric thermometry as noninvasive or
noncontacting since, as will be apparent soon, the photons in
the probe beam are clearly interacting with the sample and,
therefore, the thermometer is in direct physical contact with
the sample, implying an exchange of energy [36]. However, as
long as this interaction and the ensuing exchange of energy do
not cause a significant change in the sample’s temperature, we
can consider this method as truly noninvasive [5]. The scope
of this work is to investigate a possible advantage offered
by such interferometric devices that typically rely on the
use of nonclassical states of light. The basic scheme for a
quantum interferometric thermometer is depicted in Fig. 2.
A single-mode Gaussian state of light prepared in an initial

ρ0

Πx

ρϕ

T̃ (x)
S(ϕ,N, η)

classical beam

ϕ

η

ρN

FIG. 2. (Color online) Basic scheme for quantum interferometric
thermometry. A single-mode Gaussian state of light ρ0 is sent through
a sample with temperature T and transmissivity η, resulting in a
mixed output state ρϕ , which is then measured using a general POVM
{�x} measurement. Assuming that the phase shift ϕ is temperature
dependent, the measurement outcomes are then used to find an
estimated value of T via the estimator function T̃ (x). The bright
yellow beam depicts a classical reference, which allows us to define
the phase shift in a meaningful way [37]. The propagation of light
through a heated sample with transmissivity η can be decomposed
into two distinct processes: first the single-mode Gaussian beam
undergoes the phase shift ϕ relative to the reference beam and then it
undergoes a photon loss process, which is modeled with the help of
a beam splitter with transmissivity η, where the second port is filled
with light in the thermal state ρN .

state ρ0 propagates through a sample with temperature T and
transmissivity η, resulting in a mixed output state ρϕ , where
ϕ is the temperature-dependent phase shift that we wish to
estimate. Following the propagation stage, a general quantum
measurement described by a POVM {�x} is performed on the
output state ρϕ , returning a measurement outcome x, which is
then used to estimate the value of T via the estimator T̃ (x).
For the sake of simplicity, we consider here only single-mode
Gaussian states of light; however, we note that a proper
interferometric setup requires a reference, which in Fig. 2
is depicted as a bright classical beam.

A. Input state

We choose to work with the single-mode Gaussian states,
which include the single-mode coherent and squeezed states,
because this particular class of states is readily available with
the current technology [38,39]. The most general single-mode
Gaussian state of light can be parametrized as

ρ0 = D(α0)S(r0)ρN0S
†(r0)D†(α0), (13)

where ρN0 is a single-mode thermal state with mean photon
number N0, which is formally defined in Eq. (9), S(r0) =
exp [ 1

2 (r0a
†2 − r∗

0 a2)] is the squeezing operator, and D(α0) =
exp [α0a

† − α∗
0a] is the displacement operator, with a and

a† being, respectively, the annihilation and creation operators
of a bosonic mode. Alternatively, we may express the above
operators in terms of the canonical position and momentum
operators x and p, which can be arranged into a row vector
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d = (x,p). For example, we can express the displacement
operator as D(d0) = exp [i(p̄0x − x̄0p)] with d0 = (x̄0,p̄0).

It is a well-known fact that a Gaussian state is fully charac-
terized by only its first and second canonical moments [39],

W (d) = exp
[− 1

2 (d − d0)ᵀ�−1
0 (d − d0)

]
2π

√
det�0

, (14)

where W (d) is the Wigner quasiprobability distribution of a
single-mode Gaussian state. The first moments are defined via
d0. The second moments can be arranged in the so-called co-
variance matrix, which for the single-mode state ρ0 is given by

�0 =
(

N0 + 1

2

)(
e2r0 0
0 e−2r0

)
. (15)

The mean number of photons N̄ in such an input Gaussian
state is given by

N̄ = 1
2

[(
N0 + 1

2

)
2 cosh 2r0 + x̄2

0 + p̄2
0 − 1

]
. (16)

In the next section, we describe how the propagation through
a sample with temperature T and transmissivity η affects the
above single-mode Gaussian state.

