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Open quantum walks (OQWs) are exclusively driven by dissipation and are formulated as completely positive
trace-preserving (CPTP) maps on underlying graphs. The microscopic derivation of discrete and continuous-in-
time OQWs is presented. It is assumed that connected nodes are weakly interacting via a common bath. The
resulting reduced master equation of the quantum walker on the lattice is in the generalized master equation form.
The time discretization of the generalized master equation leads to the OQW formalism. The explicit form of the
transition operators establishes a connection between dynamical properties of the OQWs and thermodynamical
characteristics of the environment. The derivation is demonstrated for the examples of the OQW on a circle of
nodes and on a finite chain of nodes. For both examples, a transition between diffusive and ballistic quantum
trajectories is observed and found to be related to the temperature of the bath.
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I. INTRODUCTION

The mathematical concept of classical random walks
(CRWs) finds wide applications in various areas of funda-
mental and applied science [1–5]. In the case of the classical
random walk, the trajectory of the “walker” is a sequence
of random steps fully determined by the stochastic matrix
corresponding to the graph of the CRW. Unitary quantum
walks were introduced more than two decades ago as the
quantum analog of the CRW [6–8]. Unitary quantum walks are
broadly used in quantum computing science, in the formulation
of quantum algorithms, and in complexity theory [8]. The
dynamical behaviors of the quantum walker and the classical
random walker are very different. The probability distribution
of the unitary quantum walker is the result of the interference
between different positions of the walker, and it is determined
not only by the underlying graph but also by the inner state of
the quantum walker, e.g., spin or polarization [8].

In the description of the dynamics of any realistic quantum
system, one needs to take into account the effect of dissipation
and decoherence [9]. In the recently introduced open quantum
walks (OQWs), these effects are naturally included in the
description of the dynamics of the quantum “walker” [10–12].
Essentially, the dynamics of OQWs is driven by the dissipative
interaction with environments. Mathematically, OQWs are
formulated as completely positive trace-preserving maps
(CPTP maps) on an appropriate Hilbert space [9,13]. OQWs
and unitary quantum walks can be related via a “physical
realization” procedure introduced in Ref. [11]. In a special
scaling limit, OQWs become open quantum Brownian motion
[14,15]. This is a new type of quantum Brownian motion where
the position of the quantum Brownian particle is determined
not only by the interaction with an environment but also by the
state of the inner degree of freedom of the quantum Brownian
particle.

The diverse dynamical behavior of OQWs has been studied
extensively [10–12,16–21]. The asymptotic analysis of OQWs
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leads to a central limit theorem [22–24]. For large times,
the position probability distribution of OQWs converges to
Gaussian distributions [22,23]. For a special case of OQWs on
Z, it was shown that the probability distribution of the position
of the quantum walker is given by the binomial distribution,
and the number of different Gaussian distributions for large
times is bound by the number of inner degrees of freedom of
the OQWs [25].

OQWs can perform dissipative quantum computing (DQC)
[26] and quantum state engineering [27]. It has been shown
that the OQW implementation of DQC outperforms the
conventional model of DQC. In particular, it has been found
that OQWs can be designed to converge faster to the desired
steady state and to increase the probability of detection of the
outcome of the quantum computation [27].

A quantum optical implementation of simple OQWs has
been suggested using a dissipative out-of-resonance cavity
QED setup [28]. The Fock states of the cavity mode correspond
to the nodes of the walk, and the state of the two-level system
corresponds to an inner degree of freedom of the walker.

Recently, Bauer et al. found that the OQW quantum
trajectories can switch between diffusive and ballistic behavior
[14]. However, such switching was established for abstract
CPTP maps without identifying the physics of the underlying
system.

OWQs have been introduced formally, and the question of
microscopic models leading to OQWs needs to be addressed.
Due to the dissipative nature of the OQWs, it is natural
to expect them to be obtained from an appropriate system-
environment model as the reduced dynamics of a quantum
walker on a graph. Indeed, for a simple case of an OQW on a
two-node graph, a microscopic derivation has been described
[29].

The aim of the present paper is to derive OQWs from a
microscopic Hamiltonian on an arbitrary graph. The micro-
scopic derivation includes the identification of an appropriate
system environment model (the Hamiltonian of the system,
the bath, and the system-bath interaction), the Born-Markov
approximation, and tracing out the environmental degrees of
freedom [9,30,31]. The resulting quantum master equation will
be shown to have the form of a generalized master equation
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[32], and a discrete time version corresponds to the CPTP
maps defining OQWs. The formalism is demonstrated for two
examples of OQWs, namely an OQW on a circle of nodes
and an OQW on a finite chain of nodes. The microscopic
derivation allows us to connect the thermodynamic parameters
of the environment and the dynamics of OQWs. It is shown
that the temperature of the environment plays the role of the
switch between diffusive and ballistic quantum trajectories
corresponding to the OQWs.

The paper has the following structure. In Sec. II we briefly
review the formalism of OQWs. In Sec. III we formulate the
microscopic model and perform the microscopic derivation
of the OQWs. In Sec. IV we demonstrate the microscopic
derivation for two examples. In Sec. V we conclude.

II. FORMALISM OF OPEN QUANTUM WALKS

The open quantum walk is a quantum walk defined on
a set of nodes, where the transitions between the nodes
are exclusively driven by dissipation. Mathematically, open
quantum walks are formulated in the language of completely
positive trace-preserving (CPTP) maps. A CPTP map is
defined on the graph G = (V,E), where V is the set all nodes
and E = {(i,j )|i,j ∈ V} is the set of all ordered edges denoting
possible transitions between the nodes. The number of nodes
can be finite (P < ∞) or infinitely countable (P = ∞), where
P denotes cardinality of the set of nodes V , i.e., P = card(V).
The corresponding Hilbert space of the walk is defined as
separable Hilbert space K = CP for the finite-dimensional
case (P < ∞), and for the infinite-dimensional case (P = ∞)
the Hilbert space is the space of square integrable functions
K = l2(C) with the orthonormal basis indexed by |i〉, where
i ∈ V . The internal degrees of freedom of the quantum walker,
e.g., spin, polarization, or n-energy levels, are described by a
separable Hilbert space HN attached to each node. Any state
of the walker will be described on the direct product of the
Hilbert spaces HN ⊗ K.

