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We present a unified axiomatic approach to contextuality and nonlocality based on the fact that both are
resource theories. In those theories, the main objects are consistent boxes, which can be transformed by certain
operations to achieve certain tasks. The amount of resource is quantified by appropriate measures of the resource.
Following a recent paper [J. I. de Vicente, J. Phys. A: Math. Theor. 47, 424017 (2014)], and recent development of
abstract approach to resource theories, such as entanglement theory, we propose axioms and welcome properties
for operations and measures of resources. As one of the axioms of the measure we propose the asymptotic
continuity: the measure should not differ on boxes that are close to each other by more than the distance with a
factor depending logarithmically on the dimension of the boxes. We prove that relative entropy of contextuality
is asymptotically continuous. Considering another concept from entanglement theory (the convex roof of a
measure), we prove that for some nonlocal and contextual polytopes, the relative entropy of a resource is upper
bounded up to a constant factor by the cost of the resource. Finally, we prove that providing a measure X

of resource does not increase under allowed class of operations such as, e.g., wirings, the maximal distillable
resource which can be obtained by these operations is bounded from above by the value of X up to a constant
factor. We show explicitly which axioms are used in the proofs of presented results, so that analogous results
may remain true in other resource theories with analogous axioms. We also make use of the known distillation
protocol of bipartite nonlocality to show how contextual resources can be distilled.
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I. INTRODUCTION

Quantum contextuality stands among the most expressive
manifestations of nonclassicality in quantum mechanics [1,2].
In recent years, it has attracted much attention and has been a
topic of extensive studies [3–6]. Apart from the interest focused
on fundamental concepts, quantum contextuality has been
associated with fast computing [7] and quantum information
processing [8], which opens a path to possible application of
contextual resources in different scenarios.

A particular example of contextuality in the framework
where two or more spatially separated parties perform mea-
surements on each subsystem has been termed nonlocality [9].
A lot of effort has been devoted to classifying and quantifying
the nonlocality which was identified as a useful resource in the
device-independent quantum information processing (see also
Sec. IV of Ref. [9]). Although different in nature, nonlocal
correlations as well as quantum entanglement proved useful
in information processing tasks which cannot be performed
with the sole use of classical correlations. This in turn led to
the development of the resource theories of entanglement [10]
and nonlocality [11].

While approaching to the formulation of a resource theory,
three basic ingredients need to be considered. First, the concept
of a resource needs to be developed, and showed that it is useful
regarding some specific tasks, which remain unattainable
while having only nonresource objects at disposal. Second,
there must be operations by which one may transform
resources into one another. Third, one needs to have tools to
compare different objects by means of measuring the resource
contained by them, namely, a measure of the resource.

Only recently, a theory of resources has been formalized
with respect to nonlocal resources [11], steering resources [12],

as well as a general abstract characterization of resource
theories has been formulated [13], which captures all needed
features and relations that they have in common. In this light,
we develop the recent theory of nonlocal resources [11] to
include the notion of contextuality, the particular manifestation
of which is nonlocality. After identifying the contextual system
as useful regarding some computational tasks [14], in this
paper we treat contextual systems (“boxes”) as resources in
a similar way as it has been done with respect to nonlocal
resources. In particular, we describe the notion of contextuality
and then, based on the resource theory of entanglement, we
formulate a set of axioms for the transformations of contextual
resources, as well as for measures intended to quantify the
value of given resources.

One of the axioms that we explore is asymptotic continuity,
a very desired property from the experimental point of view.
Suppose we wish to quantify the amount of resource of a box
B using the measure X. However, the experimental realization
of the box produces an imperfect box B ′ which is possibly
close to B:

||B − B ′|| � ε, (1)

where || . . . || denotes the trace distance between two
boxes [15]. For any measure of a resource, we want it to differ
not more than the distance between two considered boxes times
a constant logarithmic factor of the dimensionality of the box.
Asymptotic continuity of a measure X therefore means that

|X(B) − X(B ′)| � ε log d + f (ε), (2)

where d is dimensionality of the boxes and f is a function

such that f (ε)
ε→0−−→ 0. Throughout this paper logarithms are

taken to the base 2.
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Only recently, the measures of contextuality have been de-
veloped, which enables to quantify the amount of contextuality
of boxes [16]. In particular, two measures of contextuality
have been introduced: mutual information of contextuality
(MIC) and relative entropy of contextuality (REC). As stated
earlier, from an experimental point of view, it is mandatory
that any measure of a resource, in particular the measure of
contextuality, is asymptotically continuous. With this respect,
the main result of the paper is proving that the measure MIC
fulfills the axiom of asymptotic continuity. Since the measures
MIC and REC are equivalent [16], the asymptotic continuity
holds also for the latter, relative entropy distance measure.

The next result of the paper is showing that the relative
entropy measure of a resource is upper bounded (up to a
constant factor) by another measure which has been defined
in Ref. [16], the cost of a resource. We then give examples of
applications of this result for a class of bipartite boxes with
binary inputs and binary outputs (the most nonlocal of which
is PR box [17,18]), as well as a class of boxes related to
contextual n cycles [19]. Furthermore, we consider distillation
of a resource with the regard that the measure of a resource
fulfills the axiom of monotonicity (i.e., that the measure does
not increase under the set of allowed operations), and show that
distillable contextuality is upper bounded (up to a constant
factor) by the value of the measure. We also make use of
a distillation protocol as originally devised in [20] to show
how contextual resources can be distilled. We then analyze
the application of the bound with respect to two relative
entropy-based measures of contextuality.

II. AXIOMATIC APPROACH TO RESOURCE THEORY
OF CONTEXTUALITY AND NONLOCALITY

We present a framework for a construction of a general
resource theory of contextuality, which can be regarded as a
development of resource theory of nonlocality as presented in
Ref. [11]. After formalizing the notion of contextual resources
with the relation to nonlocal resources, which are to be
understood as a specific form of the former, we proceed with
formulating the axioms for operations on contextual resources,
and axioms for the measures intended to quantify the value of
a given resource.

A. Contextual or nonlocal boxes

In the present setting, the objects of interest are the
measurement statistics, without any references to what actual
measurements are being performed on actual physical systems.
At this point, we do not need to assume that the measurements
are performed by spatially separated parties, which, in fact,
the notion of nonlocality is all about. In the present view, we
consider a set of observables M that can be performed on
any physical system, where a measurement of each Mi ∈ M
gives an outcome mi with a probability p(mi |Mi). Let us
assume that there exist subsets Mi of jointly measurable
observables. Each such subset we will call a context denoted
by c. The joint probability distribution of obtaining the
outcomes (m1,m2, . . . ,mk) while measuring the observables
M1,M2, . . . ,Mk belonging to a context c we will denote by

p(λc) := p(m1,m2, . . . ,mk|M1,M2, . . . ,Mk), (3)

where λc = (m1,m2, . . . ,mk) such that M1,M2, . . . ,Mk ∈ c.
Note that an observable Mi may belong to several different
contexts. A box (B) is then a set of joint probability
distributions B = {pB(λc)} for all contexts in M (we will
omit the subscript B of pB(λc) when it is not necessary).

There is, however, a significant constraint which must
be obeyed by all boxes to be physically realizable, namely
the consistency condition, which states that any marginal
distributions for observables that belong to different contexts
are independent of a chosen measuring context, i.e.

∀i,j

∑
λi\λi∩λj

p(λi) =
∑

λj \λi∩λj

p(λj ). (4)

The boxes that fulfill the consistency condition we call
consistent boxes, and the set of all consistent boxes we denote
as B. Throughout the paper, while referring to the set of boxes
we mean exclusively the set of consistent boxes B, without an
explicit indication.

