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We derive explicit bounds for the average entropy characterizing measurements of a pure quantum state of size
N in L orthogonal bases. Lower bounds lead to novel entropic uncertainty relations, while upper bounds allow
us to formulate universal certainty relations. For L = 2 the maximal average entropy saturates at log N because
there exists a mutually coherent state, but certainty relations are shown to be nontrivial for L � 3 measurements.
In the case of a prime power dimension, N = pk , and the number of measurements L = N + 1, the upper bound
for the average entropy becomes minimal for a collection of mutually unbiased bases. An analogous approach
is used to study entanglement with respect to L different splittings of a composite system linked by bipartite
quantum gates. We show that, for any two-qubit unitary gate U ∈ U(4) there exist states being mutually separable
or mutually entangled with respect to both splittings (related by U ) of the composite system. The latter statement
follows from the fact that the real projective space RP 3 ⊂ CP 3 is nondisplaceable by a unitary transformation.
For L = 3 splittings the maximal sum of L entanglement entropies is conjectured to achieve its minimum for a
collection of three mutually entangled bases, formed by two mutually entangling gates.
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I. INTRODUCTION

Quantum uncertainty relations characterizing the ultimate
limitations [1,2] which nature puts on the preparation and
measurements of any quantum state continuously attract
significant attention. Much of it is focused on the entropic
formulation of uncertainty [3–14], since the information
entropy function is a clever collection of the information
contained in all the moments of the probability distribution.
Standard entropic uncertainty relations [15–17] provide a
lower bound for the sum of entropies characterizing infor-
mation obtained in two arbitrary orthogonal measurements.
Various generalizations including positive-operator valued-
measures (POVM) [12], coarse graining [18–21], quantum
memory [22,23], different trade-off relations [24,25], or even
quasi-Hermitian operators [26] and elaborate studies devoted
to quantum protocols [27], can be found in the literature related
to the topic discussed in this paper.

Conversely, no comparable effort had been made to es-
tablish relevant certainty relations [28,29] given as an upper
bound for the sum of the two entropies in question. Even
though, for more than two measurements described in terms
of mutually unbiased bases (MUBs), almost optimal entropic
certainty relations have been derived [28–32], there were no
corresponding results valid for two arbitrary measurements.
Two very recent contributions [33,34] independently solved
that long-standing problem.

To show that, in the case of two orthogonal measurements,
the upper bound for the sum of the two entropies can be
saturated, Korzekwa et al. [33] utilized the mathematical
notion of a nondisplaceable manifold. Such a type of manifold
(necessarily embedded in a larger space) has a special feature
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that it cannot be displaced into any other position in a way that
the original manifold and the displaced one do not intersect.

Consider, for instance, an equator of a standard two-
sphere. It is easy to imagine that this particular manifold is
nondisplaceable in S2, because any two great circles of a sphere
do intersect. There always exist two mutually antipodal points
belonging simultaneously to both circles. Such a statement can
be generalized in various ways for higher dimensions. Making
use of the fact that a great torus TN−1 embedded in a complex
projective space CP N−1 is nondisplaceable with respect to
transformations by a unitary U ∈ U(N ) [35], it is possible to
show that there exists a quantum state mutually unbiased with
respect to both bases. We shall further refer to such kind of
state as being mutually coherent.

In this work we analyze upper bounds for the average
entropy involving an arbitrary number of orthogonal measure-
ments. We derive a universal certainty relation valid for any
set of L measurements in an N -dimensional Hilbert space.
Assuming that N is a power of prime, we further analyze
the case of mutually unbiased bases, for which we conjecture
that the difference between the upper and the lower limits
is the smallest among all orthogonal measurements in N + 1
bases. An analogous statement that the variance of the Shannon
entropy is minimal for MUBs is based on numerical results,
while a counterpart proposition for the Tsallis entropy of order
two (also called the linear entropy) is analytically proven.

The parallel aim of the paper is to analyze certain properties
of quantum entanglement. Usually one discusses bipartite
entanglement with respect to a given splitting of the composite
Hilbert space, H = HA ⊗ HB , naturally motivated by a
concrete physical scenario. On the other hand, from a math-
ematical perspective, it is legitimate to analyze entanglement
with respect to any different splitting of the Hilbert space,
H = HA′ ⊗ HB ′ . This point of view becomes very natural in
the case of multipartite systems. For instance, in the case of
four subsystems [36] one can investigate entanglement with
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respect to the splitting AB and CD, but also with respect to
the splittings AC and BD or AD and BC.

In our current investigations, however, we focus on bipartite
N × N systems [37]. For a given splitting HA ⊗ HB one
defines the standard product basis, |φij 〉 = |eA

i 〉 ⊗ |f B
j 〉 and,

making use of an arbitrary global unitary matrix U , introduces
the rotated basis U |φij 〉, with i,j = 1, . . . ,N . One may now
study entanglement with respect to both splittings of H,
determined by the two separable orthogonal bases. A quantum
state separable with respect to any splitting of the Hilbert space
is called absolutely separable [37] and, in the case of two-qubit
systems, the structure of this set is well understood [38,39].

In this work we thus study the entanglement of a given
quantum pure state with respect to several splittings of
the composite Hilbert space. In a close analogy to the
problem of uncertainty relations, in which one analyzes the
average measurement entropy, we analyze here the average
entanglement of a pure quantum state, computed with respect
to an arbitrary collection of L splittings of the Hilbert space,
related by global unitary matrices. Relaying on the fact that
the real projective space RP 3 is nondisplaceable in CP 3 by a
unitary transformation, we show that, for any two splittings of
H4 into two subspaces of size two, there exists a mutually
entangled state, maximally entangled with respect to both
partitions. Numerical results allow us to conjecture that the
same statement can be true for N × N systems.

This work is organized as follows: In Sec. II we introduce
necessary notation and discuss trivial certainty relations for
two orthogonal measurements. Some consequences of this
result are further investigated in Sec. III. In Sec. IV we
discuss mutual coherence in the situation with more than
two measurements and derive the certainty and uncertainty
relations relevant for any choice of L and N . The second
part of the work is devoted to entanglement of a given pure
state, quantified with respect to several different splittings
of the composite Hilbert space. In Secs. V and VI we
explore connections between the concept of mutually coherent
states and quantum entanglement by searching for mutually
entangled states and mutually entangling gates.

II. CERTAINTY RELATIONS AND MUTUALLY
COHERENT STATES

Consider a quantum state |ψ〉 ∈ HN belonging to an N -
dimensional Hilbert space HN which is measured in several
orthonormal bases determined by unitary matrices {Uk}. These
bases (each of them forms the columns of a particular Uk)
are eigenbases of some observables standing behind the
measurements. Information gained in that process can be
described by the Ingarden–Urbanik entropy [40]

SIU (|ψ〉,Uk) = Sk = −
N∑

i=1

p
(k)
i log p

(k)
i , (1)

which is the Shannon entropy calculated for the probability
distribution p

(k)
i = |〈i|Uk|ψ〉|2. The choice of the base of the

logarithm is arbitrary, but in numerical calculations we will use
natural logarithms. The entropy Sk is a non-negative quantity
upper-bounded by log N . The question about the uncertainty
and certainty relations for the two measurements (given in

FIG. 1. (Color online) Average entropy S̄ for two single-qubit
measurements related by an orthogonal matrix O ∈ O(2) as a
function of the rotation angle θ . Solid lines denote numerical
lower and upper bounds which limit the allowed region (shaded),
while dotted lines represent Maassen–Uffink and majorization lower
bounds. Dashed line corresponds to the bound Bmin derived in this
paper. The inset shows root mean square of the entropy �S̄ averaged
over the set of pure states as a function of the angle θ .

terms of U1 and U2) is devoted to the two numbers (or rather
functions of N and U2U

†
1 ) Bmin and Bmax to be determined,

such that

0 � Bmin � S1 + S2

2
� Bmax � log N. (2)

The matrix U2U
†
1 is a single quantity that matters here because,

by the transformation |ψ〉 �→ U
†
1 |ψ ′〉, one can always bring the

first unitary to be the identity 1l, while all other matrices become
multiplied by U

†
1 . A profound (although very rarely close to

optimal) example of a valid Bmin is − maxi,j log cij , with cij

denoting the modulus of the matrix element of U2U
†
1 , situated

in the ith row and the j th column. This is the well-known
Maassen–Uffink result [17].