To describe the dynamics of the internal degree of freedom
of the walker for each edge (i,j ), we introduce bounded
operators Bi

j acting on HN . These operators describe the
transformation of the internal degree of freedom of the
quantum walker due to the “jump” from node j to node i

(see Fig. 1). On each node j we define a CPTP map Mj in the
Kraus representation on the space of operators on HN ,

Mj (τ ) =
∑

i

Bi
j τBi

j

†
. (1)

Complete positivity and trace preservation of the above map
are guaranteed by the following normalization condition for
each node j [13]: ∑

i

Bi
j

†
Bi

j = I. (2)

This condition is the generalization of the classical Markov
chain condition.

From the physical point of view, the operators Bi
j affect

only the internal degrees of freedom of the walker, and they do
not perform transitions from node j to node i. We can extend
the action of the operators Bi

j on the whole lattice with the

FIG. 1. Schematic illustration of the formalism of open quantum
walks. The walk is realized on a graph with a set of vertices denoted
by i,j,k,l. The operators B

j

i describe transformations in the internal
degree of freedom of the “walker” during the transition from node (i)
to node (j ).

help of the following dilation:

Mi
j = Bi

j ⊗ |i〉〈j | . (3)

If the condition expressed in Eq. (2) is satisfied, then∑
i,j Mi

j

†
Mi

j = 1 [11]. This normalization condition allows
us to define a CPTP map for density matrices on HN ⊗ K, i.e.,

M(ρ) =
∑

i

∑
j

Mi
j ρ Mi

j

†
. (4)

The CPTP map M defines the discrete-time open quantum
walk [10,11]. It has been shown that for an arbitrary initial
state, the density matrix

∑
i,j ρi,j ⊗ |i〉〈j | will take a diagonal

form in the position of Hilbert space K after just one step of
the OQW [10,11]. For this reason, it is sufficient to assume
that the initial state of the system is in the diagonal form in the
“position” space ρ = ∑

i ρi ⊗ |i〉〈i| with
∑

i Tr(ρi) = 1.
It is straightforward to give an explicit iteration formula for

the OQW from step n to step n + 1,

ρ[n+1] = M(ρ[n]) =
∑

i

ρ
[n+1]
i ⊗ |i〉〈i|, (5)

where

ρ
[n+1]
i =

∑
j

Bi
jρ

[n]
j Bi

j

†
. (6)

This iteration formula gives a clear physical meaning to the
CPTP mapping that we introduced: the state of the system on
node i is determined by the conditional shift from all connected
nodes j and the internal state of the walker on the node j .
These conditional shifts are defined by the explicit form of the
operators Bi

j . Also, it is straightforward to see that Tr[ρ[n+1]] =∑
i Tr[ρ[n+1]

i ] = 1.
As an example, let us consider a homogeneous OQW on

the circle or on the line (see Fig. 2) with jump operators Bi
j

defined as

Bi+1
i ≡ B, Bi

i ≡ A, Bi−1
i ≡ C (7)
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FIG. 2. Open quantum walk on a circle of nodes. A schematic
representation of the OQW on the circle: all transitions to the right are
induced by the operator B, while all transitions to the left are induced
by the operator C and all steps without transitions are induced by the
operator A.

and the normalization condition given by A†A + B†B +
C†C = 1. The state of the walker ρ[n] after n steps reads

ρ[n] =
∑

i

ρ
[n]
i ⊗ |i〉〈i|, (8)

where the form of ρ
[n]
i (i ∈ Z) is easily found by iteration,

ρ
[n+1]
i = Aρ

[n]
i A† + Bρ

[n]
i−1B

† + Cρ
[n]
i+1C

†. (9)

Several examples of OQWs on Z can be found in [10–12,25].

III. MICROSCOPIC DERIVATION OF OQWs

As was stated before, OQWs are formulated as quantum
walks on a set of nodes, where the transition between the
nodes is driven by dissipation. This implies that it should be
possible to derive OQWs using methods of the theory of open
quantum systems [9]. From a microscopic point of view, the
Hamiltonian of the total system is given by

H = HS + HB + HSB, (10)

where in the usual notation HS , HB , and HSB stand for
the Hamiltonian of the system, the bath, and the system-
bath interaction, respectively. As a result of the microscopic
derivation, we would like to obtain OQWs after tracing out
the bath degrees of freedom. In the context of this work, the
open system is not only the “quantum walker” but the quantum
walker with the underlying lattice. Using the condition that the
transitions between the nodes are driven by dissipation, it is
easy to conclude that the system Hamiltonian by itself should
describe only the local dynamics of the walker on each node,
which implies the following form of the system Hamiltonian

HS for the M-node network:

HS =
M∑
i=1

�i ⊗ |i〉〈i|. (11)

The position of the walker is described by the set of orthogonal
vectors {|i〉}Mi=1, which form the basis in the position Hilbert
space CM . The state of the inner degree of freedom of the
walker is described by the operators �i ∈ B(HN ), where HN

is an N -dimensional Hilbert space describing the inner degrees
of freedom of the walker.

OQWs are designed such that the transitions between
different sites are uncorrelated. This means that for each pair
of nodes i and j between which transitions are possible, one
needs to have at least one local environment that will drive the
walker between the nodes. The direct consequence of this is
the following form of the bath Hamiltonian HB :

HB =
M∑

i �=j=1

∑
n

ωi,j,na
†
i,j,nai,j,n, (12)

where a
†
i,j,n and ai,j,n are bosonic creation and annihilation

operators of the modes (photonic or phononic) of the bath,
with standard commutation relations.

