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We investigate the feasibility of precision frequency metrology with large ion crystals. For clock candidates with
a negative differential static polarizability, we show that micromotion effects should not impede the performance
of the clock. Using Lu+ as a specific example, we show that quadrupole shifts due to the electric fields from
neighboring ions do not significantly affect clock performance. We also show that effects from the tensor
polarizability can be effectively managed with a compensation laser at least for a small number of ions (�103).
These results provide new possibilities for ion-based atomic clocks, allowing them to achieve stability levels
comparable to neutral atoms in optical lattices and a viable path to greater levels of accuracy.
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I. INTRODUCTION

The realization of accurate, stable frequency references
has enabled important advances in science and technology.
Well-known examples include the Global Positioning System,
and tests of fundamental physical theories. Increasing levels
of accuracy and stability continue to be made with atomic
clocks based on optical transitions in isolated atoms [1–9].
By now a number of groups have demonstrated superior
performance over the current cesium frequency standards with
the best clocks to date having inaccuracy at the 10−18 level
[1,2]. For the past decade, single ion clocks have held a
leading position. However, in recent years, advances in laser
stability have allowed neutral atoms to take advantage of large
numbers of atoms giving superior performance in stability
while maintaining some of the best accuracies [10]. Ion-based
clocks have been limited to single atoms predominately due
to the fact that trap influences such as micromotion are
difficult to control for multiple ions. Indeed, for the Al+

clock, micromotion is a dominant factor in the overall error
budget [1]. We note that consideration has been given to clocks
based on small strings of less than 10 ions stored in linear
radio-frequency (rf) traps [11].

Micromotion is caused by the rf drive used to confine
the ion. It causes two correlated effects: the rapid oscillatory
motion at the rf frequency � gives a second-order Doppler
shift, and the electric field driving the motion induces an ac
Stark shift proportional to �α where �α = αe − αg is the
differential static scalar polarizability. In 1998 [12], it was
noted that, when �α < 0, these two effects could be made
to exactly cancel for a well-chosen value of �. This value,
which we refer to here as the magic rf frequency in analogy
with the magic wavelength for optical lattices, depends only
on the properties of the atom. The existence of such a magic rf
frequency gives rise to the important question of what happens
in a large ion crystal where micromotion effects can be very
pronounced at the edges of the crystal. If the cancellation is
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maintained, then precision frequency metrology with large ion
crystals is potentially feasible.

In this paper, we show that dominant higher-order mi-
cromotion effects can also be mitigated, and that clock
operation would not be affected by micromotion. For atoms
with an electronic angular momentum J > 1

2 , we show that
quadrupole shifts due to the electric fields from neighboring
ions do not significantly affect clock performance. We also
show that shifts arising from the tensor polarizability can
be effectively compensated with an additional laser field.
Together, these results show that ions having �α < 0 can reap
the benefits of large numbers of ions, just as neutral atoms can
in optical lattices. We illustrate our analysis using 176Lu

+
as

a concrete example [13], but the ideas can be readily adapted
to any other ion with �α < 0.

II. MICROMOTION

We start by writing the rf and static electric field potentials
in the form

φrf = m�ωz

2q
rT �rfr cos �t, φs = mω2

z

2q
rT �sr, (1)

where ωz is one of the pseudopotential oscillation frequencies,
� is the rf drive frequency, and m and q are the mass and charge
of the ion, respectively. The matrices �rf and �s determine the
curvatures of the potentials and, in general, we may choose
�rf to be diagonal. Defined in this way, the pseudopotential
approximation is

V (r) = 1

2
mω2

zrT

(
�s + 1

2
�2

rf

)
r. (2)

If we scale time by 2/� and length by

l =
(

q2

4πε0mω2
z

)1/3

,

then the equations of motion (e.o.m.) are given by

r̈i + (ε2�s + 2ε�rf cos 2t)ri − ε2
∑
j �=i

rij

r3
ij

= 0, (3)
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where ε = 2ωz/�. Following the treatment in Ref. [14] we
assume a stable π -periodic crystal solution exists, which may
be expressed as a Fourier expansion

rπ
i (t) =

n=∞∑
n=−∞

R2n,ie
2int. (4)