In Fig. 1 we show behavior of the minimal and maximal
average entropy S̄ = (S1 + S2)/2 for an orthogonal matrix
O = [cos θ, sin θ ; − sin θ, cos θ ] as a function of the rotation
angle θ . Note that the case of any unitary matrix of order
N = 2 is equivalent to a certain orthogonal matrix [5]. Even
for this simple family, the minimal values S̄min are rather
cumbersome [41]. S̄min lays obviously above the Maassen–
Uffink bound [17] as well as the majorization bound BMaj2

derived in Ref. [8]. In Fig. 1 we also plot in advance our
candidate for Bmin, which in Sec. IV is derived for an arbitrary
setting described in general by L unitaries U1, . . . ,UL ∈ U(N ).
The lower bound assumes the largest value for θ = π/4, for
which the matrix O coincided with the Hadamard matrix.

On the other hand, the upper bound occurs to be trivial, as
the maximal value is always saturated, Bmax = S̄max = log 2.
This is a direct consequence of a more general statement men-
tioned already in the introduction, saying that for any choice of
a unitary matrix U ∈ U(N ) one can always find a state |ψcoh〉
of the form (1,eiφ2 , . . . ,eiφN )/

√
N such that all probabilities

are equal, |〈i|ψcoh〉|2 = |〈i|U |ψcoh〉|2 = 1/N [33,34]. This
leads to the upper bound Bmax = log N . Hence for any two
orthogonal measurements in any dimension N there exist
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FIG. 2. (Color online) Two examples of projections of two tori
T 2 and U (T 2) embedded in CP 2 on a plane. Here U ∈ U(3) and the
crosses denote the intersection points.

no nontrivial upper bounds and certainty relations. This
counterintuitive statement follows from the fact that the great
tori T N−1 embedded in the set of pure states CP N−1 is
nondisplaceable with respect to action of U(N ) [35,42]. More
intuitively, it is a generalization of an easy fact that any two
great circles on a sphere do intersect. Therefore the torus T N−1

of basis coherent states [43] (φ1 ≡ 0)

∣∣ψφ
coh

〉 = 1√
N

N∑
j=1

eiφj |j 〉,

and the torus U |ψφ
coh〉, defined in terms of any unitary matrix

U (which in the above scheme is equal to U2U
†
1 ), of states

coherent with respect to the transformed basis do intersect [33].
An arbitrary point from the intersection represents a mutually
coherent state, coherent with respect to both bases, also called
a “zero-noise, zero-disturbance state” [33]. Recent investiga-
tions show [44] that, for N = 3, both two-tori generically cross
in six or four discrete points—see Fig. 2

Note that the density matrix |ψφ
coh〉〈ψφ

coh| written in both
bases is contradiagonal [45] because it has all diagonal
elements equal. Hence, taking into account permutations of
the spectrum, the basis coherent states are as distant from
the diagonal density matrices as possible at a single orbit
of unitarily similar states. It is important to emphasize here
the difference between the set of basis coherent states, which
forms a torus, and the set of spin coherent states [46] or,
more generally, SU(K) coherent states, producing a complex
projective space CP K−1 ⊂ CP N−1.

III. FURTHER CONSEQUENCES OF TRIVIAL
CERTAINTY RELATION

The fact that Bmax = log N implies few interesting conse-
quences. Assume that Alice possesses a maximally coherent
(with respect to her computational basis |1〉, . . . ,|N〉) quantum
state |ψφ

coh〉 with tunable parameters φ2, . . . ,φN . Two immedi-
ate corollaries follow:

Corollary 1 (Sharing). For any choice of the basis on the
Bob side, Alice can always tune the phases in a way that she
can share the maximal coherence of the state |ψφ

coh〉 with Bob.
Corollary 2 (Recovering). In the presence of the unitary

evolution given by an arbitrary unitary operator U (t), so that
the considered quantum state at any time moment T is equal

to U (T )|ψφ
coh〉, Alice can always tune the phases in a way that

she can recover the maximally coherent state, i.e., U (T )|ψφ
coh〉

is maximally coherent.
A physically relevant question related to the potential

usefulness of the above corollaries concerns imperfections,
i.e., the case when the angles φ2, . . . ,φN are not ideally tuned.
What is then the coherence of the second (in Bob’s basis or
after the evolution) quantum state? In order to answer that
question we need to quantify the coherence. To this end we
resort to the l1 norm of coherence

Cl1 (ρ) =
∑
i �=j

|ρij | =
(∑

i

|〈i|ψ〉|
)2

− 1, (3)

which is a proper measure [43,47] of the discussed resource.
The second equality in (3) is valid only in the case when ρ is
pure. For the maximally coherent state the measure attains its
maximum equal to N − 1.

We start with the following simple lemma:
Lemma 1. Let |ψφ

coh〉 be a maximally coherent state and let
|ξ 〉 be any pure state such that∣∣〈ψφ

coh

∣∣ξ 〉∣∣2 = 1 − ε, (4)

with some error ε. Then

Cl1 (|ξ 〉) � N − 1 − εN. (5)

To prove this lemma we only notice that
√

1 − ε = ∣∣〈ψφ
coh

∣∣ξ 〉∣∣
= 1√

N

∣∣∣∣∣∣ξ1 +
N∑

j=2

e−iφj ξj

∣∣∣∣∣∣ �
1√
N

∑
j

|ξj |, (6)

where ξj = 〈j |ξ 〉, and rearrange the resulting inequality by
using (3).

We know that the angles in question can be tuned in a way
that, for any unitary U , the state∣∣ψ̃φ

coh

〉 = U
∣∣ψφ

coh

〉
(7)

is maximally coherent. Moreover, if we prepare the state |ψφ
coh〉

imperfectly, so that instead of it we have at our disposal a state
|ξ 〉 satisfying (4), then also∣∣〈ψ̃φ

coh

∣∣U ∣∣ξ 〉∣∣2 = 1 − ε. (8)

The bound (5), which is linear in the error ε, thus immediately
applies to the transformed state U |ξ 〉. We observe that a general
preparation imperfection described by ε linearly decreases the
coherence of the quantum state. In the next part, we show that,
whenever the imperfections are provided only by the phase
mismatch (φ1 = 0),

|ξ 〉 = ∣∣ψφ+χ
coh

〉
, (9)

with |χj | � ε, then the coherence decreases by a term
quadratic in ε. We have the chain of relations

∣∣〈ψφ
coh

∣∣ξ 〉∣∣2 = 1

N2

∣∣∣∣∣∣
∑

j

eiχj

∣∣∣∣∣∣
2

� 1

N2

∣∣∣∣∣∣
∑

j

e±iε

∣∣∣∣∣∣
2

, (10)
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which directly lead to∣∣〈ψφ
coh

∣∣ξ 〉∣∣2 � 1 − sin2(ε) for even N,∣∣〈ψφ
coh

∣∣ξ 〉∣∣2 � 1 − cN sin2(ε) for odd N,
(11)

with cN = 1 − 1/N2. These bounds, together with Lemma III
show that the difference between N − 1 and Cl1 (U |ξ 〉) is
proportional to ε2.