The system-bath Hamiltonian HSB describes environment-
assisted transitions of the quantum walker between the nodes.
This implies that for any two nodes i and j , this Hamiltonian
has the following structure: H

i↔j

SB = Ai,j ⊗ Xi,j ⊗ Bi,j . As in
a typical open quantum system, we assume a linear coupling
between each component of the total system, but the crucial
difference is that in the present work we have two different
degrees of freedom of the system, namely the position and the
internal degree of freedom, coupled simultaneously to the bath.
The operator Ai,j ∈ B(HN ) is an operator acting on the internal
degree of freedom of the walker, and it plays the role of a
“quantum coin” similar to the Hadamard matrix for the unitary
quantum walks [7,8]. The operator Aij is conditioning the
probability of transition between the nodes to the internal state
of the walker. If the operator Aij is trivial, i.e., Ai,j ≡ 1, then
the resulting open walk will be classical. The operator Xi,j ∈
B(CM ) describes the transition between the nodes i and j . The
simplest choice is the following: Xi,j = |j 〉〈i| + |i〉〈j |. The
coupling between the quantum walker and the corresponding
environment is described by the operator Bi,j , and the simplest
and typical choice is linear coupling of the system to the bath,
i.e., Bi,j = ∑

n gi,j,nai,j,n + g∗
i,j,na

†
i,j,n. It is clear that only

the system-bath Hamiltonian containing the tensor product
of these three operators (Ai,j ,Xi,j ,Bi,j ) is minimally required
to obtain OQWs. As was stated above, if Aij is trivial, the
walk will be classical; if Xi,j is trivial, there will be no
walk; and finally if Bij is trivial, the quantum walk would
not be environment-driven. The system-bath Hamiltonian HSB

describing environment-assisted transitions has the following
form:

HSB =
∑
i,j

∑
n

Ai,j ⊗ Xi,j ⊗ (gi,j,nai,j,n + g∗
i,j,na

†
i,j,n). (13)

Having specified the Hamiltonian of the total system, we can
proceed and derive the reduced master equation describing the
dynamics of the system, which consists of the quantum walker
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and the lattice. Here we assume that the system is weakly
interacting with the reservoirs, so that the Born-Markov
approximation is valid [9]. Under these assumptions, the
reduced dynamics of the system in the interaction picture is
given by the following equation:

d

dt
ρs(t)

= −
∫ ∞

0
dτ TrB[HSB (t),[HSB (t − τ ),ρs(t) ⊗ ρB]], (14)

where ρs(t) is the reduced density matrix of the system (walker
on the network) and ρB is the state of the reservoir. In general,
Eq. (14) does not guarantee that the resulting master equation
will be in the Gorini-Kossakowski-Sudarshan-Lindblad form
(GKSL form) [9,33–35]. To obtain the master equation in the
form of the generator of the dynamical semigroup, one needs
to perform an additional rotating-wave approximation [9].
This rotating-wave approximation can be straightforwardly
performed if we decompose the system-bath Hamiltonian
in the basis of eigenoperators of the system Hamiltonian
HS . Toward that end, on each node |i〉 we introduce the
set of orthonormal projection operators {�i(λ(i))} onto the
eigenvalues λ(i) of each Hamiltonian �i such that

�i =
∑
λ(i)

λ(i)�i(λ
(i)). (15)

It is easy to see that in the interaction picture, the system-bath
Hamiltonian HSB takes now the following form:

HSB (t) =
∑
i,j

∑
λ(i),λ(j )

eit(λ(i)−λ(j ))�i(λ
(i))Ai,j�j (λ(j ))

⊗ |i〉〈j | ⊗ Bi,j (t) + H.c., (16)

where the operator Bi,j (t) is given by

Bi,j (t) = eitHB

(∑
n

gi,j,nai,j,n + g∗
i,j,na

†
i,j,n

)
e−itHB

=
∑

n

gi,j,nai,j,ne
−itωi,j,n + H.c. (17)

Equation (16) can be rewritten as

HSB(t) =
∑
i,j

∑
ω

eitωA
†
i,j (ω) ⊗ |i〉〈j | ⊗ Bi,j (t) + H.c.

+
∑
i,j

∑
ω′

e−itω′
Ai,j (ω′) ⊗ |i〉〈j | ⊗ Bi,j (t) + H.c.,

(18)

where the operators A
†
i,j (ω) and Ai,j (ω′) are defined as

Ai,j (ω) =
∑

λ(i)−λ(j )=ω<0

�i(λ
(i))Ai,j�j (λ(j )),

A
†
i,j (ω′) = Ai,j (−ω′). (19)

It is straightforward to see that the summation over all
frequencies ω and ω′ gives the original operators Ai,j ,∑

ω

Ai,j (ω) +
∑
ω′

A
†
i,j (ω′) = Ai,j . (20)

Having defined the system-bath Hamiltonian HSB , we can
put the explicit expression for the Hamiltonian Eq. (16) into
the generic equation for the reduced density matrix Eq. (14)
and obtain the master equation for the system. In Eq. (14),
we will need to trace out the bath degrees of freedom. Here,
we assume that the environment is in a thermal equilibrium
state, i.e., the state of the reservoir is given by the canonical
distribution ρB = exp (−βHB)/Tr[exp (−βHB)], where β is
the inverse temperature of the bath, β = (kBT )−1. Using the
explicit form of the system-bath interaction Hamiltonian in
the interaction picture HSB(t) [Eq. (16)], and utilizing the
rotating-wave approximation for the transition frequencies ω

and ω′ [9,35], it follows that

d

dt
ρs(t) =

∑
i,j

∑
ω

γi,j (−ω)L[Ai,j (ω) ⊗ |j 〉〈i|]ρs(t)

+ γi,j (ω)L(A†
i,j (ω) ⊗ |i〉〈j |)ρs(t)

+
∑
i,j

∑
ω′

γi,j (−ω′)L[Ai,j (ω′) ⊗ |i〉〈j |]ρs(t)

+ γi,j (ω′)L(A†
i,j (ω′) ⊗ |j 〉〈i|)ρs(t), (21)

whereL(A)ρ denotes the dissipative superoperator in diagonal
GKSL form [9,33,34],

L(A)ρ = AρA† − 1
2 {A†A,ρ}, (22)

and γi,j (ω) is the real part of the Fourier transform of the
reservoir correlation functions 〈B†

i,j (τ )Bi,j (0)〉,

γi,j (±ω) = γ se
i,j

2

[
coth

(
βω

2

)
∓ 1

]
, (23)

where γ se
i,j is the coefficient of the spontaneous emission in

the corresponding local reservoir. In Eq. (21), the Lamb-type
shift terms are neglected. These terms describe shifts in energy
levels of the system due to the interaction with the heat bath,
and typically they do not influence the dissipative dynamics of
the system. The value of the Lamb-type shift is much smaller
than other characteristic parameters in the system Hamiltonian,
and traditionally these terms are dropped. For the cases in
which the dimension of the reduced system is large enough,
these Lamb-type shifts might affect the dissipative dynamic
of the reduced system [36,37]. However, for simplicity in
the present paper, we assume that one can neglect these
contributions.