In this form, R0,i is the time-averaged position of the ith ion.
Substituting this expansion into the e.o.m. and using a Taylor
series expansion for the Coulomb term about R0,ij = R0,i −
R0,j we can obtain an infinite set of coupled equations for R2n,i

representing the Fourier expansion of the e.o.m. Defining

Fij = R0,ij

|R0,ij |3 , Qij = −3R0,ij RT
0,ij − |R0,ij |2

|R0,ij |5 , (5)

the first two Fourier equations are given by

ε2�sR0,i + 2ε�rfR2,i − ε2
∑
j �=i

Fij = 0 (6)

and

(ε2�s − 4I)R2,i + ε�rf(R0,i + R4,i)

− ε2
∑
j �=i

Qij (R2,i − R2,j ) = 0. (7)

To lowest order, Eq. (7) gives

R2,i = ε

4
�rfR0,i (8)

which expresses the fact that the micromotion amplitude is
directly proportional to the rf electric field at the position of
the ion. With this approximation, the fractional shift of a clock
transition is given by

�νi

ν
= −

(
ωzl

2c

)2
[

1 + �α

hν

(
m�c

q

)2
]

RT
0,i�

2
rfR0,i . (9)

For �α < 0, this leads to a magic rf drive frequency defined
by

�0 = q

mc

√
hν

−�α
(10)

at which micromotion shifts cancel as first pointed out in
Ref. [12]. For one ion, Eq. (9) is sufficient for even the very best
clocks [1,3,4]. However, for large ion crystals, higher-order
corrections should be considered. To this purpose, we first
note that the n = 2 Fourier component of the e.o.m. is

R4,i = ε

16
�rfR2,i (11)

to lowest order. Substitution into Eq. (7) then gives[
ε2

(
�s + 1

16
�2

rf

)
− 4I

]
R2,i + ε�rfR0,i

− ε2
∑
j �=i

Qij (R2,i − R2,j ) = 0. (12)

Using the fact that (I − ε2A)
−1 ≈ I + ε2A, we can solve for

R2,i to get

R2,i = 1

4

[
I + ε2

4

(
�s + 1

16
�2

rf

)]
ε�rfR0,i

− ε3

16

∑
j �=i

Qij�rf(R0,i − R0,j ). (13)

The term on the second line of Eq. (13) is the coupling of
the micromotion amplitudes of each ion through the Coulomb
interaction. Physically it arises from a distortion of the space-
charge potential due to differential micromotion amplitudes
between ions, which provides an effective rf electric field in
addition to the trap drive. This effective electric field also
provides an additional ac Stark shift.

The electric field at the ith ion due to the space charge is

Ei = mω2
z l

q

∑
j �=i

[Fij + 2Qij (R2,i − R2,j ) cos(2t)]. (14)

Using Eq. (8) and defining

W0,i =
∑
j �=i

Qij�rf(R0,i − R0,j ), (15)

the amplitude of the net rf electric field on the ith ion is then

Ei,rf = −mωz�l

q

(
�rfR0,i − ε2

4
W0,i

)
. (16)

Using Eqs. (13) and (16) and noting that (I + ε2A)
2 ≈

I + 2ε2A the fractional frequency shift of a clock transition
due to terms oscillating at the rf drive frequency is then

�νi

ν
= −

(
ωzl

2c

)2{[
1 −

(
�

�0

)2]
RT

0,i�
2
rfR0,i

− ε2

2

[
1 −

(
�

�0

)2]
RT

0,i�rfW0,i

+ ε2

2
RT

0,i�rf

(
�s + 1

16
�2

rf

)
�rfR0,i

}
. (17)

To the same order of approximation, we must include
a dc stark shift from the space charge and a time dilation
shift from the higher harmonic R4,i . These can be added
independently, which follows from the orthogonality of the
Fourier components. At equilibrium, the sum of all dc fields
on the ith ion exactly balances the pseudopotential force from
the rf field so we have

Ei,dc = 1

2

mω2
z l

q
�2

rfR0,i . (18)

This gives a fractional frequency shift

�νi

ν
= − �α

2hν

(
mω2

z l

2q

)2

RT
0,i�

4
rfR0,i

= ε2

8

(
ωzl

2c

)2(
�

�0

)2

RT
0,i�

4
rfR0,i (19)
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and the time dilation shift from R4,i is

�νi

ν
= − ε2

64

(
ωzl

2c

)2

RT
0,i�

4
rfR0,i . (20)

The shifts given in Eqs. (19) and (20) can then be added to
Eq. (17) to give the total shift correct to O(ε2).