B. Evolution and the output state

The evolution of an arbitrary state ρ in the presence of
a dissipative thermal reservoir is described by the following
master equation:

dρ

dt
= G(ω,N,�)ρ, (17)

with the superoperator G(ω,N,�) defined as

G(ω,N,�) = −iωH + �

2
(NL[a†] + (N + 1)L[a]), (18)

where Hρ = [a†a, ρ] and L[o]ρ = 2oρo† − o†oρ − ρo†o.
The first term in the superoperator G describes a free unitary
evolution of a single bosonic mode a with frequency ω.
[Naturally, the frequency appearing in the definition of N in
Eq. (6) is equal to the frequency ω of the incident Gaussian
light]. The second term accounts for a coupling of the bosonic
mode to a thermal reservoir (with mean photon number N )
with strength � [32].

According to the above master equation, after a time t ,
an initial state ρ0 evolves to ρϕ = exp[G(ω,N,�)t]ρ0 =
S(ϕ,N,γ )ρ0, where S(ϕ,N,γ ) = exp[G(ϕ,N,γ )], and here
γ = �t is the effective coupling to a thermal reservoir (which
is related to the photon loss coefficient η via the relation
η = e−γ ) and ϕ = ωt is the temperature-dependent optical
phase that we are interested in estimating.

Now, when the initial state ρ0 corresponds to our ini-
tial single-mode Gaussian state, then following the above
evolution, the output state ρϕ is still a single-mode Gaus-
sian state but with the changed first and second moments.
By transforming the master equation in Eq. (17) into a
partial differential equation, the so-called Fokker-Planck-
type equation, for the Wigner quasiprobability distribution

W (α,α∗,t) [32],

∂W

∂t
=

(
�

2
+ iω

)
∂

∂α
[αW ] +

(
�

2
− iω

)
∂

∂α∗ [α∗W ]

+�

(
N + 1

2

)
∂2W

∂α∂α∗ , (19)

and then solving this equation for the complex variables α and
α∗ [32], we can show that the first moments of the output state
ρϕ are given by

x̄ = √
η(cos ϕ x̄0 + sin ϕ p̄0), (20)

p̄ = √
η(−sinϕ x̄0 + cos ϕ p̄0). (21)

The second moments of the output state are given by the
following covariance matrix:

� = �η(�ϕ − �N )�η + �N, (22)

where �η = √
η1, �N = (N + 1

2 )1, and �ϕ = R(ϕ)�0R
ᵀ(ϕ)

is the covariance matrix �0 of the input state ρ0 rotated by
an angle ϕ [39]. Because in our setup the optical phase ϕ is
encoded by a unitary transformation (as H commutes with
L[a] and L[a†]), the QFI for ϕ will not depend on the actual
value of ϕ. Therefore, in the remaining sections, we always
neglect the rotation about ϕ by setting ϕ = 0.

The above analysis shows that the propagation of light
through the sample may be modeled as a Gaussian channel,
which may be effectively decomposed into two distinct
processes: first the single-mode Gaussian beam acquires the
phase shift ϕ relative to the reference beam and then it
undergoes a photon loss process, which is modeled with
the help of a beam splitter with transmissivity η, where the
second port is filled with thermal light ρN with temperature T .
Physically, (the temperature-dependent part of) the acquired
phase shift is caused by the thermal expansion of a sample
and small temperature-dependent changes in the refractive
index n. Assuming that we probe a sample with a length L, the
refractive index n, the thermo-optic coefficient n′ = dn/dT ,
and the thermal expansion coefficient αT , all known exactly
for a specific temperature T [40] with light with frequency ω,
the acquired phase shift is described by the simple relation
ϕ = n(δT )ωL(δT )/c, where n(δT ) = n + n′δT and L(δT ) =
L(1 + αT δT ). The temperature-dependent part of the acquired
phase shift given to the first order in δT can be written as

ϕ = ωL

c
(nαT + n′)δT = αT , (23)

where for the sake of simplicity we replaced δT with T .
However, we emphasize that in this work, we always estimate
or probe tiny deviations of temperature δT from a known value.

In the following section, we determine the best possible
precision with which we can estimate the temperature of
a nonlinear PPKTP crystal with the interferometric phase
measurement.