It is interesting to note that the quantum master equa-
tion (21) has the form of the generalized master equation intro-
duced by Breuer [32]. For the generalized master equation, it
is assumed that the total density matrix of the reduced system
can be written as ρ = ∑

i ρi ⊗ |i〉〈i|, where each operator ρi

satisfies the following differential equation:

d

dt
ρi = Ki(ρ1, . . . ,ρn), (24)
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where the general form of the generators Ki is given by

Ki(ρ1, . . . ,ρn) = −i[Hi,ρi] +
∑
j,λ

(
R

ji

λ ρjR
ji†
λ − 1

2

{
R

ji†
λ R

ji

λ ,ρi

})
, (25)

with Hermitian operators Hi and non-Hermitian operators R
ji

λ .
It is straightforward to see that by writing the density matrix of the reduced system from Eq. (21) as ρs(t) = ∑M

i=1 ρi(t) ⊗ |i〉〈i|,
where |i〉〈i| is a projection on the node i, the quantum master equation (21) reduces to the system of differential equations for
ρi(t):

d

dt
ρi(t) = Ki(ρ1, . . . ,ρM ), (26)

where Ki(ρ1, . . . ,ρM ) is now explicitly given by

Ki(ρ1, . . . ,ρM ) =
∑
j,ω

γj,i(−ω)Aj,i(ω)ρjA
†
j,i(ω) − γi,j (−ω)

2
{A†

i,j (ω)Ai,j (ω),ρi}

+
∑
j,ω

γi,j (ω)A†
i,j (ω)ρjAi,j (ω) − γj,i(ω)

2
{Aj,i(ω)A†

j,i(ω),ρi}

+
∑
j,ω′

γi,j (−ω′)Ai,j (ω′)ρjA
†
i,j (ω′) − γj,i(−ω′)

2
{A†

j,i(ω
′)Aj,i(ω

′),ρi}

+
∑
j,ω′

γj,i(ω
′)A†

j,i(ω
′)ρjAj,i(ω

′) − γi,j (ω′)
2

{Ai,j (ω′)Ai,j (ω′)†,ρi}. (27)

The system of differential equations (26) and (27) defines the continuous-time open quantum walk. Continuous-time OQWs have
been introduced recently as the continuous-in-time limit of the discrete-time OQWs [Eq. (5)] [21].

To obtain a discrete-time OQW in the form (4), one needs to introduce discretized time steps. There are at least two ways of
achieving this. The first way is to discretize the solution of the system of equations (26), however it cannot be done in a generic
setting. The second way, which is the one way to do a discretization in general, is to discretize the system of the differential
equations (26). To do this, one needs to replace the time derivative by the finite difference with a small time step 
,

d

dt
ρi(t) → ρi(t + 
) − ρi(t)



. (28)

The above substitution leads to the following transition operators:

B
i(1)
j (ω) = √


γj,i(−ω)Aj,i(ω), B
i(2)
j (ω) = √


γi,j (ω)A†
i,j (ω),

B
i(1)
j (ω′) =

√

γi,j ( − ω′)Ai,j (ω′), B

i(2)
j (ω′) = √


γj,i(ω′)A†
j,i(ω

′),
(29)

Bi
i = IN − 


2

∑
j,ω

(γi,j (−ω)A†
i,j (ω)Ai,j (ω) + γj,i(ω)Aj,i(ω)A†

j,i(ω))

− 


2

∑
j,ω′

(γj,i(−ω′)A†
j,i(ω

′)Aj,i(ω
′) + γi,j (ω′)Ai,j (ω′)Ai,j (ω′)),

where IN is an N -dimensional identity operator on the Hilbert space HN . One can see that the set of transition operators
introduced above satisfies standard normalization conditions up to O(
2),

B
j†
j B

j

j +
2∑

k=1

∑
j,i,ω

B
i(k)†
j (ω)Bi(k)

j (ω) +
2∑

k=1

∑
j,i,ω

B
i(k)†
j (ω′)Bi(k)

j (ω′) = IN . (30)

Hence, the iteration formula for the discrete-time OQW reads

ρ
[n+1]
i = Bi

i ρ
[n]
i B

i†
i +

2∑
k=1

∑
j,ω

B
i(k)
j (ω)ρ[n]

j B
i(k)†
j (ω) +

2∑
k=1

∑
j,ω′

B
i(k)
j (ω′)ρ[n]

j B
i(k)†
j (ω′). (31)

The explicit expression for the transition operators Eq. (29) establishes a connection between the dynamical properties of the
OQWs and the thermodynamic parameters of the environment.
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IV. EXAMPLES OF OPEN QUANTUM WALKS

A. First example

As an example of the above microscopic derivation of
OQWs, we consider a two-level system (two-level atom or
electron with spin) as a quantum walker on a circle with M

nodes (Fig. 2). In this case, the system Hamiltonian HS of the
two-level system (“quantum walker”) on the circle reads

HS =
M∑
i=1

ω0

2
σz ⊗ |i〉〈i| + λ(�nλ �σ ) ⊗ |i〉〈i|, (32)

where σi are the Pauli matrices, and the term λ(�nλ �σ ) describes
a weak external field λ � ω0 in the direction of the unit
vector �nλ. We consider a system-bath Hamiltonian HSB of
the following form:

HSB =
M∑
i=1

gi,nσ− ⊗ |i + 1〉〈i| ⊗ a
†
i,n

+ g∗
i,nσ+ ⊗ |i〉〈i + 1| ⊗ ai,n, (33)

where |M + 1〉 ≡ |1〉. Taking into account that the external
field in the Hamiltonian HS is weak, λ � ω0, the system-bath
Hamiltonian in the interaction picture reads

HSB =
M∑
i=1

gi,nσ− ⊗ |i + 1〉〈i| ⊗ a
†
i,ne

−i(ω0−ωi,n)t + H.c.