At this stage, it should be noticed that the term box is more
general than the classical probabilistic model for the whole
set of observables M, which is given by the joint probability
distribution p(λ|M), such that for all contexts

p(λc) =
∑
λ\λc

p(λ|M). (5)

A set of valuable resources from this perspective are those
boxes, which cannot be modeled classically, i.e., they cannot
be described by a single joint probability distribution for
all observables. The set of boxes that constitutes a set of
resources we denote as Bv , while its elements, i.e., particular
valuable boxes, we will denote as Bv . Otherwise, the set of
classical boxes, which are useless from the point of view of
valuable resources, we denote as Bnv , whereas its elements by
Bnv . Furthermore, it is known that each box Bnv ∈ Bnv can
be decomposed into a mixture of deterministic boxes which
constitute the extremal points of the convex polytope that is
identified with Bnv . The extremal points of the set Bnv we
will denote as Env , and each box from Bnv can be written as
Bnv = ∑

i piE
i
nv for a proper distribution {pi}. Notice that in

general the extremal boxes Env are not all the extremal vertices
of the set of consistent boxesB. The extremal boxes ofB which
do not belong to the set Bnv , and constitute valuable resources,
we will denote as Ev .

Let us now formalize the resource theory approach re-
garding the notion of contextuality. The crucial aspect of
contextual systems is that one cannot ascribe the values for
each observable into the physical system prior measurements
such that they will obey the observed statistics. Otherwise,
one could, in principle, attribute the observed values of all
measurements, which would mean that the construction of
a probabilistic model p(λ|M) is possible. Therefore, if we
regard a set of contextual boxes BC as a set of resources, then
the set of noncontextual boxes BNC composes of valueless
objects Bnv ≡ BNC .

Suppose now that we have instances of physical systems
composed of two (or in general more than two) subsystems
such that each subsystem is being measured by two spatially
separated parties, Alice and Bob. Due to spacelike separation,
each pair of measurements performed by the two parties
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x ∈ MA,y ∈ MB commute, hence give naturally arising
contexts c = (x,y). From this perspective, the boxes are given
by families of probability distributions p(λc) ≡ p(a,b|x,y),
where λc = (a,b) is a pair of measurement outcomes of
measurements (x,y). The comprehensive resource theory of
nonlocality was presented in Ref. [11], where nonlocal boxes
were identified as valuable resources, whereas local behaviors
were considered as the boxes from the set Bnv (see also
Ref. [21]).

With respect to nonlocality, the consistency conditions (4)
are the strict analogs of nonsignaling conditions: the marginal
distributions for one party are independent of the measurement
choice made by spatially separated other party. Hence, the
consistency conditions assure nonsignaling in the case when
measurement context arises from spacelike separation of
different parties and in this case the set of consistent boxes
is to be understood simply as a set of nonsignaling boxes.

B. Axioms of box-resource theories

Once we wish to use the boxes for some specific tasks,
we need to specify what are the permitted transformations by
which we can process the boxes. Regarding the different sets
of boxes, which either constitute valuable resources (Bv), or
not (Bnv), we formulate two axioms that the operations must
obey:

(O1) For general operations T , given by normalization-
preserving and consistency-preserving transformations T we
must have

∀B1∈B1 ∃B2∈B2 T (B1) = B2. (6)

Notice that general transformations T transform boxes from
one set into another without the assumption of the preservation
of the dimensionality of the boxes. In particular, some
operations T may act as changing the number of contexts of a
box by adding or removing some observables from the set M.
In the case when the dimensionality of boxes (the number of
inputs with the respective number of outputs) is preserved,
then the general operations can be described by a matrix
form [22] (provided that the consistency of a transformed box
is preserved)

T ≡

⎛
⎜⎝

α11T11 . . . α1|c|T1|c|
...

. . .
...

α|c|1T|c|1 . . . α|c||c|T|c||c|

⎞
⎟⎠, (7)

where Tij are stochastic matrices acting on the vector of a
probability distribution p(λj ) from a box B, 0 � αij � 1, and∑

j αij = 1.
(O2) For free operations L, which constitutes a subset of

general operations T , we must have

∀B1∈Bnv
∃B2∈Bnv

L(B1) = B2. (8)

Similarly, as a set of LOCC (local operations and classical
communication) in the context of a resource theory of
entanglement [10], and a set of WCCPI (wirings and classical
communication prior to inputs) in a resource theory of
nonlocality [11,23], the set of free operations L is composed
of those “given for free” operations in a device-independent

information processing, which by themselves cannot produce
a resource from the set Bnv .

An important class of general operations are reversible
operations R, for which

∃R,R−1∈R R−1(R(B)) = B. (9)

A particular example of operations from the set R are
relabelings (see [11] for details).

While considering boxes as resources, we arrive at the
question as to whether using general operations we can obtain
resources that differ quantitatively from the original box.
Similarly as in the entanglement theory, we need to specify
what are the relations between different resources, i.e., whether
we can state quantitatively that a given resource is more
valuable than the other. It is therefore desirable to have a
measure to quantify the value of the given resource. In the
following, we formulate the axioms that a reliable and usable
measure for a given box, call it X(B), needs to fulfill.

First of all, we need to know which boxes do not constitute a
valuable resource. Thus the basic requirement for the measure
X is as follows:

(M1) Faithfulness, which indicates

∀B∈Bnv
X(B) = 0. (10)

Note that we restricted the axiom of faithfulness solely to the
condition given above, and do not set an additional requirement
X(Bv) > 0. After Ref. [11] we recall that some measure
defined by usefulness with respect to a given operational task
may give X(B) = 0 even for boxes which do not belong to the
set Bnv .

Another property that the measure needs to have must
reflect the fact that single-box general operations cannot
increase the value of a given resource:

(M2) Monotonicity, which states that

∀B∈B X(T (B)) � X(B). (11)

As we have seen earlier, there is a set of reversible operations
R such that each operation R from this set has its inverse
R−1 for which there holds R−1(R(B)) = B. Since we already
stated that a measure X should be monotonic under general
operations T , the measure X needs to fulfill the following:

(M3) Partial invariance, which means that the measure X

is invariant with respect to reversible operations R performed
on a box

∀R∈R X(R(B)) = X(B). (12)

For the purpose of defining the next axiom, we need to
specify the distance measure for a pair of boxes.

Definition 1. The trace distance between two boxes B and
B ′ is given by [15]

||B − B ′|| := sup
S

||S(B) − S(B ′)||D, (13)

where || . . . ||D denotes the norm of difference between two
probability distributions which is given by variational distance
between them

||pB(λc) − pB ′(λc)||D :=
∑
λc

|pB(λc) − pB ′(λc)|, (14)
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where pB(λc) (pB ′(λc)) is the distribution of a measured
context c of a box B (B ′) for the outputs λc. The supremum
in (13) is taken over all operations which transform boxes into
a probability distribution according to

S(B) :=
∑

c

αcTcpB(λc), (15)

where Tc are stochastic matrices, 0 � αc � 1, and
∑

c αc = 1.
To this end, we notice that any experimental realization of

boxes involves inevitable distortion from the ideal box we want
to realize. Suppose that an experimentally realized imperfect
box B ′ is close to the target box B, which constitutes a valuable
resource:

||B − B ′|| � ε, (16)

where || . . . || denotes the trace distance between two
boxes [15]. Now, the desired property of the measure that
conforms the requirements raised by the nonideal experimental
processes is as follows:

(M4) Asymptotic continuity, which means that for two close
boxes (16), there holds

|X(B) − X(B ′)| � ε log d + f (ε), (17)

where d is dimensionality of the boxes and f is a function

such that f (ε)
ε→0−−→ 0.

Apart from the above axioms, we recall also two welcome
properties that the quantifiers of a resource should satisfy:

(P1) Convexity, which means that for any box B which is
decomposable into B = ∑

i piBi , there is

X

(∑
i

piBi

)
�

∑
i

piX(Bi), (18)

where Bi are arbitrary boxes.
If we consider a measure to be extensive we would also

require the property termed by the following:
(P2) Additivity, for which a measure fulfills

∀B1∈B1,B2∈B2 X(B1 ⊗ B2) = X(B1) + X(B2), (19)

where ⊗ denotes tensor product of boxes, i.e., for boxes B1 =
{p(λc)} and B2 = {q(λc′ )} we have B1 ⊗ B2 = {p(λc)q(λc′)}.