In addition to a fractional frequency shift, micromotion also
gives rise to an effective frequency modulation of the probe,
a fact that can be used to detect micromotion [12]. The effect
reduces the probe coupling to J0(β) where J0 is the first-order
Bessel function and the modulation index is given by β =
2lk · R2,i . Because the micromotion amplitude can be very
large for ions far removed from the zero point of the rf field
[12], the ability of the probe to drive the clock transition can
be significantly diminished. This can be avoided by probing
along the rf null axis of a linear Paul trap, for which there is
very little micromotion.

For the linear Paul trap, we can write

�rf =
⎛
⎝a 0 0

0 −a 0
0 0 0

⎞
⎠, �s =

⎛
⎝− 1

2 + δ 0 0
0 − 1

2 − δ 0
0 0 1

⎞
⎠,

(21)

where a determines the strength of the rf confinement relative
to the dc field. The parameter δ determines the asymmetry
in the transverse dimension and can be tuned arbitrarily by
appropriate choice of biasing voltages. Writing �rf = a�, the
total shift from Eqs. (17), (19), and (20) can be written

�νi

ν
= −

(
aωzl

2c

)2{[
λ0 −

(
�

�0

)2]
λ1RT

0,i�
2R0,i

+ δε2

2
RT

0,i�R0,i − ε2

2a

[
1 −

(
�

�0

)2]
RT

0,i�W0,i

}
,

(22)

where the λk are given by

λ0 = 1 − 16 + 5a2

32

ε2

2λ1
and λ1 = 1 + a2ε2

8
. (23)

The first term of Eq. (22) is zero for � = �0
√

λ0 and this
can be viewed as a correction to the magic rf frequency
given by Eq. (10). It also applies to the single ion case even
though this term includes the shift due to the dc component
of the space charge. This is because it is the space charge
that provides the static electric field necessary to displace an
ion to the equilibrium position R0,i . The second term also
applies to the single ion case and is only present when the
transverse confinement is nondegenerate. The third term is
only applicable to the many ion case as it is a consequence of
the induced rf field from the oscillating space charge.

When probing a clock transition, micromotion will give
rise to an inhomogeneous broadening of the line and a shift
of the line center. Since the first term in Eq. (22) can be tuned
to zero, the inhomogeneous broadening is limited only by the
remaining terms and the degree of broadening is determined by
the size of the crystal. The second term is suppressed for small
δ and, at � = �0

√
λ0, the final term scales as ε4. If we can

neglect the inhomogeneous broadening, the shift of the line

center is then determined by the average of Eq. (22). For large
crystals, we can assume the density of ions is approximately
constant and the average of Eq. (22) can be taken as an integral
over a continuum. The shift of the clock transition then scales
as N2/3, where N is the number ions and the scale factor
depends on the geometry of the trap [15]. This leads to a
further modification to the magic rf drive frequency at which
the scale factor vanishes. In a practical application we would
simply vary the number of ions and tune the variation of the
clock frequency to zero by adjustment of �.

For reasons to be discussed in the next section, it is
advantageous to take a spherically symmetric trap for which
a = √

3 and δ = 0. In the spherically symmetric case, an
analytic approximation for W0,i can be obtained. By taking
the continuum limit with a constant density of ions, we can
approximate the sum in Eq. (15) by an integral and we obtain

W0,i ≈ − 1
5�rfR0,i . (24)

In this case, the fractional frequency shift takes the simple
form

�νi

ν
= −

(
aωzl

2c

)2[
λ′

0 −
(

�

�0

)2]
λ′

1RT
0,i�

2R0,i , (25)

where the λ′
k are given by

λ′
0 = 1 − 31

64

ε2

λ′
1

and λ′
1 = 1 + 19

40
ε2. (26)

Note that λ0 − λ′
0 ∼ O(ε4), indicating that the oscillating

space charge has no significant affect to the accuracy of the
treatment given.