IV. MUTUAL COHERENCE FOR SEVERAL
MEASUREMENTS

A. Uncertainty and certainty relations

In a more general setup, one studies L orthogonal mea-
surements determined by a collection of L unitary matrices
{U1 ≡ 1l,U2, . . . ,UL}. The mutual coherence together with
related concepts while described in terms of the information
entropies is captured by the uncertainty and certainty relations

0 � Bmin � 1

L

L∑
j=1

Sj � Bmax � log N, (12)

where, as before, Sj is the Shannon entropy of the probability
distribution p

(j )
i = |〈i|Uj |ψ〉|2. In general, it is not an easy

task to provide nontrivial bounds Bmin and Bmax valid for a
broad class of measurements. Several lower bounds, leading
to uncertainty relations, were recently studied in the litera-
ture [5,6,8,48], but we present below an alternative lower
bound. Furthermore, we derive in Sec. IV B a universal
upper bound which leads to a certainty relation. Note that the
information acquired in the set of measurements can also be
characterized by the average entropy of Rényi or Tsallis [49],
which reduce to the Shannon entropy in particular cases.

For a given set of bases defining orthogonal measurements,
the natural question appears of whether the average entropy
can achieve the maximal value log N . This is the case if there
exists a mutually coherent state, i.e., the state |ψφ

coh〉 such that

1

L

L∑
j=1

Cl1

(
Uj

∣∣ψφ
coh

〉) = N − 1 (13)

is maximal. In order to answer the above question, we use the
decomposition of unitary matrices [34,50], being a corollary
of the fact that |ψφ

coh〉 exists for L = 2:

Uj = D(ω(j ))FN (1 ⊕ Yj )F†
ND(−φ(j )). (14)

This parametrization involves the phase gate

D(α(j )) = diag
(
eiα

(j )
1 ,eiα

(j )
2 , . . . ,eiα

(j )
N

)
, (15)

and the Fourier matrix (FN )kl = e2iπ(k−1)(l−1)/N/
√

N . The
matrices Yj represent arbitrary (N − 1)-dimensional unitary
operations acting on the subspace spanned by |2〉, . . . ,|N〉.

The phase gate D(−φ(j )) acting on the state |ψφ(j )

coh 〉 produces
the dephased maximally coherent state of the form |ψ0

coh〉 =∑N
j=1 |j 〉/√N . Further application of the Fourier gate F†

N

transforms the state |ψ0
coh〉 into |1〉. The latter state remains

unchanged if one applies 1 ⊕ Yj with an arbitrary Yj . In the
final steps, the inverse Fourier transform together with the

second phase gate in (14) leads to the final maximally coherent
state |ψω(j )

coh 〉. We are now in position to answer the major
question of this section.

Corollary 3. The unitary matrices 1l,U2, . . . ,UL given by
the decomposition (14), such that at least one Yj �= 1l, possess
a mutually coherent state if the phase gates D(−φ(j )) are the
same for all matrices in question, i.e., they do not depend on
the index j = 2, . . . ,L.

The above corollary is an immediate consequence of the
involved decomposition. It does not exclude other possibilities
with special φ(j )-dependent internal unitaries Yj allowing for
different right phase gates, but the situation described by
Corollary 3 seems to be generic.

We note in passing that the concept of mutual coherence is
related to nonextensibility of mutually unbiased bases [51].
The set of MUBs is called extensible if there exists an
additional basis formed by the states being mutually coherent
with respect to the MUBs in question [52]. Thus, if the
analyzed bases possess no mutually coherent state they are
nonextensible.

B. Generally valid bounds

Our major aim is to derive the bounds Bmin and Bmax

relevant for a general setting (arbitrary L and N ) described in
terms of a collection of unitaries U1, . . . ,UL. To achieve this
goal, we need to briefly introduce the Bloch representation of a
quantum state. Denote by σi , i = 1, . . . ,N2 − 1, the traceless
and Hermitian generators of the group SU(N ) fulfilling
Trσiσi ′ = 2δi ′i , which are given by Pauli matrices for N = 2.
Any quantum state can be spanned by a basis formed by the
identity 1lN and the matrices {σi}. In particular, the density
matrix of the state |ψ〉 can be written as

|ψ〉〈ψ | = 1

N

⎛
⎝1lN +

√
N (N − 1)

2

N2−1∑
i=1

xiσi

⎞
⎠. (16)

The Bloch vector x is constrained by x · x = 1 and [53,54]

2(N − 2)x =
√

N (N − 1)/2 Tr((x · σ )σ ). (17)

Let us now rescale the original probabilities p
(k)
i to be

p̃i,k = L−1p
(k)
i ≡ 1

L
|〈i|Uk|ψ〉|2, (18)

so that p̃i,k sum up (with respect to both 1 � i � N and
1 � k � L) to 1. In other words, we treat L orthogonal
measurements as a single POVM involving N · L Kraus
operators.

Define the “purity” coefficient

P =
L∑

k=1

N∑
i=1

p̃2
i,k,

1

LN
� P � 1

L
. (19)

We now prove a statement crucial in the derivation of the
general bounds.

Theorem 1. The coefficient P is bounded,

Pmin � P � Pmax, (20)

032109-4



CERTAINTY RELATIONS, MUTUAL ENTANGLEMENT, AND . . . PHYSICAL REVIEW A 92, 032109 (2015)

by

Pmin = 1

LN
+
(

N − 1

2NL2

)
Mmin,

Pmax = 1

LN
+
(

N − 1

2NL2

)
Mmax,

(21)

where Mmin and Mmax respectively denote the minimal and
the maximal eigenvalues of the matrix

Mj ′j =
L∑

k=1

N∑
i=1

Tr(U †
k |i〉〈i|Ukσj ′ )Tr(U †

k |i〉〈i|Ukσj ). (22)

We start the proof with the chains of inequalities defining
Pmin and Pmax:

P � max
|ψ〉

P � max
x·x=1

P = Pmax, (23)

P � min
|ψ〉

P � min
x·x=1

P = Pmin. (24)

In other words, optimization with respect to |ψ〉 is equivalent
to optimization made for the Bloch vector x constrained by
x · x = 1 and (17). We obtain the desired bounds by skipping
the second constraint. Due to the fact that all matrices σi are
traceless, we have the identity

N∑
i=1

Tr(U †
k |i〉〈i|Ukσj ) = 0, (25)

leading to the dependence of P on x, of the form

P(x) = 1

LN
+ N − 1

2NL2

N2−1∑
j ′,j=1

Mj ′j xjxj ′ . (26)

The last step of the proof is the direct optimization with respect
to x which, since the matrix M is Hermitian, picks up its
relevant eigenvalues.

We are now in position to present the major result of this
section, which leads to purity-optimized entropic uncertainty
and certainty relations.

Theorem 2. The valid bounds Bmin and Bmax are of the form

Bmin = LPmax[a(K + 1) log(K + 1) + (1 − a)K log K],

(27)

where K = �(LPmax)−1�, a = (LPmax)−1 − K , �·� denotes
the floor function, and

Bmax = S(Q) − log L, (28)

with S(Q) being the Shannon entropy of the probability vector

Q = 1

LN

{
1 + (LN − 1)

√
r, 1 − √

r, . . . ,1 − √
r︸ ︷︷ ︸

LN−1

}
, (29)

given by r = (LNPmin − 1)/(LN − 1).
The lower bound Bmin is a direct extension of Theorem

2 established for mutually unbiased bases by Wu, Yu, and
Mølmer in Ref. [30]. Because our Theorem IV B generalizes
and extends Theorem 1 from Ref. [30], Bmin is given as in
Theorem 2 therein with their C being set to LPmax. Note that
the results of Wu et al. were based on the detailed analysis

performed by Harremoës and Topsøe [31]. To derive Bmax

we can directly rely on Ref. [31], using their Theorem II.5
part i. This result provides an upper bound for the sum of
the Shannon entropies as a function of the coefficient P .
Since this bound is a decreasing function of P , it remains
valid when P becomes substituted by its lower bound, namely
Pmin. Note that the bound Bmax is the genuinely first result
of that kind, while the alternative lower bounds can also be
obtained by averaging the pairwise bounds (for L = 2) or by
multi-observable majorization [8]. There is no possibility to
get the pairwise counterpart of Bmax because, for L = 2, one
has Mmin = 0, r = 0 and consequently S(Q) = log N .