III. MEASURES OF CONTEXTUALITY

In this section, we focus on contextuality measures as
defined in Ref. [16]. We then introduce the tools needed for
proving the asymptotic continuity of the measures. The crucial
assumption for the latter is closeness of two respective boxes.
As we shall see, the assumption is still valid while considering
two close quantum states from which the respective boxes are
drawn.

Given a single joint probability distribution of an arbitrary
context c of a box B, we can trivially define an extended joint
probability distribution for all observables in M:

AB(c) := p(λc)P (λr |c), (20)

where P (λr |c) is a joint probability distribution for all the
observables from the set M\c, and λr is the corresponding set
of measurement outcomes.

Definition 2. For a given box B = {pB(λc)} we call its
extension a family of distributions:

F(B) := {AB(c)}, (21)

where AB(c) := pB(λc)P (λr |c) is an extension of distribution
pB(λc) to all observables of a box B.

For further purposes, we will write Ep(c)(B) to denote a
distribution, related to the extension F(B), which for the ease
of notation we model as a quantum state:

Ep(c)(B) :=
∑

c

p(c)|c〉〈c| ⊗ AB(c), (22)

for an arbitrary probability distribution p(c) of contexts.
We will now recall the definitions of two measures of

contextuality as presented in [16]. The first measure, mutual
information of contextuality, captures the idea that a contextual
system cannot be described by a single joint probability
distribution for all observables that can be measured on the
system. It quantifies the correlations between the different
joint probability distributions consistent with each of the
measured context and the number of a chosen context. The
second measure, relative entropy of contextuality, is defined in
terms of a statistical distance between a set of probability
distributions describing a contextual system to the closest
single noncontextual joint probability distribution. The relative
entropy of contextuality is a natural extension to contextual
systems, an analogous measure of nonlocality presented
in [24], called statistical strength of nonlocality proofs.

Definition 3. Mutual information of contextuality of a given
box B we call

Imax(B) := sup
{p(c)}

inf
{AB (c)}

I

(∑
c

p(c)|c〉〈c| ⊗ AB(c)

)
, (23)

where I is mutual information between probability distribu-
tions.

We also have the following:
Definition 4. Relative entropy of contextuality of a given

box B we call

Xmax(B) := sup
{p(c)}

inf
{p(λ)}

∑
c

p(c)D
(
pB(λc)||p(λc)

)
, (24)

where D is relative entropy, and infimum is taken over all joint
probability distributions for all observables in M, p(λ), such
that p(λc) is a proper marginal distribution for a given context:

p(λc) =
∑
M\c

p(λ). (25)

Note that given a box B, we have

Imax(B) = Xmax(B), (26)

hence we can use Imax(B) and Xmax(B) interchangeably. This
equality will prove useful, as the arguments given in [25] that
REC is asymptotic continuous are not sufficient for a proof of
the latter fact. Instead, will prove the asymptotic continuity of
MIC.

A specific measure of contextuality also utilizing the
concept of relative entropy is given in the following.
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Definition 5. Uniform relative entropy of contextuality of a
given box B we call

Xu(B) := inf
{p(λ)}

∑
c

1

n
D

(
pB(λc)||p(λc)

)
, (27)

where n is a number of different contexts of a box B.
We now observe the following fact, namely, when the trace

distance of two boxes is small then for any extension of one
box there exists an extension of the other, which is close to the
former.

Observation 1. If two boxes B = {pB(λc)} and B ′ =
{pB ′(λc)} satisfy ||B − B ′|| � δ, then for δ > 0 and for any
fixed {p(c)} we have

∀Ep(c)(B) ∃Ep(c)(B ′) ||Ep(c)(B) − Ep(c)(B
′)||D � δ. (28)

Proof. The left-hand side of Eq. (28) equals∑
c

p(c)||AB(c) − AB ′(c)||D, (29)

where

AB(c) := pB(λc)P (λr |c), (30)

AB ′(c) := pB ′(λc)P (λr |c). (31)

Consider the difference between the two distributions AB(c)
and AB ′(c):

||AB(c) − AB ′(c)||D
=

∑
λc,λr

|pB(λc)P (λr |c) − pB ′ (λc)P (λr |c)|

=
∑
λc

{
|pB(λc) − pB ′(λc)|

[∑
λr

P (λr |c)

]}

=
∑
λc

|pB(λc) − pB ′(λc)|

= ||S∗(B) − S∗(B ′)||D
� sup

S
||S(B) − S(B ′)||D

� δ, (32)

where the first inequality comes from the fact that P (λr |c) is
a probability distribution for each c, S∗ is such that αc = 1
and Tc is the identity matrix for a chosen context c, while the
last inequality follows from the assumption of the observation.
Using the last inequality back in (29) we obtain (28), which
ends the proof. �

We need to introduce the notation for the corresponding
extensions given by Eq. (31), as it is described in the following.

Definition 6. Consider two boxes B = {pB(λc)} and B ′ =
{pB ′(λc)}. For any extension F(B), the extension F(B ′) given
by Eq. (31), which satisfy ||Ep(c)(B) − Ep(c)(B ′)||D � δ, we
will denote as F(B ′|B).

In the next section, we will derive asymptotic continuity of
mutual information of contextuality Imax. As we shall see in
the following, the closeness of quantum states ρ and ρ ′ implies
the closeness of the respective boxes B and B ′, while assuming
perfect measurements on quantum states. Consider two boxes

B and B ′, each of them drawn by the same set of measurements
Mc, but on a different quantum state ρ and ρ ′, respectively, such
that ||ρ − ρ ′|| � δ, where in case of matrices ||A|| :=

√
AA†.

Then, Imax can be proved to be asymptotic continuous with
respect to trace distance for quantum states ||ρ − ρ ′|| < δ.

Observation 2. Consider any two states ρ,ρ ′ such that ||ρ −
ρ ′|| < δ. Let O = {Mc} be a set of operators, which generates
two respective boxes B and B ′ on states ρ and ρ ′, respectively,
in such a way that each distribution of the box B (B ′) is given
by pB(λc) ≡ {TrMcρ} (pB ′(λc) ≡ {TrMcρ

′}). Then, we have

||B − B ′|| < 2δ. (33)

Proof. Consider a distribution α∗
c and stochastic matrices

T ∗
c that realize supremum in definition of ||B − B ′||. Let M∗

be a measurement operator defined as

M∗ :=
∑

c

α∗
cT ∗

c Mc. (34)

From the assumption we have that

δ > ||ρ − ρ ′||
= sup

M̃

TrM̃(ρ − ρ ′)

� TrP +M∗(ρ − ρ ′), (35)

where P + is a projector onto the positive subspace of M∗(ρ −
ρ ′). The right-hand side of the last inequality above is equal to

S+ ≡
∑
{+}

(rρ − rρ ′ ), (36)

where rρ = TrM∗ρ (rρ ′ = TrM∗ρ ′) and the sum is over all
terms rρ − rρ ′ > 0. Changing the roles of ρ and ρ ′, we obtain
analogously

δ > ||ρ ′ − ρ||
= sup

M̃

TrM̃(ρ ′ − ρ)

�
∑
{+}

(rρ ′ − rρ)

=
∣∣∣∣∣∣
∑
{−}

(rρ − rρ ′)

∣∣∣∣∣∣
≡ S−. (37)

From the above inequality, and (36), we have that
max(S+,S−) < δ, and since the distributions rρ and rρ ′ are
obtained with the optimal α∗

c and T ∗
c , we obtain

||B − B ′||=||rρ −rρ ′ ||D =S+ + S− � 2 max(S+,S−)<2δ,

(38)

which ends the proof. �

IV. ASYMPTOTIC CONTINUITY OF Imax

In this section, we will prove the asymptotic continuity
for the measure of contextuality given by mutual information
of contextuality (23). We will focus on MIC rather than
relative entropy of contextuality, and we will introduce a
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method of proving the asymptotic continuity. Nevertheless,
the asymptotic continuity of the former (MIC) implies the
same for the latter (REC) since the two measures are equal to
one another [16].