At this point, it is useful to illustrate our analysis with an
example. We simulate the distribution of ions by integrating the
e.o.m. in the pseudopotential approximation including a small
damping term to anneal the initial state. For the initial state, we
use multilayered Mackay icosahedra [16] with a random offset
to each particle coordinate of about 10% of the initial minimum
particle spacing. With N = 100 to 5000 ions we were able to
confirm the results given in Ref. [15]. In particular, to a good
approximation we have〈

RT
0,i�

2R0,i

〉 = 2
5N2/3 − 0.3964. (27)

For the ion properties we use 176Lu
+

which has a level
structure as illustrated in Fig. 1. For 176Lu

+
, the estimated

value of the differential static scalar polarizability is �α =
−2.19 a.u. [17],1 giving a magic rf frequency of �0 ≈
2π × 23.2 MHz [18]. We take ωz = 2π × 200 kHz which, for
176Lu

+
, gives l = 7.94 μm. So, for the parameters given, we

have (
aωzl

2c

)2

≈ 8.3 × 10−16, ε2 ≈ 3.0 × 10−4. (28)

With � = �0 and N = 5000 ions, the higher-order terms
result in a broadening of 3.3 × 10−17 and an average shift
of 1.4 × 10−17. These values would scale as N2/3. When � =

1Throughout we use atomic units for polarizabilities. Conversion to
S.I. units is via the scale factor 4πε0a

3
0 where a0 is the Bohr radius.
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3P0

3P1

3P2

3D1

1S0

646 nm
615 nm

848 nm

(a) (b)

(c) 

F=6 
F=7 
F=8 

F=7 

F=6 
F=7 
F=8 

m=0

m=-1
m=1

FIG. 1. (a) Level structure of 176Lu
+

, which has a nuclear spin
I = 7, showing the clock transition at 848 nm and the cooling and
detection transition at 646 nm. A laser at 615 nm provides a magic
wavelength to compensate tensor polarizability shifts from the rf
field. (b) Transitions needed for hyperfine averaging. (c) Transitions
needed to effectively realize the transitions in (b) due to constraints
on the quantization axis (see Sec. III B).

�0

√
λ′

0 the average shift vanishes and this is only a 7 × 10−5

fractional change to the rf drive frequency. Comparison of the
clock frequency at different numbers would therefore provide
an accurate assessment of � and �α.

From the above analysis it would appear micromotion
would not limit the accuracy that can be achieved. Moreover,
the small broadening effects would not affect achievable
stability in the foreseeable future. As the crystal size increases,
so do the demands on the pointing stability of the probe but,
for 104 ions and an angular misalignment of 0.1◦, the Rabi
frequency for the outermost ions would be diminished by just
3 × 10−4.

Our analysis has only considered the scalar polarizability.
Levels with J = 1

2 have a vector polarizability, but this is
only relevant for circular polarizations. For candidates such
as Lu+, which have clock states with J > 1

2 , we must also
consider effects arising from the quadrupole moment and the
tensor polarizability.

III. CONSIDERATIONS FOR J > 1
2

In Ref. [13], Barrett showed that averaging over transitions
to all hyperfine states of a fixed mF � I − J cancels dominant
magnetic field effects and quadrupole shifts whenever the
nuclear spin I is at least as large as J . This averaging, which
we shall refer to as hyperfine averaging, is very general and
applies to any perturbation that can be described by a rank
k > 0 tensor operator that does not depend on I . Hence, we
need only consider the inhomogeneous broadening arising
from such interactions. The following considerations can also
be readily adapted for candidates with I = 0, such as 88Sr

+
,

for example [4], which utilize averaging over all mJ .