In the following sections we study several numerical
examples showing the behavior of the optimal bounds in
comparison with the analytical results at hand, including the
progress described above.

C. Three measurements for qubits

A great circle is nondisplaceable in a sphere, so any
two such circles will always intersect. However, three great
circles belonging to a sphere will generically not cross in a
single point—see Fig. 5. Therefore one can expect that, for
three orthogonal measurements of a qubit in three bases, the
average entropy of the probability vectors representing the
measurement outcomes will be less than the maximal value.

To investigate this issue we analyze a one-parameter family
of three measurements, determined by three unitary matrices,
depending on an angle θ :

U1 = 1l2, U2 =
(

cos θ sin θ

sin θ − cos θ

)
,

(30)

U3 =
(

cos θ sin θ

i sin θ −i cos θ

)
.

Note that, for θ = 0, all three bases coincide, while in the
case of θ = π/4 they become mutually unbiased. Figure 3
shows the average entropy of measurement in these three
bases as a function of the angle θ : the shaded area shows
the allowed region bounded by solid lines, where dotted (or
dashed-dotted) lines denote bounds obtained by using the

FIG. 3. (Color online) As in Fig. 1 for L = 3 measurements of
a qubit. Note the upper bound Bmax (28) represented by the upper
dashed curve, which provides a nontrivial entropic certainty relation,
and the lower bound Bmin (27), which becomes tight at θ = π/4 for
MUBs.

032109-5



ZBIGNIEW PUCHAŁA et al. PHYSICAL REVIEW A 92, 032109 (2015)

FIG. 4. (Color online) Maximal and minimal value of the aver-
aged entropy S̄ for a triple of random unitary gates of size N = 2 as a
function of the parameter ξ , which characterizes the average deviation
of unitary matrices from identity, and equals unity for MUBs.

Maassen–Uffink relation [17] and the majorization bound [8].
Dashed lines correspond to the bounds (27) and (28) provided
by Theorem 2. Note that the difference between the upper
and the lower limits, computed numerically and represented
by solid lines, is the smallest for θ = π/4, corresponding to
MUBs. A similar property holds for the root-mean-square
deviation of the entropy, �S̄, presented in the inset.

In order to explore the generic case of three arbitrary
orthogonal measurements of a qubit, we work in the first basis
once more by setting U1 = 1l2 and draw the remaining two
matrices U2 and U3 according to the Haar measure on the
unitary group U(2). In Fig. 4 we present the maximal and
minimal values of the average entropy S̄ optimized over the
set of all pure states for collection of three randomly chosen
bases. The variable ξ on the horizontal axis characterizes the
average deviation of the unitary transformation matrices from
identity and is normalized as 0 � ξ � 1. It is defined by

ξ 2 = 4

3

3∑
j=1

vj (1 − vj ), (31)

where the probabilities: v1 = |(U2)11|2 = cos2 θ1,
v2 = |(U3)11|2 = cos2 θ2, and v3 = |(U2U

†
3 )11|2 =

| cos θ1 cos θ2 + sin θ1 sin θ2e
i(β1−β2)|2, are expressed

as functions of phases entering the parametrization of
unitary matrices U2 = [cos θ1, sin θ1; − sin θ1, cos θ1] and
U3 = [e−iβ2 cos θ2, − e−iβ1 sin θ2; eiβ1 sin θ2,e

iβ2 cos θ2].
The value ξ = 0 corresponds to the trivial case θ1 = 0 = θ2,

for which U2 = 1l and U3 is a phase gate. The opposite value
ξ = 1 describes the case of MUBs, for which θ1 = π/4 =
θ2 and β1 = π/4 = β2. For L = 3 MUBs of size N = 2 the
known bounds for the average entropy [28] are tight: BSR

min =
2
3 log 2 and

BSR
max = 1

2
log(6) − 1

2
√

3
log(2 +

√
3) ≈ 0.516, (32)

respectively. Note that log 2 ≈ 0.693, giving in this case that
the ultimate upper bound attained by mutually coherent states
is larger than the optimal value (32). In other words, the
collection of three MUBs for N = 2 does not share any

mutually coherent state. The bound Bmax, (28), provides a
reliable upper limitation, especially beyond the MUB case.

A closer look at Fig. 4 reveals that the trivial lower bound
equal to 0 is attained only if ξ = 0, as for other values of
ξ the nontrivial entropic uncertainty relations apply. On the
other hand, the maximal upper bound log 2, being the signature
of mutual coherence, is saturated for every allowed value of
ξ . This asymmetry is a major qualitative difference between
mutual coherence and the 0-entropy case or, in different terms,
between certainty and uncertainty relations. While the latter
situation is typically forbidden by quantum mechanics, the
former case is rather common. When one comes closer to
mutual unbiasedness of the bases in question, it is however
more likely to find examples which possess no mutually
coherent state at all.

Observe that the difference between the upper and the
lower limits is the smallest for ξ = 1, corresponding to MUBs.
Numerical results show that a similar property holds for the
variance of the entropy. We are not in position to prove this
fact analytically for the Shannon entropy. However, a related
statement formulated in terms of the variance of the Tsallis
entropy of order two holds for any dimension N , for which a
complete set of N + 1 MUBs exists—see Appendix C.

Geometrical intuition on the Bloch sphere

Any orthogonal basis in H2 can be represented as a pair of
antipodal points on the Bloch sphere. With three bases (three
pairs of antipodal points) one can thus associate (generically)
eight spherical triangles laying on the Bloch sphere. Let
A� and P� denote, respectively, the smallest area and the
smallest perimeter calculated among all these triangles. Both
parameters are equal to zero if all three bases do coincide
and achieve the maximum if the three bases in question are
mutually unbiased. Such a MUB case with A� max = π/2 and
P� max = 3π/2 is sketched in Fig. 5. Moreover, we observe
that the geometric parameters A� and P� are invariant with
respect to any unitary rotation of the reference frame.

For any triple of random unitary matrices of order N = 2
we found (repeating the calculations leading to Fig. 4) the
parameters A� and P�, and further computed extremal values
of the mean entropy S̄ optimized over the set of pure states.
Results presented in Fig. 6 show that the area of the minimal
triangle carries information concerning the upper bound for
the mean entropy while the smallest perimeter characterizes
the lower bound. We observe that the proposed geometrical
invariants (area and perimeter) reliably capture the property of
mutual unbiasedness visible as the narrow entropy window on
the right-hand side of the plot.

D. N + 1 measurements in N dimensions

Consider a family of four bases in H3 determined by the
following unitary matrices:

U1 = 1l3, U2 = (F3)4θ/π , (33)

U3 = D(F3)4θ/π , U4 = D2(F3)4θ/π . (34)

Here F3 represents the Fourier matrix of size three, while D =
diag(1, exp(i2π/3), exp(i2π/3)). As in the one-qubit case, all
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FIG. 5. (Color online) Three equators on the sphere usually do
not cross at a single point as shown in the figure based on the logo
of the International Conference on Squeezed States and Uncertainty
Relations (ICSSUR) held in Gdańsk in 2015, which can be interpreted
as a triple of MUBs for one qubit. Any collection of three orthogonal
bases in H2 can be associated with triangles on a sphere characterized
by the minimal area A� or the minimal perimeter P�. In the case of
the MUBs shown here, all eight spherical triangles are of equal shape
and size.

matrices become diagonal for θ = 0 and correspond to the
same basis, while for θ = π/4 the bases are mutually unbiased.