V. TEMPERATURE ESTIMATION WITH APPLICATION
TO NONLINEAR CRYSTALS

We now wish to calculate the QFI for temperature. To
this end, we need to first calculate the QFI for the optical
phase ϕ. In general, any calculation involving a single-mode
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Gaussian beam interacting with a dissipative thermal reservoir
is very complicated, to the point where, in many cases, only
numerical results can be obtained. The calculation of the QFI
for the optical phase shift acquired in such a setup is no
exception. Fortunately, in Ref. [41], the authors developed a
very powerful technique for the derivation of the SLD and the
QFI for arbitrary Gaussian probe states propagating through
general dissipative Gaussian reservoirs. Here, we adopt this
technique to find the SLD and the QFI for the optical phase.
(We should mention the two related results presented in Refs.
[42,43] that can also be used to find the SLD and the QFI
for the optical phase, but these results were obtained using
different methods). The details of the derivation of the SLD
for the optical phase given in terms of the first and second
moments of the output state ρϕ are presented in the Appendix.
Here we only present the resulting QFI,

Qϕ = 4(�22 − �11)2

1 + 4�11�22
+ x̄2

�22
+ p̄2

�11
, (24)

where �11 and �22 are the diagonal elements of the covariance
matrix � of the output state ρϕ , and x̄ and p̄ are the mean
displacements in the respective canonical position and momen-
tum quadratures, all of which are calculated with ϕ = 0. Based
on the above formula for Qϕ and using a simple reparametriza-
tion, we can easily find the following QFI for temperature:

QT =
(

dϕ

dT

)2

Qϕ. (25)

We now focus on finding the maximum value of Qϕ (and,
by implication, the maximum value of QT ) and the optimal
state that asymptotically attains this value. To this end, we
need to optimize Eq. (24) over the input state parameters, that
is, optimize over the mean displacements x̄0 and p̄0, the mean
number of thermal photons N0, and the amount of squeezing
r0. In the limit of a large average number of input photons
N̄ � 1, the numerical optimization of Eq. (24) predicts that the
optimal input state is a squeezed-vacuum state, which implies
x̄0 = p̄0 = 0 and N0 = 0. Hence, for the squeezed-vacuum
input state, the asymptotic error of temperature estimation,
which holds in the limit of large N̄ , as given by the Cramér-Rao
inequality, reads

�T � 1

α

√
(1 − η)(1 + 2N )

4ηN̄
+ O

(
1

N̄

)
. (26)

This bound scales as cSQL/
√

N̄ . The readers familiar with the
problem of phase estimation in the presence of dissipative
reservoirs will certainly notice that the above bound, neglect-
ing for a moment the prefactor 1/α, resembles a bound that
is typically obtained for phase estimation in the presence of
photon loss [21,22]. However, our bound has an additional
coefficient

√
1 + 2N because we consider here a dissipative

reservoir prepared in a thermal state ρN , whereas in the lossy
phase estimation, it is more common to assume a reservoir
prepared in the vacuum state [44]. In fact, it would be very
interesting to determine what kind of error scaling can be
obtained for phase estimation when the reservoir is prepared
in a pure squeezed state [45]. We further note that for visible
light and moderate temperatures, the mean number of thermal

photons N is very small. However, we include N in our
analysis because we wish to present a general and realistic
model of a quantum interferometric thermometer, which can
be applied to all relevant ranges of electromagnetic spectrum,
such as the microwave range, and all relevant physical systems,
including systems for which the mean number of thermal
excitations (not necessarily photons) is sizable, such as the
mechanical systems [46].

It is also instructive to determine how well we can estimate
temperature if we use coherent states (implying N0 = 0
and r0 = 0) as the input states to our setup instead of the
optimal squeezed-vacuum states. In this case, the Cramér-Rao
inequality predicts that the asymptotic error, which holds in
the limit of large N̄ , is lower bounded by

�T � 1

α

√
1 + 2(1 − η)N

4ηN̄
+ O

(
1

N̄

)
, (27)

which for a zero-temperature reservoir, that is, N = 0, and
neglecting the prefactor 1/α is equivalent to the well-known
bound in lossy phase estimation [2].