At this stage, let us also recall the property of asymptotic
continuity for von Neumann entropy. Consider two quantum
states ρ1 and ρ2 of dimension d, for which

||ρ1 − ρ2|| � 1/2, (39)

where || . . . || is trace norm. Von Neumann entropy is asymp-
totically continuous since

|S(ρ1) − S(ρ2)| � ||ρ1 − ρ2|| log d + η(||ρ1 − ρ2||), (40)

where η(x) = −x log x.
Furthermore, quantum conditional entropy is also asymp-

totically continuous [26], i.e., for ||ρ1 − ρ2|| � ε we have

|SX|Y (ρ1) − SX|Y (ρ2)| � 4||ρ1 − ρ2|| log d

+ 2η(||ρ1 − ρ2||) + 2η(1 − ||ρ1 − ρ2||), (41)

where X,Y denote two subsystems of the states ρ1 and ρ2.
Now, Observation 1 allows us to write the following.
Observation 3. If for some δ > 0 two boxes B = {pB(λc)}

and B ′ = {pB ′(λc)} satisfy

||B − B ′|| � δ, (42)

then for any fixed {p(c)} we have

∀Ep(c)(B) ∃Ep(c)(B ′|B) |I (Ep(c)(B)) − I (Ep(c)(B
′|B))| � g(δ),

(43)
with

g(δ) = 5δ log d + 2η(1 − δ) + 3η(δ), (44)

where I is mutual information, d = min(
∏k

i=1 ai,|EG|), where∏k
i=1 ai and |EG| are the dimensions of the two subsystems of

the box B, respectively.
Proof. Due to Observation 1 for every Ep(c)(B) there exists

Ep(c)(B ′|B) such that ||Ep(c)(B) − Ep(c)(B ′|B)||D � δ. Using
the definition of mutual information, the left-hand side of (43)
can be written as

|I (Ep(c)(B)) − I (Ep(c)(B
′|B))|

= |SX(Ep(c)(B)) − SX|Y (Ep(c)(B))

− SX(Ep(c)(B
′|B)) + SX|Y (Ep(c)(B

′|B))|. (45)

Then, making use of a triangle inequality, we can bound this
expression by

|SX(Ep(c)(B)) − SX(Ep(c)(B
′|B))|

+ |SX|Y (Ep(c)(B)) − SX|Y (Ep(c)(B
′|B))|

= 5δ log d + 2η(1 − δ) + 3η(δ), (46)

where in the last step we used asymptotic continuity of von
Neumann entropy (40) as well as quantum conditional entropy
(41). �

Consider the following lemma:
Lemma 1. For any real-valued function f , and for any two

sets T and T ′, if there exists a real-valued function g, such that
for any positive δ and any ρ ∈ T there exists σρ ∈ T ′, such

that

|f (ρ) − f (σρ)| � g(δ), (47)

and for any σ ∈ T ′ there exists ρσ ∈ T , such that

|f (ρσ ) − f (σ )| � g(δ), (48)

then there holds∣∣ inf
ρ∈T

f (ρ) − inf
σ∈T ′

f (σ )
∣∣ � g(δ) + δ (49)

and ∣∣ sup
ρ∈T

f (ρ) − sup
σ∈T ′

f (σ )
∣∣ � g(δ) + δ, (50)

provided that infρ∈T f (ρ) and infρ∈T ′ f (σ ), as well as
supρ∈T f (ρ) and supρ∈T ′ f (σ ) are bounded.

We prove the lemma in Appendix A. We can now state the
following theorem:

Theorem 1. For any fixed p(c), the function

Ip(c)(B) = inf
{AB (c)}

I

(∑
c

p(c)|c〉〈c| ⊗ AB(c)

)
(51)

is asymptotically continuous, i.e., for any ||B − B ′|| � δ there
is

|Ip(c)(B) − Ip(c)(B
′)| � g(δ) + δ, (52)

with g(δ) given in the right-hand side of (44).
Proof. Assume that ||B − B ′|| � δ for two boxes B =

{gB(c)} and B ′ = {gB ′(c)}. Let us first consider Ip(c)(B). By
definition of infimum, there exist a sequence of extensions of
distributions Fn(B) = {An

B(c)}, such that

lim
n→∞ I (En

p(c)(B)) = Ip(c)(B), (53)

and similarly there exist Fn(B ′) = {An
B ′(c)}, such that

lim
n→∞ I

(
En

p(c)(B
′)
) = Ip(c)(B

′). (54)

Let us now specify the following two sets:

T :=
∞⋃

n=1

{
I
(
En

p(c)(B)
)
,I

(
En

p(c)(B|B ′)
)}

, (55)

T ′ :=
∞⋃

n=1

{
I
(
En

p(c)(B
′|B)

)
,I

(
En

p(c)(B
′)
)}

, (56)

and also denote V (V ′) as the set of I (Ep(c)(B))
(I (Ep(c)(B ′))) for all distributions AB(c) (AB ′(c)). Notice that
{I (En

p(c)(B))} ⊂ T , and therefore we have that

inf T � inf
{
I
(
En

p(c)(B)
)} = Ip(c)(B). (57)

On the other hand, T ⊂ V , and therefore

Ip(c)(B) = inf V � inf T , (58)

where the equality is by definition of Ip(c)(B). The inequali-
ties (57) and (58) lead to

inf T = Ip(c)(B), (59)

and the same reasoning also gives

inf T ′ = Ip(c)(B
′). (60)
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Now, due to Observation 3, there is

∣∣I(
En

p(c)(B)
) − I

(
En

p(c)(B
′|B)

)∣∣ � g(δ), (61)∣∣I(
En

p(c)(B
′)
) − I

(
En

p(c)(B|B ′)
)∣∣ � g(δ). (62)

Let us take in the assumption of Lemma 1 the function f :
R → R to be simply the identity function f (x) = x (it is easy
to see that other assumptions are satisfied by the construction
and the fact that the boxes B and B ′ are close to each other and
by inequalities (61) and (62)). Then, by Lemma 1 we obtain∣∣ inf

t∈T
t − inf

t ′∈T ′
t ′
∣∣ � g(δ) + δ, (63)

which is exactly what we want to prove. �
We can now state the main theorem of this section. The

result is crucial from the experimental point of view. Namely,
it states that for two close boxes (one of which is the ideal box
we aim to obtain, while the second is its imperfect experimental
realization), the measure of the amount of contextuality of the
experimentally obtained box cannot differ from the measure
of contextuality of the target box by more than the distance of
the two boxes with a factor depending only logarithmically on
the dimension of them.

Theorem 2. The measure of contextuality Imax is asymptot-
ically continuous, i.e., for any two boxes B and B ′ fulfilling
||B − B ′|| � δ, there is

|Imax(B) − Imax(B ′)| � 6g(δ) + 3δ, (64)

with

g(δ) = 5δ log d + 2η(1 − δ) + 3η(δ). (65)

Proof. The proof follows the similar lines as the proof of
Theorem 1. Let us first consider Imax(B). By definition of
supremum, there exist a sequence of distributions {pn(c)}, such
that

lim
n→∞ Ipn(c)(B) = Imax(B), (66)

and similarly there exist {p′
n(c)}, such that

lim
n→∞ Ip′

n(c)(B
′) = Imax(B ′). (67)

Let us now specify the following two sets:

T :=
∞⋃

n=1

{
Ipn(c)(B),Ip′

n(c)(B)
}
, (68)

T ′ :=
∞⋃

n=1

{
Ipn(c)(B

′),Ip′
n(c)(B

′)
}
, (69)

and also denote V (V ′) as the set of Ipn(c)(B) (Ip′
n(c)(B ′)) for all

distributions {pn(c)} ({p′
n(c)}). Applying the similar reasoning

as in the proof of Theorem 1, but this time concerning the
suprema, we arrive at

sup T = Imax(B), (70)

and the same reasoning gives also

sup T ′ = Imax(B ′). (71)

Now, due to Theorem 1, there is

|Ipn(c)(B) − Ipn(c)(B
′)| � g(δ) + δ, (72)

|Ip′
n(c)(B

′) − Ip′
n(c)(B)| � g(δ) + δ. (73)

Let us take in the assumption of Lemma 1 the function f :
R → R to be simply the identity function f (x) = x (it is easy
to see that other assumptions are satisfied by the construction
and the fact that the boxes B and B ′ are close to each other and
by inequalities (72) and (73)). Then, by Lemma 1 we obtain∣∣ sup

t∈T

t − sup
t ′∈T ′

t ′
∣∣ � g(δ) + 2δ, (74)

which is exactly what we want to prove. �
From the two main theorems presented here, we have an

immediate corollary, which states that the relative entropy of
contextuality is continuous with respect to quantum states,
provided ideal measurements.