Figure 7 presents the behavior of numerically computed
maximal and minimal values of the average entropy S̄

compared with analytical bounds. Note that the difference
between the numerical upper and the lower limits, which
are represented by solid lines, is once more the smallest for
θ = π/4, corresponding to MUBs. A similar property holds
as well for the root-mean-square deviation of the entropy, �S̄,
presented in the inset.

FIG. 6. (Color online) Limits of the average entropy S̄ for L = 3
measurements optimized over pure states from H2. The parameter
S̄max (upper abscissa; yellow) is depicted as a function of the smallest
area A� of the spherical triangle while S̄min (lower abscissa; blue) is a
function of the smallest perimeter P�. Both parameters equal zero if
the three bases coincide and they attain their maximal values A� max

and P� max for a set of MUBs.

FIG. 7. (Color online) As in Fig. 3 for L = 4 orthogonal mea-
surements in N = 3 dimensions. Note the nontrivial behavior of the
maximal value S̄max and the upper bound Bmax, which attain their
minima for θ = π/4 corresponding to MUBs.

Let us now proceed to larger dimensions of the Hilbert
space. In this place we are going to restrict our attention to
prime-power dimensions, N = pk , for which a set of N + 1
MUBs is known [55,56]. In this very case concrete upper and
lower bounds for the average entropy S̄ were obtained by
Sanchez–Ruiz [28,29],

BSR
min =

{
log N+1

2 for N odd
N

2(N+1) log N
2 + N/2+1

N+1 log
(

N
2 + 1

)
for N even,

BSR
max = log N + (N − 1)2 log (N − 1)

(N + 1)N (N − 2)
. (35)

and later generalized by Wu, Yu, and Mølmer in Ref. [30].
Observe that both bounds asymptotically behave as log N −
const., where the constant reads aSR

min = log 2 ≈ 0.693 for the
lower bound and it vanishes for the upper bound, i.e., aSR

max = 0.
Figure 8 shows both bounds (dashed lines) compared with

numerically obtained lower and upper limits S̄min and S̄max.
The central curve shows the behavior of the mean value 〈S̄〉ψ ,
averaged over entire set of pure states in HN with respect to
the unitarily invariant Haar measure. For dimensions N of the

FIG. 8. (Color online) Behavior of the average entropy S over
a set MUBs in HN as a function of the dimensions N for power
of primes. Upper and lower bounds of Sanchez–Ruiz are compared
with numerical maximum and minimum taken over the set of all pure
states.
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order of 20 the error bars, marked in the graph, are smaller
than the symbol size. Note that the allowed, shaded region, is
very close to the upper bound of Sanchez. This suggests that
the bound BSR

max is close to optimal, while it is more likely to
improve the lower bound BSR

min.
The mean Ingarden–Urbanik entropy of a random pure state

is given by [57]

〈SIU 〉 = �(N + 1) − �(2) �
N→∞

log N − (1 − γ ), (36)

where � is the digamma function and γ ≈ 0.577 is the Euler
gamma constant. Unitary invariance of a random state |ψ〉
gives us that, for a complete set of MUBs in dimension N =
pk , we have

〈
1

N + 1

N+1∑
i=1

SIU (|ψ〉,Ui)

〉
= �(N + 1) − �(2)

�
N→∞

log N − (1 − γ ).

(37)

Even though we were in a position to study the problem for
dimensions not exceeding 50, we found it interesting to analyze
limiting behavior of our results. All three numerical curves can
be fit with the general relation Sj ≈ log N − const., where the
fit values are amin ≈ 0.48, amax ≈ 0.07, and aav ≈ 0.42 for
the average over all pure states. The latter value coincides
well with the asymptotic result a∞ = 1 − γ ≈ 0.422, while
the former values contribute to the conjecture that the lower
analytical bound (35) of Sanchez might be easier to improve.

V. MUTUALLY ENTANGLED STATES

In the second part of this work we link uncertainty and
certainty relations for the average measurement entropy with
quantum entanglement related to different splittings of the
composite Hilbert space. Although quantum entanglement
is usually analyzed with respect to a fixed splitting of
the Hilbert space, H = HA ⊗ HB , distinguished by strong
physical arguments, following Refs. [37–39] we analyze also
entanglement with respect to any other splitting, say H =
HA′ ⊗ HB ′ , linked to the original splitting by a global unitary
matrix U . Asking about an average entanglement of a given
pure state with respect to several splittings of a composite space
H we arrive at a problem closely related with the standard
entropic uncertainty relations discussed above.

Entanglement of any pure state of a bipartite system |ψ〉 ∈
HA ⊗ HB can be characterized by its entropy of entanglement
equal to the von Neumann entropy of the partial trace
E(|ψ〉) := S(ρA), where ρA = TrB |ψ〉〈ψ |. In analogy with
the notions presented in the previous sections we discuss the
mutual entanglement of a given pure state with respect to
an arbitrary number of L different splittings of the N × N

composite system, determined by global unitary matrices
Wj ∈ U (N2) with j = 1, . . . ,L. We assume here that both
Hilbert spaces HA and HB are N dimensional. A direct
counterpart of the uncertainty relations (12) is

0 � Emin � Ē � Emax � ln N, (38)

FIG. 9. (Color online) Two examples of projections of RP 3 and
U (RP 3) embedded in CP 3 on a plane. Projection of intersection
points marked by crosses correspond to the mutually entangled states.

where the mutual entanglement, averaged with respect to L

different splittings of the Hilbert space, reads

Ē := 1

L

L∑
j=1

E(Wj |ψ〉), (39)

and {Wj } with j = 1, . . . ,L denotes a collection of L bipartite
unitary gates, i.e., unitary matrices of order N2. Note that
similarly to the case of ordinary uncertainty relations it is
convenient to set W1 = 1l.

We are now going to study the simplest case of N = 2
and L = 2, which deals with two splittings only. Apart from
the original splitting given by the computational product basis
|i,j 〉 (i,j = 1,2), there is the second splitting described by the
transformed basis W2|i,j 〉. We have the following:

Proposition 1. Consider the case N = 2 and L = 2, and
an arbitrary unitary matrix W2 ∈ U(4). Then (a) the upper
bound in (38) is saturated because there exists a mutually
entangled state |ψent〉, so that Emax = log 2; and (b) the lower
bound in (38) is saturated as well and there exists a mutually
separable state |ψsep〉, so that Emin = 0.

A proof of this proposition based on canonical form of
a two-qubit gate [58,59] is provided in Appendix A. To
show part (b) of the above proposition one can also rely on
geometric properties of projective spaces. Let us recall that
in the two-qubit case the manifold of maximally entangled
states is U(2)/U(1) = RP 3. As it is known that RP M is
nondisplaceable in CP M with respect to transformations
by U(M + 1) [42,60], two real manifolds embedded into a
complex one have to intersect—see Fig. 9. In the particular
case M = 3, the presence of the intersection points directly
implies that for any choice of W2 ∈ U(4) there exists a mutually
entangled state |ψent〉 maximally entangled with respect to
the partition of the Hilbert space in the computational basis
W1 = 1l and in the basis rotated by W2.