A. Noninvasiveness of quantum interferometric thermometers

From the above bounds, we could draw a conclusion that it
is best to send as much light into the sample as possible because
with increasing N̄ , the error in temperature estimation becomes
smaller. However, if we were to use very strong squeezed-
vacuum or coherent states, then because of the absorption of
light this would at some point disturb the sample’s temperature.
We take this effect into account by adding the magnitude of
this disturbance to our precision bound. If the sample absorbs,
on average, Nabs = (1 − η)N̄ photons, then its temperature is
at worst disturbed by δT = �ωNabs/(MCs), where M and Cs

are the mass and the specific heat of the sample, respectively.
Hence, as long as δT � �T , the sample’s temperature is not
disturbed significantly and our interferometric thermometer is
noninvasive.

The effect of disturbance can be included into our asymp-
totic error bounds by adding δT on the right-hand side of
Eqs. (26) and (27). We note that by doing so we are combining
in a single formula two different types of errors: the statistical
error and the systematic error associated with the heating of
the sample. However, this allows us to depict both of these
errors neatly in the same figure. The resulting formulas for the
asymptotic error of temperature estimation are given by

�T � 1

α

√
(1 − η)(1 + 2N )

4ηN̄
+ (1 − η)�ωN̄

MCs

, (28)

�T � 1

α

√
1 + 2(1 − η)N

4ηN̄
+ (1 − η)�ωN̄

MCs

, (29)

for the squeezed-vacuum and coherent states, respectively.
From the above formulas, we see that there is a maximum value
N̄max of N̄ for which the error is minimal, and increasing N̄

from that point on would only decrease the precision because
of the heating of the sample. This behavior is clearly visible
in Fig. 3 (which was prepared for the PPKTP crystal; all
necessary parameters for this material are given in the figure’s
caption), where for moderately small N̄ the error decreases,
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FIG. 3. (Color online) The precision of the quantum interfero-
metric thermometer near T = 298 K for a nonlinear PPKTP crystal
with a length of 1 cm plotted as a function of the mean number
of photons N̄ with λ = 1064 nm (ω = 1.77 × 1015 Hz). In our
model for the PPKTP crystal, we set M = 3 g, Cs = 688 J(kg K)−1,
n = 1.74, αT = 1.1 × 10−5 K−1, n′ = 0.6 × 10−5 K−1, and η =
exp[−Lαabs] = 0.9998, with αabs = 0.0002 cm−1 [47]. The red solid
curve represents the exact lower bound for the optimal single-mode
Gaussian state obtained via the QCRB with k = 1 and QT given in
Eq. (25), with the tail correcting for a possible heating up of the
crystal. The gray areas depict the precision regions lying below the
asymptotic bound for the single-mode squeezed-vacuum state given
in Eq. (28) and lying above the asymptotic bound for the single-mode
coherent state given in Eq. (29). The black dashed line represents the
fundamental precision for the idealized pyrometer given in Eq. (8)
with S = 1 cm2 and δt = 10 ms.

but eventually it starts to increase when growing N̄ disturbs
the sample’s temperature. Fortunately, this maximum value
N̄max is of the order of 1013–1014 photons and, thus, the
interferometric thermometers are noninvasive for most of the
realistic probe states.

B. Comparison with noninvasive classical thermometers

We compare the precision offered by our interferometric
thermometer with the theoretical limit imposed on the ide-
alized pyrometer that we found in Sec. III. We perform this
comparison for the PPKTP crystal, which is commonly used
in many quantum optics experiments, and its basic physical
properties can be easily found [47]. The results of our calcula-
tions for the PPKTP crystal near T = 298 K are presented in
Fig. 3. As can be easily checked, the best precision achieved
by our interferometric approach is �T ≈ 1.4 nK for light
with wavelength λ = 1064 nm and N̄ = 3.2 × 1013 photons
prepared in the squeezed-vacuum state. This is much higher
than the precision of the commercially available pyrometers
and even higher than the theoretical limit for the idealized
pyrometer of �T = 452 nK. Naturally, a squeezed-vacuum
state containing that many photons would be very hard to
produce [48]. However, even for coherent input states, the
precision of the interferometric thermometer is still excellent,
with �T ≈ 24 nK obtained with N̄ = 5.6 × 1014 photons (this
number of photons at λ = 1064 nm would correspond to a laser
pulse energy of 0.1 mJ and the average power of 100 mW at
the repetition rate of 1 kHz, which is easily accessible with

current technology). Therefore, we find that the interferometric
thermometry does not need to use specially designed quantum
states of light to surpass the classical optical thermometers.