A. Quadrupole shifts

Since the quadrupole shift from the dc trapping field is
fixed, it does not contribute to any broadening and so we

FIG. 2. (Color online) Distribution of quadrupole shifts for 5000
ions in a spherically symmetric trap. Initial starting distributions are
a multilayered Mackay icosahedra (left) and body-centered-cubic
lattice (right).

only consider the quadrupole fields arising from the space
charge. Since the quadrupole field from neighboring ions falls
off cubicly with distance, the quadrupole field experienced
by an ion is due mostly to its local environment. Except for
ions near to the edge of the crystal, we can anticipate that the
local environment is essentially the same for each ion and the
resulting quadruple shift is relatively homogeneous. Indeed,
for sufficiently large numbers, it is known that a crystal of
long-range order forms [15,19,20] and the limiting structure is
that of a body-centered-cubic (bcc) lattice. In this regime, the
quadrupole shift would be constant for the bulk of the crystal
and by symmetry it would be zero.

The tensor describing the quadrupole field for the ith ion
due to all other ions is given by

∇E(2)
i = mω2

z

e
Qi = mω2

z

e

∑
j �=i

Qij , (29)

where Qij is given in Eq. (5). Itano [21] has derived the
quadrupole shift for a general orientation of the quantization
axis relative to the coordinate system for which Qi is given.
This shift factors into a geometric term, a state-dependent scale
factor CF,mF

on the order of unity, and an overall scale factor
quantifying the size of the shift. The geometrical factor is given
by

Qzz

4
(3 cos2 β − 1) + 1

2
sin(2β)(Qxz cos α + Qyz sin α)

+1

4
sin2 β[(Qxx − Qyy) cos(2α) + 2Qxy sin(2α)], (30)

where we have used the Euler angle definitions in Ref. [21]
and dropped the subscript i for convenience. For the mF = 0
states of the 3D1 level of 176Lu+, the state-dependent scale
factors are − 2

5 ,1,− 3
5 for the F = 6,7,8 hyperfine levels,

respectively. In the calculations that follow, we omit this
factor. The overall scale factor depends on the quadrupole
moment. For the estimated value of −1.3ea2

0 [17], its size is
−1.3mω2

za
2
0 ≈ h × 2.5 Hz where a0 is the Bohr radius.

In Fig. 2, we plot the distribution of quadrupole shifts for
N = 5000 for a spherically symmetric trap. As in Ref. [15],
we do see a dependence of the final crystal configuration
on the initial condition for larger N . Configurations starting
from a bcc lattice tend to stay in this configuration with some
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rounding near the boundary of the crystal. Hence, we give the
distribution of quadrupole shifts for two types of initial condi-
tions: a multilayered Mackay icosahedra applicable to smaller
numbers of ions, and a bcc lattice applicable in the limit of large
N . The distribution on the left is more applicable to smaller
numbers as considered here and is approximately Gaussian
with a standard deviation of 0.078 Hz. The distribution does
not depend on N and we have verified that there is no signifi-
cant dependence on the field orientation as expected from the
spherical symmetry. This level of the broadening should not
be an issue even for the very best lasers available today.

The distribution on the right is applicable to larger numbers
of ions. However, crystals of long-range order have been
reported for smaller numbers [19]. Comparing the two distri-
butions, we clearly see the effect of the bcc-lattice component
giving the expected peaking of the distribution near zero. This
distribution does have a dependence on the orientation of the B

field and we have oriented the field along one of the axes of the
interior bcc structure which coincides with the trap axis.2 We
would expect the dependence on the orientation of the B field
to diminish for larger numbers as the bcc component becomes
much more prominent.

The distribution of quadrupole shifts depends only on the
geometry of the crystal and not on its overall size, at least for
the range of numbers we have explored. Prolate ellipsoidal
crystals in more conventional linear Paul traps, in which
the transverse confinement is much stronger than the axial
confinement, have a much broader distribution of quadrupole
shifts. Moreover, the width of the distribution depends on the
orientation of the trap relative to the quantization axis as may
be expected. For these reasons, we have restricted our attention
to a spherical geometry.