For any family of L = 2 unitary matrices W1,W2 of
order four, the upper bound for the averaged entanglement
is saturated: Ē = log 2. Therefore we show in Fig. 10 the
averaged entanglement Ē for a family of L = 3 unitary
matrices of order four explicitly given later in (50). This
plot, analogous to Fig. 3, displays nontrivial upper bounds
for Ē. Moreover, these results suggest that there exists a state
mutually separable with respect to all three splittings of H4

into H2 ⊗ H2.
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FIG. 10. (Color online) Average entanglement Ē for family of
three unitary gates (50) of size four as a function of the phase α. For
α = π/4 corresponding to MEBs, the upper bound for Ē attains its
minimum, as well as the root-square deviation �Ē shown in the inset.

Numerical results obtained for the dimension N = 3 sug-
gest that, for any unitary gate W2 of order nine, there exists
a related mutually entangled state, so that we conjecture that,
in general, Emax = log N . To prove this conjecture it would
be enough to show that the space of maximally entangled
states U(N )/U(1) is nondisplaceable in CP N2−1 with respect
to action of U(N2). Note that the dimension of this space is
N2 − 1, and equals the half of the dimension of the embedding
space, because it forms a Lagrangian manifold. Since the
similar scenario occurred for quantum coherences, it is thus
tempting to conjecture that the above statement, true if N = 2,
holds also for any N � 3.

VI. MUTUALLY ENTANGLING GATES

In the previous section we introduced the concept of mutual
entanglement and studied this notion in the simplest case
of two different splittings of the composite Hilbert space.
Now we consider an arbitrary number of L � 3 bipartite
unitary matrices Wj , j = 1, . . . ,L (with W1 = 1l), which
define different tensor-product structures. Since one copes with
L different splittings of the entire system into subsystems, one
can define the notion of separable and maximally entangled
states with respect to these partitions and ask about the
quantum states for which Ē given in (39) is minimal or
maximal.

The same approach can be applied, for instance, in the
particular case N = 4, as the system consists of two ququarts
or rather four qubits A,B,C,D. For instance, setting L = 3
and choosing W2 and W3 to be suitable permutation matri-
ces, which define bipartite splittings AB|CD, AC|BD and
AD|BC, respectively, one can study the mutual entanglement
with respect to different partitions and look for maximally
entangled multipartite states [61–64] such that all their
reductions are maximally mixed. In the case of four qubits,
there are no pure states maximally entangled with respect to
the three above partitions [36,65].

In the case of bipartite unitary gates one distinguishes
special perfect entanglers, which transform a product basis
into maximally entangled basis [66]. More formally, a unitary
matrix W acting on HN ⊗ HN will be briefly called an

entangling gate, if all its columns are maximally entan-
gled [67], so it transforms separable basis states into maximally
entangled states

E(W |i,j 〉) = log N for i,j = 1, . . . ,N. (40)

Such gates are known for any N [68,69], so for L = 2 there
exists a gate for which the minimal mutual entanglement Ēmin

will not be smaller than 1
2 log N . Quite interestingly, for two-

qubit systems such gates are especially distinguished, because
they maximize the entangling power, i.e., the average entropy
of entanglement produced from a generic separable state [70].

Analyzing the case of a larger number of unitaries L �
3, we are going to demonstrate the existence of mutually
entangling gates, which are able to transform product states
into states maximally entangled with respect to all L splittings
in question. In other words, these unitary matrices are formed
out of maximally entangled vectors, which remain maximally
entangled in any transformed splitting. In a direct analogy to
the notion of mutually unbiased bases [56] we define mutually
entangled gates.

Definition 1. We say that a collection of unitary matrices
W1 = 1l,W2, . . . ,WL ∈ U(N2) is mutually entangled if, for i �=
j , the gates W

†
i Wj satisfy condition (40), i.e., the columns of

the matrix Wj are maximally entangled in the basis given by
Wi and vice versa.

We shall also say that the columns of these unitary matrices
form mutually entangled bases (MEBs). As shown below, both
concepts happen to be closely related.

Theorem 3. If there exists a set of m MUBs in HN , then
there also exists a set of m MEBs in HN ⊗ HN .

In other words, Theorem 3 states that m mutually unbiased
bases provide the set of m mutually entangling gates, for which
the average entanglement Ē satisfies

m − 1

m
log N � Ē � log N. (41)

We prove the above theorem by constructing the relevant
entangling gates. First we recall the construction of unitary
bases by Werner [68], called “shift and multiply.” For a
given Latin square {λ(j,k)}Nj,k=1 and a collection of Hadamard
matrices H (1),H (2), . . . ,H (N) one constructs unitary matrices

U (i,j ) =
N∑

k=1

H
(j )
i,k |λ(j,k)〉〈k|, (42)

which form an orthogonal basis of the Hilbert–Schmidt space
of complex matrices of order N . Thus the columns of a matrix

V = 1√
N

N∑
k,i,j=1

H
(j )
i,k |λ(j,k),k〉〈i,j | (43)

form a maximally entangled basis in CN2
. Note that V can be

written as (T denotes the transposition)

V = P (H (1)T ⊕ H (2)T ⊕ · · · ⊕ H (N)T )USWAP, (44)

where USWAP is a swap permutation matrix and P is a
permutation matrix given by

P =
∑
k,l

|λ(l,k),k〉〈l,k|. (45)
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The rows of the matrix V do not generate a maximally
entangled basis, but if we permute its columns and define

W = P (H (1)T ⊕ H (2)T ⊕ · · · ⊕ H (N)T )P T , (46)

then the rows and columns of the matrix W generate a
maximally entangled basis. The above reasoning leads to the
following explicit construction of mutually entangled gates.

Assume that we are given a Latin square {λ(j,k)}Nj,k=1 and
a collection of k mutually unbiased bases M1,M2, . . . ,Mk of
size N . The bases are unbiased, that is

M
†
i Mj is a rescaled Hadamard matrix for i �= j. (47)

Using these matrices we introduce a collection of bases:

W (i) = P (1l ⊗ Mi)P
T . (48)

We have the following:
Corollary 4. Let λ be a Latin square of size N and let P be

defined as in (45). Then the bases W (i) are mutually entangled.
Proof. We write for i �= j :

W (i)†W (j ) = (P (1l ⊗ Mi)P
T )†P (1l ⊗ Mj )P T

= P (1l ⊗ M
†
i Mj )P T . (49)

Since M
†
i Mj is a rescaled Hadamard matrix we obtain that

W (i)†W (j ) is a unitary basis. �
To demonstrate how the above construction works in action

we provide in Appendix B the two collections of mutually
entangled bases, respectively, for 2 × 2 and 3 × 3 systems.

A. Mutual entanglement for two-qubit system

Let us consider a family of matrices defined in (30) which
interpolates between {1l,1l,1l} for α = 0 and MUBs for α =
π/4. From the above family we construct bases of C4 as⎧⎪⎪⎪⎨
⎪⎪⎪⎩W0 =1l4,W1 =

⎛
⎜⎜⎜⎝

cos(α) 0 0 sin(α)
0 cos(α) sin(α) 0
0 sin(α) − cos(α) 0
sin(α) 0 0 − cos(α)

⎞
⎟⎟⎟⎠,

W2 =

⎛
⎜⎜⎜⎝

cos(α) 0 0 sin(α)
0 cos(α) sin(α) 0
0 i sin(α) −i cos(α) 0
i sin(α) 0 0 −i cos(α)

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭.

(50)

In the case of α = π/4 the above family forms mutually
entangled bases. We analyzed lower and upper bounds for
the average entanglement Ē with respect to three splittings
of H4, as defined in (39). In the case of L = 2 splittings the
upper bound, Ēmax = log 2, can be saturated, but for L = 3
the upper bound becomes not trivial—see Fig. 10. The average
entanglement Ē attains its minimal value, ĒMEB

max given by (32),
for three mutually entangled bases corresponding to α = π/4.