Corollary 1. For two quantum states ρ and σ such that ||ρ −
σ || � δ, for any set of quantum measurements M = {Mc}
which generates on the states respective boxes B = {TrMcρ}
and B ′ = {TrMcσ }, we have

|Ip(c)(B) − Ip(c)(B
′)| � 2g(δ) + 2δ, (75)

as well as

|Imax(B) − Imax(B ′)| � 12g(δ) + 6δ, (76)

with g(δ) = 5δ log d + 2η(1 − δ) + 3η(δ).
Proof. This corollary follows directly from Observation 2,

and Theorems 1 and 2.

V. COMPUTABLE UPPER BOUND ON THE MEASURE
OF A RESOURCE

In this section, we will connect two measures of box
resources: the one which is based on relative entropy, with
the other which reports how much the creation of a box
costs. In case of the resource which is contextuality, we
will show that the relative entropy of contextuality for chain
boxes is upper bounded (up to a normalization factor) by
the cost of contextuality. In derivation of this result, we will
use the property of (P1) convexity of the relative entropy of
contextuality, which was observed in [27], but without a formal
proof, which we provide in Appendix B.

To achieve this, we will show a general result, which holds
for a measure satisfying certain axioms. First, we assume that
sets B and Bnv are convex polytopes and Bnv ⊂ B. We will
now need the notion of a convex roof of a measure which is
defined for the measure X as

X̂(B) := inf
{pi ,Ei }

∑
i

piX(Ei), (77)

where Ei are extremal boxes of the polytope of all consistent
boxes, and infimum is taken over all ensembles of the box B

with all extremal boxes, so that
∑

i piEi = B.
We begin with noticing the following observation:
Observation 4. For any convex measure X and B ∈ B we

have

X(B) � X̂(B). (78)
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Proof. It follows from the definition of X̂. �
Next, we note that some of the extremal boxes of the

polytope of consistent boxes are valuable (Ei
v), while the others

are not (Ei
nv). Such a polytope B in some cases can satisfy

the following property, which we call vertex-equivalence
property:

∀Ev,E′
v∈B ∃R∈R R(Ev) = E′

v, (79)

where Ev,E
′
v are extremal, valuable boxes. In other words, any

valuable box can be transformed into any other valuable box
by means of reversible operations.

We will now show that if the polytope B has the vertex-
equivalence property, a convex measure X satisfying axioms
(M1) and (M3) is upper bounded (up to a normalization factor
X(Ev) for some extremal valuable box Ev) by another measure
which we will call the cost of the resource. We first formalize
the latter measure, as a generalization of the well-known
measure of the cost of nonlocality:

Definition 7. For a box B ∈ B the cost of the resource for
this box is

C(B)= inf
p

{p : B =pBv + (1 − p)Bnv, Bv ∈ B, Bnv ∈ Bnv}.
(80)

We are ready to present the main result of this section:
Proposition 1. Let B be a polytope of consistent boxes

satisfying the vertex equivalence property. Also, let X be a
measure of resource acting on boxes B ∈ B, which satisfies
the axioms of (M1) faithfulness, (M3) local invariance, and
(P1) convexity. We have then

X(B) � C(B)X(Ev), (81)

where Ev is arbitrarily fixed, extremal, valuable box in B, and
C(. . .) is the cost of the resource.

Proof. Let us fix B ∈ B arbitrarily. Since X is convex, by
Observation 4, we have

X(B) � inf
{pi ,Ei }

∑
i

piX(Ei). (82)

Now, for all Ei ∈ Bnv we have by axiom (M1) X(Ei) = 0.
Thus, we have

X(B) � inf
{pi ,Ei }

∑
i∈I

piX(Ei), (83)

where I is the set of indices for an ensemble {pi,Ei} such
that if i ∈ I then Ei is valuable box. On the other hand, by
the vertex equivalence property of the polytope B there is
X(Ei) = X(Ev) for all i ∈ I and Ev being some extremal
valuable box fixed arbitrarily. Indeed, all the valuable boxes
have the same value of the measure X since they are reversibly
transformable one into another, and the measure X satisfies the
axiom (M3), i.e., does not change under such transformations.
Hence,

X(B) � X(Ev) inf
{pi ,Ei }

∑
i∈I

pi, (84)

and furthermore

X̂(B) = X(Ev) inf
{pi ,Ei }

∑
i∈I

pi. (85)

We will now prove that the minimal
∑

i∈I pi equals exactly
C(B), which makes the thesis. Consider again any pure
ensemble into boxes Ei with probabilities pi . We can perform
a valid decomposition of a box B into

B = pBv + (1 − p)Bnv, (86)

where p = ∑
i∈I pi and, by definition of I, Bv =∑

i∈I piEi/(
∑

i∈I pi), and Bnv = ∑
i /∈I piEi/(

∑
i /∈I pi).

Thus, there is C(B) � p, and since the ensemble was
arbitrary, we have that

C(B) � inf
{pi ,Bi }

∑
i∈I

pi. (87)

This, via (85), implies that

C(B)X(Bv) � X̂(B). (88)

We now prove converse inequality. To begin with, consider
any decomposition which achieves C(B) (the case when
infimum in its definition is not attained, is then obvious):

B = qBv + (1 − q)Bnv. (89)

Now, consider a decomposition of a box Bv into extremal
boxes. Since q = C(B), there cannot be any deterministic
box in the decomposition of Bv , or else we would have
smaller value of C(B) by subtracting this box from Bv and
thereby lowering q. Thus, we can write Bv = ∑

j rjEj , with
Ej extremal valuable boxes. Let us also decompose a box
Bnv into extremal nonvaluable boxes (it is possible since this
box is by definition not valuable, and the set Bnv is a convex
polytope by assumption): Bnv = ∑K

k=1 skDk . We then have an
ensemble of the box B of the form χ = {qr1, . . . ,qrN ,(1 −
q)s1, . . . ,(1 − q)sK,E1, . . . ,EN,D1, . . . ,DK} for some natu-
ral numbers N,K � 1, i.e., by construction:

B = q

N∑
j=1

rjEj + (1 − q)
K∑

k=1

skDk. (90)

Now, we have X(Dk) = 0 for k ∈ {1, . . . ,K}. Consider then
the set of indices I = {1, . . . ,N}. Since X̂ is defined as a
function which is minimized over all ensembles of the box
B, it is upper bounded by the value of the function on the
ensemble χ . Thus, we have

X̂(B) = inf
{pi ,Bi }

∑
i

piX(Bi)

�
∑
i∈I

qriX(Ei)

= X(Bv)
∑

i

qri

= X(Bv)q, (91)

where the second last equality is due to the fact that for all
i ∈ I X(Ei) = X(Bv) since the polytope of consistent boxes
satisfies the vertex equivalence property. This proves that

X̂(B) � C(B)X(Bv), (92)

which together with the opposite inequality (88) proves the
thesis. �
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Let us note here that in case when Bnv is a polytope, the
cost of the resource can be computed by linear programming,
hence, the above proposition provides a computable upper
bound on a convex measure satisfying (M1) and (M3).

In the next section, we present two examples of polytopes,
which satisfy the vertex-equivalence property, for which the
above proposition applies. We present now more rough bound,
which holds for all polytopes, including those which do not
satisfy the latter property.