(34)

The corresponding quantum master equation for the reduced
density matrix takes the following form:

d

dt
ρs(t) =

M∑
i=1

( − i[λ(�nλ �σ ) ⊗ |i〉〈i|,ρs(t)]

+ γi(−ω0)L(σ− ⊗ |i + 1〉〈i|)ρs(t)

+ γi(ω0)L(σ+ ⊗ |i〉〈i + 1|)ρs(t)). (35)

The superoperator defined by Eq. (35) preserves the block-
diagonal structure of the density matrix ρs(t) = ∑M

i=1 ρi(t) ⊗
|i〉〈i|. The continuous-time OQW has the same structure as
Eq. (26),

d

dt
ρi(t) = −ıλ[�nλ �σ ,ρi(t)]

+ γi(−ω0)

(
σ−ρi−1(t)σ+ − 1

2
{σ+σ−,ρi(t)}+

)

+ γi(ω0)

(
σ+ρi+1(t)σ− − 1

2
{σ−σ+,ρi(t)}+

)
.

(36)

Finally, it is easy to obtain the explicit form of the operators
B

j

i following the time-dicretization procedure introduced in
Eq. (36),

B =
√


γ (〈n〉 + 1)σ−, C =
√


γ 〈n〉σ+,

A = I2 − 


2
[γ (〈n〉 + 1)σ+σ− + γ 〈n〉σ−σ+] − ıλ
�nλ �σ .

(37)

FIG. 3. (Color online) Open quantum walk on a circle of nodes.
Operators A, B, and C are given by Eq. (37). Part (a) shows the
occupation probability of the “walker” P (i,N ) = Tr[ρ[N]

i ] after 5000
steps. The initial state of the “walker” is given by ρ[0] = 1

2 I2 ⊗
|51〉〈51| and curves (1)–(3) correspond to the different temperatures
of the environment 〈n〉 = 10, 1, and 0.1, respectively; the parameters
are γ = 0.1, λ = 0.3, and 
 = 0.05. Part (b) shows the dependence
of the “speed” of the Gaussian Vμ (curve 1) and “spread” of the
Gaussian Vσ (curve 2) given by Eqs. (38) and (39) as a function of
the temperature of the environment; the parameters are γ = 0.1 and
λ = 0.3.

For simplicity, in Eq. (37) we assume that all damping
rates are the same, i.e., ∀ i,γi(−ω0) ≡ γ (−ω0) = γ (〈n〉 + 1)
and ∀ i,γi(ω0) ≡ γ (ω0) = γ 〈n〉, where γ is the coefficient

of spontaneous emission and 〈n〉 = [exp ( �ω0
kBT

) − 1]
−1

is the
mean number of thermal photons on the frequency ω0 for a
bath at temperature T . The iteration formula for OQWs with
jump operators A, B, and C [Eq. (37)] is given by Eq. (9).

Figure 3 shows the dynamics of different observables for
the OQW on the circle with M = 101 nodes and the jump
operators given by Eq. (37). The occupation probability of
the “walker” P (i,N ) = Tr[ρ[N]

i ] after Nsteps = 5000 steps for
different temperatures of environment is shown in Fig. 3(a). It
is clear that when decreasing the temperature of the bath [from
Fig. 3(a1) to Fig. 3(a3)], the Gaussian distribution describing
the occupation probability of the position of the “walker”
moves faster to the right, and in the case of higher temperatures
of the environment [Fig. 3(a1)] the average position of the
“walker” essentially remains near the initial node 51. However,
the width of the Gaussian distributions corresponding to the
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temperatures 〈n〉 = 1 and 10 seems to be the same. To explain
this, one needs to analyze the average and variance of the
position of the “walker.” Using Eq. (36), one can derive
a system of equations for the mean μ(t) = ∑M

i=1 iTr[ρi(t)]
and the variance σ 2(t) = ∑M

i=1{i2Tr[ρi(t)] − μ(t)2} of the
“walker” in position space (see the Appendix for details).
Using analytical expressions for μ(t) and σ 2(t), it is possible
to calculate the asymptotic velocity of these quantities,

Vμ = lim
t→∞

μ(t)

t
= 4γ λ2

�2
, (38)

where � =
√

8λ2 + γ 2(2〈n〉 + 1)2, and

V 2
σ = lim

t→∞
σ 2(t)

t
= γ

2
(2〈n〉 + 1)

− 3

2

γ 7(2〈n〉 + 1)5

�6
+ 3γ 5(2〈n〉 + 1)3

�4

− γ 3(2〈n〉 + 1)(〈n〉2 + 〈n〉 + 1)

�2
. (39)

Figure 3(b) shows the dependence of the “speed” (Vμ, curve
1) and “spread” (Vσ , curve 2) of the Gaussian distributions
as a function of the temperature of the environment on a
logarithmic scale. This figure perfectly explains the dynamics
of the Gaussians shown in Fig. 3(a). Figure 3(b) shows that
the “speed” of the Gaussian is a monotonically decreasing
function of the temperature of the environment. However, the
biggest change in the velocity is happening for the temperature
corresponding to the average number of photons in the bath
between 1 (log10〈n〉 = 0) and 10 (log10〈n〉 = 1). Figure 3(a)
demonstrates that dependence: a Gaussian distribution curve
Fig. 3(a1) (log10〈n〉 = 1) is much slower than Figs. 3(a2)
and 3(a3) corresponding to log10〈n〉 = 0 and log10〈n〉 = −1,
respectively. The “speed” (Vμ) corresponding to Figs. 3(a2)
and 3(a3) is approximately the same. The dependence of the
“spread” of the Gaussians as a function of the temperature
of the environment [Fig. 3(b2)] is nonmonotonic. Upon
increasing the temperature of the environment, the “spread”
grows to a certain point and decreases afterward. This
nonmonotonic dependence explains the same width of the
Gaussians corresponding to different temperatures of the bath
in Fig. 3(a1) (log10〈n〉 = 1) and Fig. 3(a2) (log10〈n〉 = 0).