VII. CONCLUDING REMARKS

A lot of work was recently done to improve and generalize
entropic uncertainty relations, which provide lower bounds

for the average entropy of probability vectors describing
measurements in several orthogonal bases. Following the ideas
of Sanchez [28] in this work we analyzed in parallel also
upper bounds for the average entropy and obtained entropic
uncertainty (27) and certainty (28) relations valid for an
arbitrary number of measurements of any pure state in HN .
The main motivation for such a study stems from a search of
states which are simultaneously unbiased with respect to bases
determining orthogonal measurements. Such states display the
effects of quantum coherence with respect to all these bases,
so that the average entropy becomes maximal.

In the case of any L = 2 measurements in an arbitrary
N -dimensional Hilbert space, mutually coherent states exist,
so the upper bound for the average entropy is saturated,
S̄ = log N . This result, related to nondisplaceability of the
great torus in complex projective space CP N−1 [35], does
not hold for a larger number of L � 3 measurements, for
which certainty relations become nontrivial. Numerical results
show that the analytic upper bound derived for MUBs by
Sanchez [28] is rather precise, so it would be desirable to
generalize them for other collections of orthogonal bases.

Analyzing probabilities obtained in sequence of L orthogo-
nal measurements of a quantum state one can also interpreted
them as a result of a single generalized measurement P ,
called a positive-operator-valued measure (POVM), which
consists of N · L projection operators. Hence the averaged
entropy (12) of L orthogonal measurements is equal, up to
an additive constant log L, to the entropy of the probability
vector describing the POVM. Furthermore, the so-called
informational power of P [71] associated with the set of
MUBs, is closely related with the minimal entropy S̄min,
averaged over L = N + 1 measurements and minimized over
the set of all pure states. This quantity occurs to be equal
to log N − S̄min [72–74], while the quantity log N − S̄max

coincides with the minimal relative entropy.
A complete set of L = N + 1 mutually unbiased bases in

HN forms an optimal scheme of a quantum measurement dis-
tinguished be several statistical properties [56]. Our numerical
results allow us to conjecture that the complete set of MUBs
minimizes fluctuations of the average entropy while varying
the pure state investigated.

Conjecture 1. For any choice of L = N + 1 measurements
in a dimension N = pk the lower bound for the averaged
entropy S̄ achieves its maximum and the upper bound achieves
its minimum if L unitary matrices form a MUB.

Conjecture 2. The standard deviation of the averaged
entropy �S̄ = (〈S̄2〉ψ − 〈S̄〉2

ψ )1/2, averaged over the entire
set of pure states of size N is minimal if the collection of
L = N + 1 unitary matrices forms a MUB.

Not being able to prove Conjecture 2 for the Shannon
entropy we provide in Appendix C a proof of an analogous
proposition formulated in terms of the Tsallis entropy of order
two. This result contributes to our understanding of the special
role mutually unbiased bases play in the theory of quantum
measurement.

The second key goal of this work was to establish a closer
link between entropic uncertainty relations and the theory
of quantum entanglement. While one usually investigates
entanglement with respect to a fixed splitting of the Hilbert
space, we study here also entanglement with respect to
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different splittings of the composite Hilbert space, related by
a global unitary transformation.

For any composed Hilbert space H = HN ⊗ HN , the
corresponding product basis |i,j 〉 and a global unitary gate
U ∈ U(N2) one can investigate entanglement with respect to
the transformed bases, U |i,j 〉, with i,j = 1, . . . N . For any
pure state |ψ〉 of a bipartite system we analyzed its average
entanglement Ē with respect to several choices of the separable
bases, linked by unitaries U1, . . . ,UL, and investigated lower
and upper bounds for this quantity.

In the case of two-qubit systems, the average entanglement
for L = 2 can attain the limiting value log 2 because a state
mutually entangled with respect to both splittings exists. This
result follows from the fact that the set of two-qubit maximally
entangled states, equivalent to the real projective space RP 3,
is nondisplaceable in CP 3 with respect to the action of
U(4). Numerical results allow us to conjecture that a similar
statement holds also in higher dimensions.

It is worth emphasizing that nondisplaceability of real
projective spaces in the corresponding complex projective
space [42] admits other applications. Consider (N = 3)-
dimensional space corresponding to angular momentum j =
(N − 1)/2 = 1 and the set C of SU(2)-coherent states obtained
by rotating the maximal-weight state |j,j 〉 = |1,1〉 by the
Wigner rotation matrix [46]. In the stellar representation these
states are described by two stars coinciding with a single point
of the sphere. The set A of “anticoherent states,” which are
as far from C as possible, contains the state |1,0〉 represented
by two stars in antipodal points at the sphere. Hence the set
A has the form of the real projective space RP 2, which is
nondisplaceable in CP 2 with respect to the action of U(3).
This implies that the sets A and A′ = U (A) do intersect, so
there exists a pure state anticoherent with respect to any two
choices of the maximal-weight state.

Let us conclude the paper with a short list of open questions.
It is a challenge to improve explicit “certainty relations”:
upper bounds for the average entropy obtained for L � 3
measurements with respect to arbitrary orthogonal bases. In
the case of MUB the upper bounds of Sanchez [28] occur to

be rather precise, so it is more likely to improve his lower
bounds. It would be interesting to derive analogous lower and
upper bounds for the averaged entanglement of a bipartite state
with respect to L � 3 different splittings of the Hilbert space
and to prove existence of mutually entangled states for the
general N × N problem.
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financial support from Grant No. 2014/13/D/ST2/01886 of
the Polish National Science Centre. Research in Freiburg
is supported by the Excellence Initiative of the German
Federal and State Governments (Grant ZUK 43), the Research
Innovation Fund of the University of Freiburg, the ARO
under contracts W911NF-14-1-0098 and W911NF-14-1-0133
(Quantum Characterization, Verification, and Validation), and
the DFG (GR 4334/1-1).

APPENDIX A: MUTUALLY ENTANGLED STATES AND
MUTUALLY SEPARABLE STATES FOR TWO QUBITS

In this Appendix we demonstrate existence of mutually
entangled states and mutually separable states in the two-
qubit case. Without loss of generality we may consider two
matrices 1l and W2 ∈ U(4), which is brought by local unitary
transformations into its canonical form [58,59],

W2 =

⎛
⎜⎜⎜⎝

eib3 cos (b1) 0 0 ieib3 sin (b1)

0 e−ib3 cos (b2) ie−ib3 sin (b2) 0

0 ie−ib3 sin (b2) e−ib3 cos (b2) 0

ieib3 sin (b1) 0 0 eib3 cos (b1)

⎞
⎟⎟⎟⎠, (A1)

parametrized by three real parameters b1,b2,b3. Next, we find
vectors |x〉 and |y〉 such that

1
2E(|x〉) + 1

2E(W2|x〉) = 0,

1
2E(|y〉) + 1

2E(W2|y〉) = log 2,
(A2)

i.e., |x〉 is separable in both bases and |y〉 is maximally
entangled in both bases.

We see immediately that we can take |y〉 = (|0,0〉 +
|1,1〉)/√2. To show the existence of a mutually separable
vector we consider two cases: If b2 = 0 we may take
|x〉 = |0,1〉 and in opposite case we may take |x〉 to be

proportional to

|x〉 � |0〉 ⊗
(

|0〉 + e2ib3

√
sin (b1) cos (b1)

sin (b2) cos (b2)
|1〉
)

. (A3)

APPENDIX B: EXAMPLES OF MUTUALLY
ENTANGLED BASES

We provide here exemplary collections of three unitary
matrices of order 22 and four unitary matrices of order 32,
which form mutually entangled bases (see Definition VI).
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A collection of three mutually entangled bases for two
qubits reads

W1 = 1l4, W2 = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1

⎞
⎟⎟⎟⎠,

(B1)

W3 = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 1

0 1 1 0

0 i −i 0

i 0 0 −i

⎞
⎟⎟⎟⎠.