B. Tensor polarizability

The tensor polarizability also gives rise to a shift of the
clock frequency from the rf fields. As shown in Refs. [21,22],
this contribution is given by

δν

ν
= −CF,mF

4

α2,J

hν

〈
3E2

z − E2
〉
, (31)

where CF,mF
is a state-dependent scale factor identical to those

for the quadrupole shift, 〈. . .〉 indicates a time average over one
cycle of the oscillating field, and the tensor polarizability α2,J

is in general frequency dependent. Since the rf frequency is
small relative to any optical frequency of interest, we can use
the dc value of α2,J ≈ −5.0 a.u. for the tensor polarizability
[17]. If the quantization axis is aligned along the trap axis, then
Ez = 0 and the shift has the same form as discussed for the
scalar polarizability. In general, due to the F -dependent scale
factors, we cannot simply modify the scalar polarizability to
account for the effect.3 Since Eq. (31) applies at all frequencies,
we can use a laser field to reduce the broadening that arises.
We also note that the constraint on the quantization axis forces

2The alignment of the crystal here is by construction of the initial
condition.

3For a single transition, if α2,J was sufficiently small, it could be
incorporated into the definition of �α.

FIG. 3. (Color online) Distribution of shifts due to the tensor
polarizability for N = 1000 ions. Distribution on the right has been
compensated using a doughnut Laguerre-Gauss beam with a waist of
100l ≈ 800 μm. We have used the same spherical geometry as in the
previous sections.

us to realize mF = 0 to mF = 0 transitions as an average over
mF = ±1 to mF = 0 as illustrated in Fig. 1. This introduces
further averaging to that discussed in Ref. [13] but does not
affect any of the points considered here.

Use of a laser to reduce the broadening arising from
the tensor polarizability requires the spatial dependence of
the beam to match the spatial variation of the rf field and the
use of a magic wavelength at which the dynamic differential
scalar polarizability of the clock transition is zero. For Lu+,
such a wavelength can be found for a laser tuned between the
3D1 to 3P0 and 3D1 to 3P1 transitions. From matrix elements
given in Ref. [23], we find a magic wavelength at ≈615 nm
with α2,J ≈ 100 a.u. The sign of α2,J relative to the dc value
requires the use of a doughnut mode [24] which, to lowest
order, has an intensity profile that has the same quadratic
dependence on the distance from the trap axis as the E2

amplitude of the rf field. In this case, off-resonant scattering
from the compensation beam is completely determined by the
amount of compensation needed. For a crystal of 104 ions,
we estimate a scattering rate ≈0.005 s−1 for the outermost
ions. Hence, for Lu+, off-resonant scattering will not limit this
approach. A more practical limit would be the mode matching
of the laser profile to the spatial variation of the rf field. But,
we emphasize that the mode matching need only be sufficient
to reduce the broadening since hyperfine averaging eliminates
any residual shift.

In Fig. 3, we illustrate the compensation of broadening
for N = 1000 ions using a doughnut Laguerre-Gauss beam
with a waist of 100l ≈ 800 μm with the same spherical trap
geometry used in the previous sections. Due to the fact that the
width of the broadening scales as N2/3 it would likely become
impractical to go beyond N = 1000 ions. This assessment
is based on due consideration of demonstrated mode purity
of higher-order Laguerre-Gauss beams [24], and realistic
constraints on beam size and intensity stabilization.

Determining the level of compensation and separating this
from considerations of the scalar polarizability may be ex-
perimentally challenging. For 176Lu

+
, �α can be determined

independently. The combined effect of �α and α2 is given by
the shift

�ν = −1

2

(
�α − CF,mF

2
α2

)
E2. (32)
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TABLE I. Summary of systematic shifts for Lu+ after hyperfine
averaging.

Effect Shift (10−18)

Blackbody radiation @ 300 K 53.3
Secular Doppler −0.05
Micromotion 0
Quadrupole shifts 0
Tensor polarizability shifts 0
Quadratic Zeeman @ 10 μT −1.4
Probe ac Stark (200 ms π pulse) < 50

Since �α − CF,0

2 α2 < 0 for F = 6 and 8, a magic rf frequency
can be found for each transition to these states which includes
α2. As outlined in Sec. II, clock operation on a single transition
would allow an accurate determination of �α − CF,0

2 α2 for
F = 6 and 8. From these, �α and α2 can be inferred along with
the magic rf frequency associated with �α alone. Any residual
broadening or number variation could then be attributed to
improper compensation of the tensor polarizability.