Figure 4 shows the dynamics of the total coherence,

σx(t) =
M∑
i=1

Tr
[
ρ

[t]
i σx

]
, (40)

of the “walker.” The time in Fig. 4 is in the number of steps of
the walk multiplied by the time-discretization step 
, so each
unit of time corresponds to 20 steps of the walk. One can see
that for all considered temperatures of the environment, there
is some nonzero level of coherence present in the system.
The presence of the steady-state coherence in the OQWs
demonstrates that even if the steady-state position of the
walker is a classically distributed degree of freedom, the inner
state of the walker remains quantum. Obviously, for lower
temperatures [Fig. 4(3)] the amount of coherence is higher, and
it takes more steps to achieve a steady-state coherence. Figure 5
shows examples of quantum trajectories of the “walker” for

FIG. 4. (Color online) Open quantum walk on a circle of nodes.
Operators A, B, and C are given by Eq. (37). The figure shows
the dynamics of the total coherence of the “walker” σx(t) =∑M

i=1 Tr[ρ[t]
i σx]. The initial state of the “walker” is given by ρ[0] =

1
2 I2 ⊗ |51〉〈51| and the curves (1)–(3) correspond to the different
temperatures of the environment 〈n〉 = 10, 1, and 0.1, respectively;
the parameters are γ = 0.1, λ = 0.3, and 
 = 0.05.

nonzero and zero temperature of the environment, respectively.
The quantum trajectories of the “walker” were obtained using
the unraveling of the OQWs [10–12]. In the zero-temperature
case, the jump operator C vanishes (C ≡ 0), which implies
that there will be only two options for the walker, namely to
stay on the same node or to move to the right. The temperature
of the bath plays the role of a switch between diffusive and
ballistic trajectories of the “walker.”

Similar behavior of the OQWs was described by
Bauer et al. [14] using parametrized generic CPTP maps.
Only the microscopic derivation presented here allows us
to identify the physical conditions necessary to observe the
transition in the behavior of quantum trajectories.

B. Second example

The second example of the microscopic derivation is
an OQW on a finite chain of nodes. As in the previous
example, the quantum walker will be a two-level system. The
Hamiltonian of the walker on the finite chain of nodes is given
by

HS =
M∑
i=1

εi

2
σz ⊗ |i〉〈i|, (41)

where the constants εk read

εk = ε0 + k
0, (42)

where ε0 and 
0 are some positive constants. In this example,
we will assume a pure dephasing system-bath interaction,

HSB =
M−1∑
i=1

∑
n

(ασz + βI )Xi,i+1 ⊗ (gi,nai,n + H.c.), (43)

where Xi,i+1 = |i + 1〉〈i| + |i〉〈i + 1| and α,β ∈ R. The free
parameters α and β allow us to address different types
of dephasing coupling. For α = 1 and β = 0, we obtain
σz coupling, and for α = ±β = 1/2, we couple excited
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FIG. 5. (Color online) Open quantum walk on a circle of nodes.
Operators A, B, and C are given by Eq. (37). Parts (a) and (b) show
examples of quantum trajectories of the “walker” in the diffusive
and the ballistic case, respectively. The axis labels i and Xi denote
the node of the position of the walk and the number of steps of
the OQW. The diffusive behavior of the quantum trajectories of
the “walker” shown in (a) corresponds to the nonzero temperature
of the environment (〈n〉 = 5), while the ballistic behavior of the
quantum trajectories of the “walker” shown in (b) corresponds to
an environment at zero temperature (〈n〉 = 0). The initial state of
the “walker” is given by ρ[0] = 1

2 I2 ⊗ |51〉〈51|; the parameters are
γ = 0.1, λ = 0.3, and 
 = 0.05.

and ground levels of the two-level system, respectively. In
the interaction picture, the Hamiltonian of the system bath
interaction HSB(t) reads

HSB(t) =
M−1∑
i=1

∑
n

(ασz + βI ) ⊗ (|i + 1〉〈i|ei
0t

+ |i〉〈i + 1|e−i
0t ) ⊗ (gi,nai,ne
−iωi,nt + H.c.).

(44)

After application of the rotating-wave approximation (RWA),
we obtain the Hamiltonian of the system-bath interaction,

H RWA
SB (t) =

M−1∑
i=1

∑
n

(ασz + βI )

⊗ (gi,n|i〉〈i + 1|ai,ne
i(ωi,n−
0)t + H.c.). (45)

It is straightforward to obtain the corresponding master
equation in the Born-Markov approximation:

d

dt
ρ =

M−1∑
i=1

γ (〈n〉 + 1)L((ασz + βI ) ⊗ |i〉〈i + 1|)ρ

+
M−1∑
i=1

γ 〈n〉L((ασz + βI ) ⊗ |i + 1〉〈i|)ρ, (46)

where γ is the coefficient of spontaneous emission and 〈n〉 =
[exp ( �
0

kBT
) − 1]

−1
is the number of thermal photons on the

frequency 
0 of the bath at temperature T . As in the generic
case Eq. (21) and in the example Eq. (35), the above master
equation preserves the block-diagonal structure of the density
matrix. By direct substitution of ρs(t) = ∑M

i=1 ρi(t) ⊗ |i〉〈i|,
one obtains the following generalized master equations:

d

dt
ρ1(t) = γ (〈n〉 + 1)Sρ2(t)S − γ 〈n〉

2
{S2,ρ1(t)}+,

d

dt
ρi(t) = γ (〈n〉 + 1)

(
Sρi−1(t)S − 1

2
{S2,ρi(t)}+

)

+ γ 〈n〉
(

Sρi+1(t)S − 1

2
{S2,ρi(t)}+

)
(47)

(i = 2, . . . ,M − 1),

d

dt
ρM (t) = γ 〈n〉SρM−1(t)S − γ (〈n〉 + 1)

2
{S2,ρM (t)}+,

where the operator S is defined as S = S† = ασz + βI .
Performing the discretization procedure in Eq. (47), we obtain
the following jump operators:

Bi
i+1 =

√
γ (〈n〉 + 1)
S,

Bi+1
i =

√
γ 〈n〉
S (i = 1, . . . ,M − 1),

(48)

B
j

j = I − γ (2〈n〉 + 1)


2
S2 (j = 2, . . . ,M − 1),

B1
1 = I − γ (〈n〉 + 1)


2
S2, BM

M = I − γ 〈n〉

2

S2.