In the case of two-qutrit systems, four mutually entangled
bases are

W1 = 1l9,

W2 = 1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1
0 ω 0 0 0 ω2 1 0 0
0 0 ω 1 0 0 0 ω2 0
0 0 1 1 0 0 0 1 0
1 0 0 0 ω 0 0 0 ω2

0 ω2 0 0 0 ω 1 0 0
0 1 0 0 0 1 1 0 0
0 0 ω2 1 0 0 0 ω 0
1 0 0 0 ω2 0 0 0 ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W3 = 1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1
0 ω2 0 0 0 1 ω 0 0
0 0 ω2 ω 0 0 0 1 0
0 0 1 1 0 0 0 1 0
ω 0 0 0 ω2 0 0 0 1
0 1 0 0 0 ω2 ω 0 0
0 1 0 0 0 1 1 0 0
0 0 1 ω 0 0 0 ω2 0
ω 0 0 0 1 0 0 0 ω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W4 = 1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 1
0 1 0 0 0 ω ω2 0 0
0 0 1 ω2 0 0 0 ω 0
0 0 1 1 0 0 0 1 0
ω2 0 0 0 1 0 0 0 ω

0 ω 0 0 0 1 ω2 0 0
0 1 0 0 0 1 1 0 0
0 0 ω ω2 0 0 0 1 0
ω2 0 0 0 ω 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)

where ω = e2πi/3 is the cubic root of unity.

APPENDIX C: VARIANCE OF MEASUREMENT
OUTCOMES

Consider L orthogonal measurements performed on a quan-
tum state of size N . Numerical results suggest that the variance
of the average entropy characterizing the measurements is
minimal if all measurement bases are mutually unbiased.
In this Appendix we prove this statement for the Tsallis
entropy or order two, earlier used for purpose of uncertainty
relations [25,75].

The Tsallis entropy Tβ of order β > 0 is defined as

Tβ(p) = 1

β − 1

(
1 −

∑
p

β

i

)
(C1)

and reduces to the Shannon entropy as α → 1.
Consider an arbitrary unitary matrix Ui ∈ U(N ) defining a

bases, in which an orthogonal measurement is performed. For
any pure state |ψ〉 we introduce the corresponding vector of
probabilities,

p
(i)
j = |〈j |Ui |ψ〉|2, (C2)

described by the Tsallis entropy T2,

T (i) = T2(p(i)) = 1 −
∑

j

(
p

(i)
j

)2
. (C3)

Assume now that |ψ〉 is a random pure state distributed
according to the unitary invariant Haar measure. We can now
average the mean Tsallis entropy over the entire set of pure
states and analyze its variance.

Theorem 4. Let U1 = 1l,U2, . . . ,UL be a collection of L

unitary matrices of order N , which for any state |ψ〉 leads to
the set of probability vectors (C2) described by the Tsallis
entropy (C3) and its mean value T̄ = (T (1) + T (2) + · · · +
T (L))/L. If the set of L MUBs in dimension N exists then
the variance of the mean entropy, var(T̄ ) averaged over the set
of all pure states in HN is minimal if matrices {Uj }Lj=1 are
mutually unbiased.

Proof. Note that, to prove this we can restrict our attention
to the case of two unitary matrices. For convenience we denote
U1 ≡ 1l, U2 ≡ U and

pi = |〈i|ψ〉|2, qj = |〈j |U |ψ〉|2. (C4)

Next we write

var(T2(p) + T2(q))

= 〈(T2(p) + T2(q))2〉 − 〈T2(p) + T2(q)〉2

= 〈
T 2

2 (p)
〉+〈T 2

2 (q)
〉−〈T2(p)+T2(q)〉2+2〈T2(p)T2(q)〉.

(C5)

Unitary invariance of the distribution of |ψ〉 implies that the
first three terms do not depend on U , so to get the minimum
value of the variance one has to minimize the last term
〈T2(p)T2(q)〉. Let us rewrite it in the form

〈T2(p)T2(q)〉 =
〈(

1 −
∑

p2
i

)(
1 −

∑
q2

i

)〉
= 1 −

〈∑
p2

i

〉
−
〈∑

q2
i

〉
+
〈∑

p2
i

∑
q2

j

〉
.

(C6)

To get the minimum one should minimize the average
〈∑p2

i

∑
q2

j 〉, which consists of the following terms:〈
p2

i q
2
j

〉 = 〈|ψi |4|(U |ψ〉)j |4〉. (C7)

Treating the vector |ψ〉 as a first column of a random unitary
matrix distributed according to the Haar measure, we can use
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Weingarten calculus [76] and obtain the following value:

〈|ψi |4|(U |ψ〉)j |4〉 = (N − 1)!4!

(N + 3)!

⎛
⎜⎝|uji |4 + |uji |2

∑
k �=i

|ujk|2 + 1

6

N∑
k=1

|ujk|4 + 1

6

N∑
k �=l

k,l �=i

|ujk|2|ujl|2
⎞
⎟⎠. (C8)

The above result implies that〈∑
i

p2
i

∑
j

q2
j

〉
= (N − 1)!4!

(N + 3)!

⎛
⎝(1 + (N − 1)

6

)∑
ij

|uij |4 +
(

1 + (N − 2)

6

)∑
i

∑
k �=l

|uik|2|uil|2
⎞
⎠

= (N − 1)!4!

(N + 3)!

⎛
⎝1

6

∑
ij

|uij |4 +
(

1 + N − 2

6

)∑
i

∑
kl

|uik|2|uil|2
⎞
⎠

= (N − 1)!4!

(N + 3)!

⎛
⎝1

6

∑
ij

|uij |4 +
(

1 + N − 2

6

)
N

⎞
⎠. (C9)

It is now easy to conclude that the above expression is minimized for |uij |2 = 1/N , i.e., for U being unbiased with identity. The
same reasoning applied for L(L − 1)/2 pairs of measurements gives us that the variance of the sum of all measurements will be
minimal if all matrices are mutually unbiased. �
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in terms of the Rényi entropies, Phys. Rev. A 74, 052101
(2006).

[20] Ł. Rudnicki, S. P. Walborn, and F. Toscano, Optimal uncertainty
relations for extremely coarse-grained measurements, Phys.
Rev. A 85, 042115 (2012).

[21] Ł. Rudnicki, Majorization approach to entropic uncertainty
relations for coarse-grained observables, Phys. Rev. A 91,
032123 (2015).

[22] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner,
The uncertainty principle in the presence of quantum memory,
Nat. Phys. 6, 659 (2010).

[23] P. J. Coles and F. Furrer, State-dependent approach to entropic
measurement-disturbance relations, Phys. Lett. A 379, 105
(2015).

[24] W. Roga, Z. Puchała, Ł. Rudnicki, and K. Życzkowski, Entropic
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[31] P. Harremoës and F. Topsøe, Inequalities between entropy and
index of coincidence derived from information diagrams, IEEE
Trans. Inf. Theory 47, 2944 (2001).

[32] S. Wehner and A. Winter, Entropic uncertainty relations—a
survey, New J. Phys. 12, 025009 (2010).

[33] K. Korzekwa, D. Jennings, and T. Rudolph, Operational
constraints on state-dependent formulations of quantum error-
disturbance, trade-off relations, Phys. Rev. A 89, 052108 (2014).

[34] M. Idel and M. Wolf, Sinkhorn normal form for unitary matrices,
Lin. Alg. Appl. 471, 76 (2015).

[35] C.-H. Cho, Holomorphic discs, spin structures, and Floer
cohomology of the Clifford torus, Int. Math. Res. Notices 35,
1803 (2004).

[36] A. Higuchi and A. Sudbery, How entangled can two couples
get? Phys. Lett. A 272, 213 (2000).
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