IV. PROSPECTS FOR Lu+

As a clock candidate, Lu+ has a number of favorable prop-
erties leading to low systematic shifts which are summarized
in Table I. The blackbody radiation shift at 300 K is based
on the current estimate of the differential static polarizability
of �α = −2.19 a.u. [17]. The second-order Doppler shift due
to residual secular thermal motion assumes Doppler limited
cooling on the 646 nm transition. This has a linewidth of
� = 2π × 2.45 MHz providing one of the lowest Doppler
cooling limits amongst the ions and yet sufficiently large to
allow a collection of >5 photons/ms per ion during detection.
Hyperfine averaging cancels dominate Zeeman shifts leaving
only a residual quadratic shift of ≈5 Hz/mT2 due to coupling
to the 3D2 fine-structure level [13]. The shift given in the
table assumes an operating field of 10 μT. Finally, ac Stark
shifts from the probe laser are based on current estimates of
the dynamic polarizabilities at the clock frequency (�α0 =
−18.12 a.u. and α2 = −12.44 a.u.), and a lifetime of 62 h [17].
The inequality given in the table applies to all six transitions
involved in the hyperfine averaging as indicated in Fig. 1(c).

We can expect much of the ac Stark shift from the clock
laser to be eliminated by hyper-Ramsey spectroscopy [25,26].
Thus, a temperature inaccuracy of 1◦ at room temperature
would permit fractional inaccuracies below 10−18. Within a
cryogenic environment, we can also anticipate inaccuracies
beyond 10−19.

As discussed in Sec. III B, we can expect to be limited
in practice to N ≈ 1000 ions. For these many ions, if we
combine the quadrupole shifts and the compensated shifts from
the tensor polarizability, we obtain a reasonably symmetric
distribution which can be roughly approximated to a Gaussian
with a standard deviation of about 0.1 Hz. With the actual
distribution, a simulated Ramsey experiment with a Tm = 1 s
free precession time yields an 80% contrast in the Ramsey
fringes. For Lu+ state preparation and detection can be
expected to take ∼1% of the total interrogation time and

hence the Dick effect [27] should not have a significant role.
Neglecting the slight loss in fringe contrast gives an estimated
projection noise limited stability [8,28] of

σ (τ ) = 1

2πν0
√

NTmτ
≈ 1.5 × 10−17

√
τ

. (33)

With a stability given by Eq. (33), measurement of the
clock frequency at levels of 10−18 could be achieved within
≈5 min. Assessment of micromotion shifts associated with
small inaccuracies of the magic rf frequency does, however,
require comparison of clock measurements with different
numbers of ions. Integration times of approximately 1 day
would permit assessment of the clock at the 2 × 10−19 level
for 100 ions. Subsequent comparison with 1000 ions would
then provide a measurement accuracy of �α and the magic
rf frequency at the 10−6 level. Using micromotion shifts to
determine �α has been demonstrated with a single ion [29].
With many ions, the sensitivity of this approach is substantially
improved.

V. ALTERNATIVE TRAPS

Our approach has focused on linear Paul traps. Other
approaches may be feasible such as multipole traps or Penning
traps. In multipole traps, low numbers of ions initially populate
a single one-dimensional ring of ions that can hold up to several
tens of ions. By symmetry quadrupole shifts and shifts from
the tensor polarizability are practically constant for all ions.
As more ions are added, more rings form. For more than two
rings, the shifts split into multiple values that can be separated
at the Hertz level. Thus, it would be difficult to go beyond
a few 102 ions by this approach. Nevertheless, this could be
achieved with very little broadening, thus allowing for much
longer Ramsey times.