The interaction formula takes the following form:

ρ
[n+1]
1 = B1

1ρ
[n]
1 B

1†
1 + B1

2ρ
[n]
2 B

1†
2 ,

ρ
[n+1]
M = BM

M ρ
[n]
M B

M†
M + BM

M−1ρ
[n]
M−1B

M†
M−1,

(49)
ρ

[n+1]
i = Bi

i ρ
[n]
i B

i†
i + Bi

i−1ρ
[n]
i−1B

i†
i−1 + Bi

i+1ρ
[n]
i+1B

i†
i+1

(i = 2, . . . ,M − 1).

Figure 6 shows the dynamics of different observables of
the OQW on the line with M = 101 nodes and the jump
operators given by Eq. (48). The occupation probability of
the “walker” P (i,N ) = Tr[ρ[N]

i ] after Nsteps = 5000 steps for
different temperatures of the environment is shown in Fig. 6(a).
As in the previous example, upon decreasing the temperature
of the bath [from Fig. 6(a1) to 6(a3)], the dispersion of
the distribution grows. However, in contrast to the previous
example, the average speed of the “walker” is independent of
the temperature of the bath. In this special example, the jump
operators (A, B, and C) are diagonal, which implies that each
operator ρ

[n]
i (ρ[n]

i(k) = 〈k|ρ[n]
i |k〉) evolves independently from
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FIG. 6. (Color online) Open quantum walk on a finite chain of
nodes. Parts (a) and (b) show the occupation probability of the
“walker” P (i,N ) = Tr[ρ[N]

i ] after 5000 steps and the dynamics of
the total coherence of the “walker” σx(t) = ∑M

i=1 Tr[ρ[t]
i σx]. The

initial state of the “walker” is given by ρ[0] = |−〉〈−| ⊗ |51〉〈51|,
and curves (1)–(3) correspond to the different temperatures of the
environment 〈n〉 = 10, 1, and 0.1, respectively; the parameters are
γ = 0.1, λ = 0.3, 
 = 0.05, α = 1, β = 0, and |−〉 = 1√

2
(|1〉 − |0〉).

other elements of the operator ρ
[n]
i . The iteration formula for

the diagonal elements ρ
[n]
i(k) reads

ρ
[n+1]
i(k) = [1 − γ (2〈n〉 + 1)
]ρ[n]

i(k)

+ γ (〈n〉 + 1)
ρ
[n]
i+1(k) + γ 〈n〉
ρ

[n]
i−1(k). (50)

This means that on average, the “walker” is always moving to
the left with drift velocity γ
 [Fig. 6(a)]. Figure 6(b) shows
the dynamics of the total coherence of the “walker” σx(t) =∑M

i=1 Tr[ρ[t]
i σx]. Due to the pure decoherent interaction with

the heat bath, one can see that for all temperatures the
coherence is vanishing. As is expected for higher temperatures
[Fig. 6(b1)], the coherence vanishes faster than for lower
ones [Fig. 6(b3)]. Figure 7 shows samples of the quantum
trajectories of the “walker” for nonzero and zero temperature
of the environment, respectively. For the zero temperature of
the bath, the jump operator Bi+1

i vanishes (Bi+1
i ≡ 0), which

implies that the “walker” can stay on the same node or move
to the left. The continuous-time limit (
 → 0) of the iteration
equation (50) is a differential equation for the Poisson process,

FIG. 7. (Color online) Open quantum walk on a finite chain of
nodes. Parts (a) and (b) show examples of quantum trajectories of
the “walker” in the diffusive and the ballistic case, respectively. The
axis labels i and Xi denote the node of the position of the walk
and the number of steps of the OQW. The diffusive behavior of the
quantum trajectories of the “walker” shown in (a) corresponds to
nonzero temperature of the environment (〈n〉 = 5), while the ballistic
behavior of the quantum trajectories of the “walker” shown in (b)
corresponds to an environment at zero temperature (〈n〉 = 0). The
initial state of the “walker” is given by ρ[0] = |−〉〈−| ⊗ |51〉〈51|;
the parameters are γ = 0.1, λ = 0.3, 
 = 0.05, α = 1, β = 0, and
|−〉 = 1√

2
(|1〉 − |0〉).

i.e., dρi(k)/dt = γ (ρi+1(k) − ρi(k)). As in the previous example,
the temperature of the bath plays the role of a switch between
diffusive and ballistic trajectories of the “walker.”

V. CONCLUSION

In this paper, we presented the generic case of the
microscopic derivation of open quantum walks. We started by
identifying the Hamiltonian of the “walker” and the nodes as
the system Hamiltonian, the Hamiltonian of the reservoirs, and
the Hamiltonian of the system-bath interaction. The Hamilto-
nian of the system-bath interaction was chosen such that only
dissipative interaction drove transitions between the nodes of
the OQW. We applied the Born-Markov approximation to
obtain the reduced master equation of the density matrix of
the system (“walker” and nodes of the walk). The resulting
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master equation has the generalized master equation form,
and it defined a continuous-time open quantum walk. The
generalized master equation conserves the diagonal in position
form of the reduced density matrix. The time discretization
of the generalized master equation leads to the discrete-time
OQW formalism.

The formalism was demonstrated for the examples of the
OQW on a circle of nodes and a finite chain of nodes.
The presented microscopic derivation allows us to connect
the different dynamic behaviors of the OQWs with the
thermodynamic parameters of the total system. For both
examples, a transition between the diffusive and ballistic
quantum trajectories was observed. The temperature of the
bath was identified as a switching parameter between these
different types of quantum trajectories. As was shown in the
example of the OQWs on a circle of nodes, there is a persistent
coherence in the OQWs even after the system reaches steady
Gaussian distribution.