Proposition 2. LetB be a polytope of consistent boxes. Also
let X be a measure of a resource acting on boxes B ∈ B, which
satisfies axioms of (M1) faithfulness and (P1) convexity. We
then have

X(B) � C(B) max
Ev∈B

X(Ev), (93)

where maximum is taken over all extremal, valuable boxes Ev

from B, and C(. . .) is the cost of the resource.
Proof. The proof goes along similar lines as the second part

of the proof of Proposition 1, namely, starting right after the
inequality (88). We then repeat the proof until the sequence of
(in)equalities (91) and modify them while observing that for
s = ∑

i∈I qri ,∑
i∈I

qriX(Ei) � max
i∈I

X(Ei) × s � max
Ev∈B

X(Ev) × s, (94)

where in the first inequality maximum is taken over extremal
valuable boxes Ei from the particular ensemble of the box B,
while in the second, over all extremal valuable boxes from the
polytope B. According to the remaining part of the proof of
Proposition 2, we obtain

X̂(B) � C(B) × max
Ev∈B

X(Ev), (95)

which is a less-tight version of the inequality (92) as
required. �

Examples of the upper bounds on the Xmax

via contextuality (nonlocality) cost

We can now apply the Proposition 1 in two cases. The first
is the case of the setB equal to the set all bipartite nonsignaling
boxes with two binary inputs and two binary outputs (we will
denote it as B(2 × 2)). In this case, it is known that the only
extremal valuable boxes of B have a form

Brst (a,b|x,y) =
{

1/2 if a ⊕ b = xy ⊕ rx ⊕ sy ⊕ t,

0 else,
(96)

where a,b,x,y,r,s,t are binary.
It is then clear from the above form that all extremal

valuable boxes can be transformed reversibly into the PR

box. Moreover, the set of all nonvaluable boxes is called the
set of local boxes, and it is a convex polytope Bnv(2 × 2) ⊂
B(2 × 2). We have then the following corollary:

Corollary 2. For any box B ∈ B(2 × 2) there holds

Xmax(B) � inf
{pi ,Bi }

∑
i

piXmax(Bi) = C(B) × log
4

3
, (97)

where Bi are extremal boxes and C(B) is the cost of
nonlocality.

Proof. It is straightforward to check that Xmax satisfies the
axioms (M1) and (M3), and, as it was mentioned in [27]
and is proved in Appendix B, Xmax is convex. Moreover,
as we have mentioned before, all the nonlocal boxes with
two binary inputs and outputs can be transformed by local
reversible operations into the PR box, i.e., B000, for which
Xmax(B000) = log 4

3 [16]. Hence, by Proposition 1 we have the
thesis. �

We now generalize the above result to the case of resources
of contextuality. We consider a class of boxes corresponding
to n-cycle hypergraph (a class of CH (n) boxes) scenarios as
presented in Refs. [16,19,28,29]. Any box B ∈ CH (n) is given
by B = {pB(λc)}, where a probability distribution for each
context c can be written as

pB(λci
) ≡ p(mimi+1|MiMi+1)

= 1
2 (1 + 〈mimi+1〉), (98)

with mj = ±1, where we use the convention mnmn+1 =
m1mn.

The corresponding polytope of boxes compatible with this
hypergraph will be called Bn. Let us note here that B4 ≡
B(2 × 2). It is known [16] that the contextuality measure of
any extremal valuable box Ev for arbitrary n is given by

Xmax(Ev) = log
n

n − 1
. (99)

Corollary 3. For a box B ∈ Bn we have

Xmax(B) � X̂max(B) = C(B) log
n

n − 1
. (100)

Proof. According to the description of a box B ∈ CH (n)

given in Eq. (98), it can be uniquely described by a collection
of n correlators

B ≡ (〈m1m2〉,〈m2m3〉, . . . ,〈mnm1〉). (101)

Now, for any given n we have 2n−1 extremal contextual
boxes of the form (101), where 〈mimi+1〉 = ±1, such that
the number of negative components is odd [19]. It now
suffices to observe that we can obtain all the other extremal
contextual boxes from, e.g., (−1,1,1,1, . . . ,1,1) simply by
bit-flipping the chosen outputs, which is a contextuality-
preserving operation (a particular form of relabeling the
outputs). Indeed, by performing a bit-flip mj → −mj we
change the sign of any pair of neighboring correlators.
For instance, performing a bit-flip m1 → −m1 on the box
(−1,1,1,1, . . . ,1,1) produces another extremal contextual box
(1, − 1,1,1, . . . ,1,1). Consequently, performing a bit-flip on
each consecutive mj , we can generate all extremal contextual
boxes with exactly one correlator equal to −1. Now, given a
box (1,1,1,1, . . . ,1, − 1) we again perform a bit-flip m1 →
−m1 which produces a box (−1, − 1,1,1, . . . ,1, − 1) from
which we can generate all the boxes with three correlators
equal to −1. In doing so, we can generate all 2n−1 extremal
contextual boxes (all those with odd number of correlators
equal to −1) by a contextuality-preserving operation. We see
then that Bn satisfies vertex-equivalence property. Moreover,
Xmax does not change under bit-flip of outputs of some of the
observables, hence assumptions of Proposition 2 are satisfied.
In consequence, the bound (100) is true. �
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VI. A BOUND ON DISTILLABLE RESOURCE
IN BOX THEORIES

In this section, we consider a scenario analogous to the
scenario of distillation of entanglement in the entanglement
theory. Namely, we assume that n copies of a box B are
provided to a party (or parties in case of nonlocality). We
distinguish a target box BT

v which is valuable, approximation
of which one wants to “distill” out of n copies of B. We
demand that the distilling operations satisfy the axiom (O2),
i.e., do not create a valuable box out of nonvaluable ones. We
define distillable resource D(BT

v |B) for a box B, in analogous
manner to definition of distillable entanglement [30,31] as
the highest ratio of number k which is such that the output
of distillation protocol approximates [BT

v ]⊗k , to the number
of used boxes B which is n, in asymptotic limit of large
n. The main result of this section states that the so-called
regularized measure of resource X, for which X satisfies the
axioms (M2) of monotonicity and (M4) asymptotic continuity,
up to a constant factor X(BT

v ), is an upper bound to distillable
resource D(BT

v |B):

X∞(B) � X
(
BT

v

)
D

(
BT

v

∣∣B)
, (102)

where X∞ = limn→∞ X(B⊗n)
n

is the regularized measure X.

A. Proof of the upper bound

In this section, we prove inequality (102) under some
assumptions on measure X and a target box BT

v . We begin
with definition of rate of distillability of a box BT

v from a box
B, denoted as D(BT

v |B).
Definition 8. For a box B ∈ B, consider a sequence 
n

of operations satisfying the axioms (O1) and (O2), such
that 
n(B⊗n) = Bn. The set D = {
n} is called a protocol
distilling a target box BT

v from B, if

lim
n→∞

∥∥Bn − [
BT

v

]⊗kn
∥∥ = 0. (103)

For a given distillation protocol D, its rate is given by

r(D) = lim sup
n→∞

kn

n
. (104)

The rate of distillability of the box BT
v from a box B is given

by

D
(
BT

v

∣∣B) = sup
D

r(D). (105)

We can proceed to show the main result of this section,
which states that asymptotically continuous and monotonous
measure of resource is, up to a constant factor, an upper bound
on D(BT

v |B), as it is stated in the following proposition.
Proposition 3. Let BT

v ∈ Bv be some target box. Let X be
a measure which satisfies the axioms of (M2) monotonicity,
(M4) asymptotic continuity, and also let X be superadditive
on BT

v . Then, we have

D
(
BT

v

∣∣B)
X

(
BT

v

)
� X∞(B). (106)

Proof. Consider n copies of a box B. The purpose is to distill
the largest number of (approximate) copies of target boxes BT

v .
Let us fix δ > 0. Then, there exists a protocol D = {
n} such

that r(D) > D(BT
v |B) − δ. It follows also that for sufficiently

large n,


n(B⊗n) = Bn, (107)

such that there holds ||Bn − BT
v

⊗kn ||D � εn, where 0 < εn →
0 with n → ∞. Then, we have the following chain of
inequalities:

X(B⊗n) � X(
n(B⊗n))

= X(Bn)

� X
([

BT
v

]⊗kn
) − f (εn)

� knX
(
BT

v

) − f (εn), (108)

where the first inequality holds by the axiom of (M2)
monotonicity of X under operations 
n satisfying the axiom
(O2). The first equality is by (107), the second inequality
is by asymptotic continuity of X, where f (. . .) is some
continuous function. The last inequality is by the assumption
of superadditivity of X on a box [BT

v ]⊗kn (see in this context
Theorem 9 of [16]).