One could argue that our analysis is not comprehensive
because we have not fully exploited all possible sources of in-
formation about the temperature in our setup. For example, we
could have additionally tried to measure the mean number of
thermal photons N being radiated by the sample at frequency
ω, which clearly is temperature dependent. Furthermore, it
very much depends on the type of the sample, but very often the
transmissivity η also depends on the temperature. Therefore,
we could have tried to estimate the temperature from η as
well. The QFIs for estimation of N and η were already
calculated in Ref. [49] and, as we found, the estimation of these
additional parameters provides negligible information about
temperature when compared with the information obtained
from the estimation of the optical phase. Moreover, if, in
spite of that, we still wished to estimate the mean number
of thermal photons N , then it would be optimal to send a
vacuum state through the sample [49], which is equivalent
to measuring the thermal radiation emitted by the sample at
a single frequency ω, and interestingly provides information
that we have already found in Eq. (10) in the section devoted
to the idealized pyrometers.

VI. DISCUSSION AND FUTURE DIRECTIONS

In summary, we provided a detailed description of the
quantum interferometric thermometer by analyzing the inter-
action between the single-mode Gaussian states of light and
a heated sample modeled as a dissipative thermal reservoir.
We found that the single-mode squeezed-vacuum state is
optimal for temperature measurement, offering precision in
the nanokelvin range; however, coherent input states provide
an excellent performance as well. Moreover, we also found
a very elegant formula given by Eq. (8) that lower bounds
the fundamental precision of the idealized pyrometer, which
infers the temperature from a measurement of the total thermal
radiation emitted by a heated sample. The interferometric
thermometer provides a superior performance in temperature
sensing even when compared with this idealized pyrometer.
One of the main advantages of interferometric thermometry
is its noninvasiveness, as highly precise temperature mea-
surements can be obtained without disturbing the sample’s
temperature. We believe this feature to be crucial and hope
that interferometric thermometers could be used, for example,
for active temperature stabilization of nonlinear crystals such
as the PPKTP crystal. We note, however, that further studies
are required to access the true performance of this method for
temperature measurements in nonlinear crystals. Those studies
would need to take into account intrinsic noise sources such
as the Brownian and the thermodynamical noise sources that
may be important for specific materials and setup geometries
[50].

Apart from nonlinear crystals, we predict that interfero-
metric thermometers should prove very useful for temperature
measurements of atomic vapors. At the moment, the most
popular optical technique for temperature measurements in
gaseous mediums such as atomic vapors is the absorption
spectroscopy in which a laser light is shone on an atomic-vapor
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cell producing the absorption spectrum. In order to estimate
the temperature of atomic vapor, it is then necessary to
fit the observed spectrum to a theoretical model described
by the so-called Voigt profile, which accurately models the
intensity profile of absorption spectral lines by including the
contributions of natural linewidth and Doppler broadening
[51,52]. This fitting procedure normally involves a prior
knowledge of atomic-vapor parameters, such as the density
of the vapor, which has a complicated dependence on the
temperature. Because of this, in practice, the precision of this
method is limited to, at most, ±0.1 K [53,54], which is rather
poor [55]. Furthermore, if we try to estimate the temperature of
an atomic vapor by scanning the whole absorption spectrum,
then we will very likely disturb its state when we probe it
around resonant transitions [56]. This is very problematic if
we wish to use our atomic-vapor cell as a quantum memory.
Therefore, it is clear that an alternative, simpler method of
temperature measurements for atomic vapors could be useful.
We believe that our noninvasive interferometric approach
is ideally suited for this kind of application and it would
be of great interest to determine the fundamental precision
offered by the interferometric thermometer for temperature
measurements in realistic atomic vapors.