It was shown that OQWs can efficiently performs dis-
sipative quantum computing [27] and efficiently transport
excitations [10]. However, only with the help of a microscopic
derivation is it possible to identify the Hamiltonians that are
necessary to implement these walks in a realistic physical
system. This will be the subject of future research in this field.
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APPENDIX: DERIVATION OF THE COEFFICIENTS
Vμ AND V 2

σ

To derive an equation for the coefficient Vμ, one needs to
obtain the equation for μ(t) = ∑N

i=1 iTr[ρi(t)]. The general-
ized master equation (36) can be rewritten as

Ẏi = −γ (2〈n〉 + 1)

2
Yi,

Ẋi = 2λZi − γ (2〈n〉 + 1)

2
Xi,

Żi = −2λXi − γ

2
Pi − γ (2〈n〉 + 1)

2
Zi

+ γ 〈n〉
2

(Pi+1 − Zi+1) − γ (〈n〉 + 1)

2
(Pi−1 + Zi−1),

Ṗi = −γ (2〈n〉 + 1)

2
Pi − γ

2
Zi

+ γ (〈n〉 + 1)

2
(Pi−1 + Zi−1) + γ 〈n〉

2
(Pi+1 − Zi+1),

(A1)

where the index i runs from 1 to M with periodic boundary
conditions (M + 1 ≡ 1). The functions Yi, . . . ,Pi are defined
as Pi = Tr[ρi(t)] and Ai = Tr[σAρi(t)] (σA is corresponding
Pauli matrix). Using this system of differential equations for
Yi, . . . ,Pi , one can find a corresponding system of differen-
tial equations for the following collective functions: As =∑M

i=1 Ai , 〈A〉 = ∑M
i=1 iAi , and 〈〈A〉〉 = ∑M

i=1 i2Ai , where

Ai ∈ (Pi,Xi,Yi,Zi). By definition, the coefficients Vμ and V 2
σ

are asymptotic linear parts of the functions μ(t) = 〈P 〉 and
σ 2(t) = 〈〈P 〉〉 − 〈P 〉2, respectively.

Using the definition of the collective variable As =∑M
i=1 Ai and periodic boundary conditions, it is easy to obtain

a system of differential equations for Ps , Xs , and Zs ,

d

dt
Ps = 0,

(A2)
d

dt

(
Zs

Xs

)
= G2

(
Zs

Xs

)
−

(
γPs

0

)
,

where G2 = (−γ (2〈n〉 + 1) −2λ

2λ −γ
2〈n〉+1

2
). The first equation of this

system has a very simple physical meaning, knowing that PS =∑M
i=1 Pi , where Pi is the probability to find the walker on the

node i, and
∑M

i=1 Pi is just the trace of the total reduced density
matrix of the walker on the ring of nodes. This implies that Ps

is the total probability to find the walker on one of the nodes, so
Ps = Ps(0) = 1. The equation for Xs and Zs can be integrated
as (

Zs

Xs

)
= etG2

(
Zs(0)
Xs(0)

)
− γ

∫ t

0
dτ e(t−τ )G2

(
1
0

)
. (A3)

Now, we can write down the equation for 〈A〉 = ∑M
i=1 iAi ,

d

dt
〈P 〉 = γ

2〈n〉 + 1

2
Zs + γ

2
Ps,

d

dt

(〈Z〉
〈X〉

)
= G2

(〈Z〉
〈X〉

)

−
(

γ 〈P 〉 + γ

2
Zs + γ (2〈n〉 + 1)

2
Ps

)(
1
0

)
.

(A4)

The formal solution for the function 〈P 〉 has the form

〈P 〉(t) = 〈P 〉(0) + γ t

2
+ γ

2〈n〉 + 1

2

∫ t

0
dτ Zs(τ ). (A5)

Using the spectral decomposition theorem for the matrix G2,
it is easy to obtain

G2 = λ+�+ + λ−�−,

λ± = −3

4
γ (2〈n〉 + 1) ± ω

4
, (A6)

�± = ± 2

ω
(G2 − λ∓12),

where λ± and �± are eigenvalues and corresponding orthogo-
nal projectors on the eigenspaces of the matrix G2, 12 denotes
the 2 × 2 identity matrix, and the constant ω is given by
ω =

√
γ 2(2〈n〉 + 1)2 − 64λ2. Using the decomposition of the

matrix G2, the expression for the collective variable 〈P 〉 reads

〈P 〉(t) = 〈P 〉(0) + γ t

2

+ γ
2〈n〉 + 1

2

∑
k=+,−

{
eλkt − 1

λk

(1 0)�k

(
Zs(0)
Xs(0)

)

− γ

λ2
k

(eλkt − 1 − λkt)(1 0)�k

(
1
0

)}
. (A7)
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With the help of Eq. (A7), the coefficient Vμ is given by

Vμ = lim
t→∞

〈P 〉(t)
t

= γ

2

+ γ 2 2〈n〉 + 1

2

∑
k=+,−

1

λk

(1 0)�k

(
1
0

)

= 4γ λ2

8λ2 + γ 2(2〈n〉 + 1)2
. (A8)

The differential equation for the collective variable 〈〈P 〉〉
has the form

d

dt
〈〈P 〉〉 = γ 〈P 〉 + γ (2〈n〉 + 1)〈Z〉 + γ

2
Zs + γ (2〈n〉 + 1)

2
.

(A9)

The solution of the function 〈Z〉 is obtained from the system
(A4) as(〈Z〉

〈X〉
)

= etG2

(〈Z〉(0)
〈X〉(0)

)
− γ

∫ t

0
dτ

{
〈P 〉(τ )

+ 1

2
Zs(τ ) + 2〈n〉 + 1

2

}
e(t−τ )G2

(
1
0

)
. (A10)

Using the explicit solutions for the functions 〈Z〉, 〈P 〉, and
Zs , it is straightforward to obtain the solution for the function
〈〈P 〉〉. The coefficient V 2

σ can be obtained as

V 2
σ = lim

t→∞
〈〈P 〉〉 − 〈P 〉2

t
= γ

2
(2〈n〉 + 1)

− 3

2

γ 7(2〈n〉 + 1)5

�6
+ 3γ 5(2〈n〉 + 1)3

�4

− γ 3(2〈n〉 + 1)(〈n〉2 + 〈n〉 + 1)

�2
, (A11)

where � =
√

8λ2 + γ 2(2〈n〉 + 1)2.
The expressions (A8) and (A11) conclude the derivation of

Eqs. (38) and (39), respectively.
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