If we now divide the first and the last terms of the above
chain of (in)equalities by n, we have

X(B⊗n)

n
� X

(
BT

v

)kn

n
− f (εn)

n
. (109)

In fact, the left-hand side of the above inequality approaches
X∞ in the limit n → ∞ and, by continuity of f , the right-hand
side approaches X(BT

v )[D(BT
v |B) − δ], as it was expected.

Since δ was arbitrary, taking the limit of δ → 0 proves
inequality (106). �

We have now the following remark:
Remark 1. If additionally a measure X is subadditive, there

is X � X∞, hence, by the above proposition, we obtain

X(B) � X
(
BT

v

)
D

(
BT

v

∣∣B)
. (110)

B. Protocol of distillation of contextuality

Following, we consider a particular example of a distillation
protocol of contextual resources. We will consider a distillation
protocol which uses two copies of weakly contextual resource
and transform them into a single copy of more contextual
resource. We will show this by a specific indicator of contex-
tuality β (which quantifies the violation of a specific contextual
inequality) rather than a measure of contextuality Xmax which
is uneasy to calculate for boxes used in the distillation process.
The distillation protocol itself is easily implementable in the
experiment, as it involves only postprocessing of the data
(measurement outcomes).

First, let us describe in detail contextual resources from
which we distill more valuable resource. An XOR box is a
consistent box {p(a1,a2, . . . ,am|ci)} such that for each input
ci and binary outputs a1, . . . ,am ∈ {0,1}, either (pod : odd
context)

pod (a1, . . . ,am|ci) =
{

1
2m−1 ∀ ⊕m

j aj = 1,

0 otherwise
(111)
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or (pe: even context)

pe(a1, . . . ,am|ci) =
{

1
2m−1 ∀ ⊕m

j aj = 0,

0 otherwise.
(112)

Note that an XOR box can in principle be contextual or
noncontextual. For the rest of this section, we assume that
as an XOR box we mean only contextual box, of which the
examples are presented in Ref. [16] under the name of PM
box, M box, CH box.

A correlated box is a box such that for each input ci and
binary outputs a1, . . . ,am ∈ {0,1} there is

p(a1, . . . ,am|ci) =
{

1
2m−1 ∀ ⊕m

j aj = 0,

0 otherwise.
(113)

All correlated boxes which correspond to a hypergraph of a
certain XOR box are noncontextual: a correlated box can be
obtained from a single joint probability distribution p(M)
which is decomposable into probabilistic points with the
property ⊕m

j aj = 0 for all ci .
The protocol of distillation, that we will employ, was

originally used in [20] for distilling nonlocal resources,
whereas in terms of contextual resources it works as follows:
on inputs ci for two copies of a resource one inputs the
same number and then receives outputs (a1, . . . ,am) and
(a′

1, . . . ,a
′
m), respectively. Then, one computes the final output

as (a1 ⊕ a′
1, . . . ,am ⊕ a′

m). This procedure we will call a
node-wise XOR operation.

Furthermore, we will use the parameter β (for a definition
see Ref. [16]) as a contextuality indicator of a given box,
by means of violating the contextual inequality: if we denote
B∗ as a reference extremal isotropic XOR box, then for any
contextual box B the contextual inequality

βB∗ (B) � n − 1 (114)

(n is the number of contexts) is violated. In the following
theorem, we will show that by performing node-wise XOR
operation on two copies of a contextual box, one can
concentrate the contextuality content in terms of increasing
the value β.

Theorem 3. Let 
 : Bv ⊗ Bv → Bv be a linear and
noncontextuality-preserving node-wise operating map. There
exists a map 
 such that

βBx

(



(
B⊗2

v

))
> βBx

(Bv), (115)

where Bv ∈ Bv , and βBx
(Bv) = 2m−1〈Bx |Bv〉, where Bx is an

extremal isotropic XOR box.
The theorem says that there exists a noncontextuality-

preserving map which can be used for distillation of contextu-
ality. Indeed, this result holds for any even number of copies
of a box Bv . In the following, we will prove the theorem for

 being a node-wise XOR operation. Then, we will show that
a node-wise XOR operation is noncontextuality preserving,
i.e., it cannot distill a contextual resource from noncontextual
boxes B ∈ Bnv .

Proof. Let 
XOR be the node-wise XOR operation, i.e., for
any context ci it acts as:

p(a1, . . . ,am|ci) ⊗ p(a′
1, . . . ,a

′
m|ci)


XOR→ p(a1 ⊕ a′
1, . . . ,am ⊕ a′

m|ci). (116)

Consider probability distributions pod,pe, which constitute
an XOR box. Let us check how 
XOR acts on different
compositions of pod and pe:

pe ⊗ pe = p
(⊕m

j aj = 0
∣∣ci

) ⊗ p
(⊕m

j a′
j = 0

∣∣ci

)

XOR→ p

(⊕m
j (aj ⊕ a′

j ) = 0
∣∣ci

)
= pe, (117)

where we used a simple identity (⊕m
j aj ) ⊕ (⊕m

j a′
j ) =

⊕m
j (aj ⊕ a′

j ). Similarly, one can show the following:

pe ⊗ pod 
XOR→ pod,

pod ⊗ pe 
XOR→ pod, (118)

pod ⊗ pod 
XOR→ pe.

Consider now a box B defined as a linear combination of
the extremal isotropic XOR box Bx and a correlated box Bc:

B = αBx + (1 − α)Bc. (119)

It is easy to verify that

βBx
(B) = 2m−1〈Bx |B〉

= 2m−1[α〈Bx |Bx〉 + (1 − α)〈Bx |Bc〉]
= (n − 1 + α) (120)

since 〈Bx |Bx〉 = n/2m−1 and 〈Bx |Bc〉 = (n − 1)/2m−1. We
see that the contextual inequality (114) is violated for any
α ∈ (0,1], therefore, B ∈ Bv except α = 0.

For two copies of the box B, we have

B⊗2 = α2B⊗2
x + (1 − α)2B⊗2

c

+α(1 − α)(Bx ⊗ Bc + Bc ⊗ Bx), (121)

and after node-wise XOR operation

βBx
(
XOR(B⊗2))

= 2m−1〈Bx |
XOR(B⊗2)〉
= 2m−1[α2〈Bx |
XOR

(
B⊗2

x

)〉 + (1 − α)2〈Bx |
XOR
(
B⊗2

c

)〉
+α(1 − α)〈Bx |
XOR(Bx ⊗ Bc + Bc ⊗ Bx)〉]. (122)

Taking into account (118) one can show that〈
Bx

∣∣
XOR
(
B⊗2

x

)〉 = (n − 1)〈pe|pe〉 + 〈pod |pe〉
= (n − 1)/2m−1, (123)〈

Bx

∣∣
XOR
(
B⊗2

c

)〉 = (n − 1)〈pe|pe〉 + 〈pod |pe〉
= (n − 1)/2m−1, (124)

and

〈Bx |
XOR(Bx ⊗ Bc + Bc ⊗ Bx)〉
= 2(n − 1)〈pe|pe〉 + 2〈pod |pod〉 = 2n/2m−1 (125)

since for single-context probability vectors 〈pe|pe〉 = 1/2m−1

and 〈pod |pe〉 = 0.
Inserting these values into Eq. (122), we get

βBx
(
XOR(B⊗2)) = [α2 + (1 − α)2](n − 1) + 2α(1 − α)n.