Penning traps have been used to confine and control very
large numbers of ions [20]. Ion confinement in a Penning trap is
due to the ion crystal rotation through a large uniform magnetic
field. In a Penning trap, the combined fractional frequency shift
is

�ν

ν
= −1

2

(
ωr

c

)2[
1 + �α

hν

(
mωrc

e

)2]
ρ2, (34)

where ρ is the cylindrical radius of an ion in the crystal and
ωr is the rotation frequency of the crystal. This then leads to a
magic rotation frequency analogous to the magic rf frequency
for the rf Paul trap. For the Penning trap, there are no higher-
order corrections so the second-order Doppler and polarization
compensation should work very well, but there are constraints
on ωr due to available magnetic fields. Specifically, the rotation
frequency is bounded by the cyclotron frequency �c = eB/m

[30]. This leads to the constraint

B >

√
hν

−c2�α
. (35)

Unfortunately, this favors a large polarizability and small clock
frequency. Even a clock frequency as low as 1014 Hz and a
differential polarizability �α = −100 requires B > 22 T.

032108-6



PROSPECTS FOR ATOMIC CLOCKS BASED ON LARGE . . . PHYSICAL REVIEW A 92, 032108 (2015)

VI. CONCLUSION

We have shown that ions with a negative differential
static polarizability should allow high-precision metrology
on large ion crystals. More specifically, we have shown that
micromotion does not give rise to any significant inhomoge-
neous broadening and that higher-order frequency shifts can
be managed through adjustment of the magic rf frequency.
For clock candidates that support a quadrupole moment, we
have shown that spherically symmetric traps show very little
broadening due to quadrupole shifts induced by neighboring
ions and this broadening is not dependent on the size of the
crystal. We have also shown that broadening arising from the
tensor polarizability can be compensated by a laser field, at
least for smaller numbers of ions (�1000). This will extend
the advantage of using large numbers to ion candidates having
�α < 0, an advantage that has allowed neutral atoms to
surpass the performance of single ion standards. In the case
of 176Lu

+
, this approach could outperform the current state of

the art by an order of magnitude in both stability and accuracy.
We have not included effects due to anharmonicities of the

trapping fields as these effects are design dependent. However,
the framework we have used follows that given in Ref. [14]
and should allow such effects to be included given a particular
design. The effect will be to give a spatial dependence
to �s and �rf . But, the influence of �s only appears to
second order in ε and we have shown that these effects
do not contribute significantly under most circumstances.
Furthermore, the spatial dependence of �rf in Eq. (8) would not
change the lowest-order equation for the magic rf frequency.
Hence, we believe that the main effect of anharmonicity will
be to affect the higher-order terms only. This would introduce
a small amount of broadening and not change the general
conclusions we have made here. We may anticipate a variation
in crystal density giving further broadening due to quadrupole
shifts, but this would likely only be significant for highly
anharmonic confinement.

We have also not considered magnetic field inhomo-
geneities as these are again design dependent. Magnetic fields
arising from currents induced by the trap driving field [1] can
be expected to have a significant spatial variation giving rise to

a broadening through the quadratic Zeeman shift of the clock
states. Static field inhomogeneities would also give rise to
additional broadening through the linear Zeeman effect. Thus,
candidates with small B-field sensitivities would be desirable,
but this is true of any clock. Moreover, it may be possible
in a specific implementation to compensate any significant
broadening with additional fields as we have shown for tensor
polarizability effects.

Although the importance of �α < 0 was pointed out over
15 years ago [12], it has not played a significant role in
the development of ion-based atomic clocks. This is perhaps
due to the scarcity of candidates having this property. To
our knowledge, there are eight candidates that have been
reported in the literature: B+ [31], Ca+ [31], Sr+ [31], Ba+

[32], Ra+ [32], Er2+[18], Tm3+[18], and Lu+[18]. Of these
candidates, B+ is the only candidate with a J = 0 to J = 0
clock transition for which quadrupole and tensor polarizability
restrictions do not apply. However, the magic rf frequency for
B+ is ≈800 MHz which may be technically challenging to
implement. Moreover, the only cooling and detection channel
available is the 1S0 to 1P1 at 137 nm.

From the alkaline-earth-metal, Ba+ is an interesting possi-
bility. For 137Ba

+
, there are a number of states of the D3/2 level

with CF,mF
= 0. Hence, quadrupole and tensor polarizability

considerations would not apply. Since these are the main
limitations to working with large numbers, very high levels
of stability could be possible with this ion. It is hoped that this
discussion spurs interest in finding new candidate transitions
with �α < 0.
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