Finally, we note that interferometric thermometers operat-
ing at the telecom wavelengths of 1550 nm can also be readily
used for temperature measurements of silicon semiconductor
electronic devices, as silicon is almost transparent at these
longer wavelengths.
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APPENDIX

In order to calculate the SLD and the QFI for the optical
phase, we adopt a technique presented in Ref. [41]; for the
sake of convenience, we adopt most of the notation used in
that work. We recall that according to the master equation
give in Eq. (17), after a time t , an initial state ρ0 evolves to
ρϕ = exp[G(ω,N,�)t]ρ0 = S(ϕ,N,γ )ρ0, whereS(ϕ,N,γ ) =
exp[G(ϕ,N,γ )], and here γ = �t is the effective coupling
to a thermal reservoir (which is related to the photon loss
coefficient η via the relation η = e−γ ) and ϕ = ωt is the optical
phase we wish to estimate. In the following derivation, we will
drop the dependence of the superoperators G and S on the
mean number of photons N and the photon loss γ because we
are only concerned with finding the SLD for the phase.

We begin by finding the partial derivative of ρϕ with respect
to ϕ, which can be neatly expressed as

∂ϕρϕ = ∂ϕS(ϕ)ρ0 = ∂ϕ exp[G(ϕ)]ρ0. (A1)

Using the following relation [41]:

∂ϕ exp[G(ϕ)] =
∫ 1

0
euG(ϕ)∂ϕG(ϕ)e(1−u)G(ϕ)du

=
∫ 1

0
euG(ϕ)∂ϕG(ϕ)e−uG(ϕ)duS(ϕ), (A2)

we obtain

∂ϕρϕ = DϕS(ϕ)ρ0 = Dϕρϕ, (A3)

where the superoperator Dϕ is given by

Dϕ =
∫ 1

0
euG(ϕ)∂ϕG(ϕ)e−uG(ϕ)du, (A4)

which can be easily calculated using the Baker-Campbell-
Hausdorff formula, resulting in Dϕ = −iH .

Recalling the definition of the SLD, ∂ϕρϕ = Lϕ ◦ ρϕ , we
can write

βij [χiχj , ρϕ] = Lϕ ◦ ρϕ, (A5)

where we have introduced χ = (a, a†) and

β =
(

0 −i/2
−i/2 0

)
, (A6)

and the Einstein summation convention is assumed. Equa-
tion (A5) is an example of the Sylvester equation Y = Z ◦ X

[57], which has the following formal solution:

Lϕ = 2
∫ ∞

0
e−vρϕ βij [χiχj , ρϕ]e−vρϕ dv. (A7)

In the next step, we introduce χ̃ i = χi − 〈χi〉 and calculate∫ ∞

0
e−vρϕ χ̃ i χ̃ j ρϕe−vρϕ dv

=
∫ ∞

0
e−vρϕ χ̃ ievρϕ e−vρϕ χ̃ j evρϕ e−vρϕ ρϕe−vρϕ dv

=
∑
m,n

(−1)m+n

m!n!
[(F − 1)m]ik[(F − 1)n]jl χ̃

kρm
ϕ χ̃ lρn+1

ϕ

×
∫ ∞

0
vm+ne−2vρϕ dv

=
∑
m,n

(−1)m+n

2m+n+1

(
m + n

n

)
[(F−1)m]ik[(F−1)n]jl χ̃

kρm
ϕ χ̃ lρ−m

ϕ

=
∑
m,n

(−1)m+n

2m+n+1

(
m+n

n

)
[(F − 1)m]ik[(F − 1)n]jl χ̃

k[Fm]ls χ̃
s

=
∑
m,n

(−1)m+n

2m+n+1

(
m+n

n

)
{[(F − 1) ⊗ F]m[1⊗(F−1)]n}ijkl χ̃

kχ̃ l

=
∞∑

q=0

(−1)q

2q+1

q∑
n=0

(
q

n

)
{[(F−1) ⊗ F]q−n[1 ⊗ (F − 1)]n}ijkl χ̃

kχ̃ l

=
∞∑

q=0

(−1)q

2q+1
{[(F − 1) ⊗ F + 1 ⊗ (F − 1)]q}ijkl χ̃

kχ̃ l

= [(F ⊗ F + 1 ⊗ 1)−1]ijkl χ̃
kχ̃ l, (A8)
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where F = H †f (�̃)H , with H being the Hadamard matrix,

H = 1√
2

(
1 1
−i i

)
, (A9)

and f (x) = x−i/2
x+i/2 and �̃ = ��, where � is the covariance

matrix of the output state ρϕ with � begin the symplectic
matrix,

� =
(

0 1
−1 0

)
. (A10)

In the derivation of Eq. (A8), we used a number of identities,
which can all be found in Appendix C of Ref. [41]: (i) in the
second line, we used

e−vρϕ χ̃ ievρϕ =
∑
m

(−1)m

m!
vm[(F − 1)m]ikχ̃

kρm
ϕ ; (A11)

(ii) in the fourth line, we used ρm
ϕ χ̃ lρ−m

ϕ = [Fm]ls χ̃
s ; and

(iii) in the sixth line, we changed the variables m + n = q

and replaced
∑∞

m,n=0 with
∑∞

q=0

∑q

n=0. Similarly, we can
show that ∫ ∞

0
e−vρϕ ρϕχ̃ i χ̃ j e−vρϕ dv

= [(F ⊗ F + 1 ⊗ 1)−1(F ⊗ F)]ijkl χ̃
kχ̃ l . (A12)

Replacing now χi with χi = χ̃ i − 〈χi〉 in Eq. (A7) and using
Eqs. (A8) and (A12), we obtain an expression for the SLD for
the optical phase ϕ,

Lϕ = 2βij [F ⊗ F + 1 ⊗ 1)−1(1 ⊗ 1 − F ⊗ F)]ijkl χ̃
kχ̃ l

+ [(1 + F)−1 − (1 + F−1)−1]ikχ̃
k〈χj 〉

+ [(1 + F)−1 − (1 + F−1)−1]jk χ̃
k〈χi〉, (A13)

which, after a very tedious but rather straightforward algebra,
can be further simplified to

Lϕ = iβ̃ij {[D−1(�̃ ⊗ 1 + 1 ⊗ �̃)]ijkl(R̃
k ◦ R̃l + i�kl/2)

+ (�̃−1)ik〈Rj 〉R̃k + (�̃−1)jk〈Ri〉R̃k}, (A14)

where we have defined

D = �̃ ⊗ �̃ − 1
41 ⊗ 1 (A15)

and β̃ij = βqp(H † ⊗ H †)qpij , which is explicitly given by

β̃ =
(−i/2 0

0 −i/2

)
(A16)

and Rk = Hk
l χl and, similarly, R̃k = Hk

l χ̃ l . The last transfor-
mation means that R = (x,p) [R̃ = (x̃,p̃)], where x and p are
the canonical position and momentum operators [x̃ and p̃ are
the displaced canonical position and momentum operators].

In the final step, we rewrite the SLD for the optical phase as

Lϕ = 4(�22 − �11)

1 + 4�11�22
x̃ ◦ p̃ + p̄

�11
x̃ − x̄

�22
p̃, (A17)

where �11 and �22 are the diagonal elements of the covariance
matrix � of the output state ρϕ given in Eq. (22), and x̄ and p̄

are the mean displacements in the respective canonical position
and momentum quadratures given in Eqs. (20) and (21), all of
which are calculated with ϕ = 0. At this point, we need to
make two comments: (i) the SLD for the optical phase has
zero expectation, that is, Tr[ρϕLϕ] = 0, as any legitimate SLD
should, and (ii) it is expressed in terms of the first and second
moments of the output Gaussian state ρϕ with ϕ = 0 because,
in our setup, the QFI for the optical phase ϕ is independent of
the actual value of ϕ; hence, we choose to present the SLD in
its simplest form.

Given the above SLD, we can calculate the corresponding
QFI for the optical phase via

Qϕ = Tr
[
ρϕL2

ϕ

]
, (A18)

which is given in Eq. (24) in the main text.
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