(126)
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Then, by comparing (120) with (126) one can see that for
0 < α < 1/2 we obtain

βBx
(
XOR(B⊗2)) > βBx

(B). (127)

�
Note: We conjuncture that node-wise XOR operation is the

only operation which results in distillation.
We will now show that node-wise XOR operation is

indeed noncontextuality preserving, i.e., it satisfies the axiom
(O2). Suppose that we aim to distill contextuality from
noncontextual boxes B and B ′. We need to show that the
box B ′′ = 
XOR(B ⊗ B ′) is also noncontextual. Now, since
the box B = {p(a1, . . . ,am|ci)} (B ′ = {p′(a′

1, . . . ,a
′
m|ci)}) is

noncontextual, then there exists a joint probability distribution
p(a1,a2, . . .) (p′(a′

1,a
′
2, . . .)) for all observables in M. Denote

λ (λ′) as a string of 2|M| outputs (a1,a2, . . .) ((a′
1,a

′
2, . . .)), so

that p(a1,a2, . . .) (p′(a′
1,a

′
2, . . .)) is a linear combination of

deterministic points indexed by λ (λ′), each with probability
p(λ) (p′(λ′)). Note that a node-wise XOR operation is a map

XOR : {λ} × {λ′} → {λ′′}, where the string of outputs λ′′ are
defined by

(a′′
1 ,a′′

2 , . . .) = (a1 ⊕ a′
1,a2 ⊕ a′

2, . . .). (128)

The box B ′′ is then a linear combination of deterministic points
indexed by λ′′, each with probability

p′′(a′′
1 ,a′′

2 , . . .) =
∑

{λ}×{λ′}|⊕
p(a1,a2, . . .)p

′(a′
1,a

′
2, . . .), (129)

where the above sum is over all composition of strings λ and
λ′ such that (128) holds. For example, in case of |M| = 2 we
would have, e.g., for a string (a′′

1 = 0,a′′
2 = 1)

p′′(01) = p(00)p′(01) + p(01)p′(00)

+p(10)p′(11) + p(11)p′(10). (130)

Note also that p′′(a′′
1 ,a′′

2 , . . .) forms a well-defined probability
distribution because summing all probabilities∑

{λ′′}
p′′(a′′

1 ,a′′
2 , . . .) =

∑
{λ}×{λ′}

p(a1,a2, . . .)p
′(a′

1,a
′
2, . . .)

=
∑
{λ}

∑
{λ′}

p(a1,a2, . . .)p
′(a′

1,a
′
2, . . .)

= 1. (131)

The first equality is based on the observation that the inverse
image of the map 
XOR for all elements in {λ′′} results in
disjoint partitions of the entire product set {λ} × {λ′}. Thus, we
have shown that the box B ′′ is noncontextual since there exists
a joint probability distribution p′′(a′′

1 ,a′′
2 , . . .) which defines

B ′′. Similarly, one can show that any node-wise operation is
also noncontextuality preserving.

C. Towards application of Proposition 3

We can pass now to consider for which resources and mea-
sures the assumptions of the above proposition are satisfied.
We consider a bipartite scenario with nonlocal correlations as
a resource, as for that contextuality follows the same lines, and
faces the same problems.

(1) Possible bound via Xmax. Consider BT
v to be PR box,

and a measure X to be Xmax. Then, Xmax is additive on
BT

v (see [16]). By Theorem 2, Xmax is also asymptotically
continuous. We can consider distillation protocol via restricted
set of operations, namely, the wirings [23]. These operations
transform suitably defined nonvaluable boxes to nonvaluable
ones, i.e., local boxes into local ones [32] (see easier formu-
lation [33]), hence satisfy the axiom (O2) (see Appendix C).
However, one would need a proof that Xmax does not increase
under wirings, which we leave as an open question. It is easy
to check that for isotropic boxes PRα = αB000 + (1 − α)B001

(for a formal definition see [16]) this bound would be nontrivial
in the whole range of α ∈ (3/4,1].

(2) On bound via Xu. Similarly, as for Xmax, the measure
Xu is additive on PR boxes, and is asymptotically continuous
via a proof analogous to that of Theorem 2. However, it is
definitely not monotonous under general operations which
satisfy the axiom (O2), i.e., those that transform local boxes
into local ones. This is because it can increase under partial
trace. Indeed, consider a box with a hypergraph G equal to a
direct sum of two hypergraphs G1 ⊕ G2, such that G2 has
two vertices connected by a single edge, and the context
corresponding to this edge is local with Alice. Let also G1

be a hypergraph of a nonlocal box. Let now the parties have
a box B corresponding to G, which is PR box, and a local
box with Alice called L so that the box B equals PR ⊕ L. By
Theorem 8 of [16] there is

Xu(PR ⊕ L) = 4
5Xu(PR) + 1

5Xu(L). (132)

Now, since Xu(L) = 0 as this box is local, we have that
Xu(PR ⊕ L) < Xu(PR), hence, by removing or adding L one
can increase or decrease the value of Xu. Let us note here that
Xmax does not suffer from the same problem, as

Xmax(PR ⊕ L) = max{Xmax(PR),Xmax(L)}
= Xmax(PR), (133)

so that adding or removing a local box does not change the
value of Xmax. Despite the fact that Xu is not monotonous under
locality-preserving operations, monotonicity under wirings is
still possible for it, which we also leave as an open problem.

It is worth mentioning that while considering the measure of
contextuality Xu, we observe that it is a normalized version of
nonlocality quantifier as referred in Ref. [11]. Notice, however,
that although the unnormalized statistical distance measure of
nonlocality, given by infimum over local distributions may
increase under local transformations (in particular enlarging
the number of inputs of a box [11]), it is not necessarily so
when the number of added new inputs are properly accounted.
Thus, a normalized measure of contextuality (Xu as well as
Xmax) prevents the increase of relative entropy while trivial
expansion of the number of contexts takes place.

VII. CONCLUSIONS

Using an axiomatic approach common to resource theories,
we have developed the theories of contextuality, and its most
celebrated example, which is nonlocality. Crucially from the
experimental point of view, we have studied the axiom of
asymptotic continuity, and proved that recently established
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measure of contextuality: the relative entropy of contextual-
ity [16] obeys that axiom. We thereby have showed that for an
experimental setup which produces an imperfect box B ′, close
to the intended box B, the amount of contextuality measured
by the relative entropy of contextuality X(B ′) cannot differ
from X(B) by more than the distance ||B − B ′|| with a factor
depending only logarithmically on the dimension of the boxes.

We have also considered a general measure of resource X,
with properties satisfying three proposed axioms: faithfulness,
local invariance, and convexity. We have focused on boxes B

from the polytope satisfying vertex equivalence property, i.e.,
which is such that all its contextual vertices are reversibly
exchangeable into each other. We have shown that in such
polytopes the measure X is upper bounded by the measure
called the cost of the resource C(B) with a multiplication factor
X(Ev) for some extremal valuable box Ev . Interestingly, due to
this factor, we were able to bound an extensive measure (which
grows linearly with number of copies), by a nonextensive one
(which takes values in [0,1] on any box irrespective of its
dimension). The mentioned bound is linear function of the
box. It would be interesting to find a nonlinear one, which is
more tight and still easily computable. We have supported the
latter results by two examples of its application: for bipartite
boxes with binary inputs and outputs, as well as for the boxes
related to contextual chain box. Analogous, but weaker, upper
bound holds in the case of the polytopesB, which do not satisfy
the vertex equivalence property of B.

We have studied a distillation protocol of a valuable target
box BT

v from many copies of some input boxes B, and in
full analogy with theory of entanglement measures, we have
provided an upper bound on the rate of distillability of the
resource D(BT

v |B). It is expressed by a measure of resource
X which satisfies another two proposed axioms: monotonicity
under allowed class of operations, asymptotic continuity and
superadditivity on target boxes: X([BT

v ]⊗k) � kX(BT
v ). From

our investigation, we can conclude that the relative entropy of
contextuality for bipartite boxes with two binary inputs and
outputs may be an upper bound on distillable nonlocality in
the form of the Popescu-Rohrlich boxes. The only fact which
needs to hold for the latter to be true is the nonincreasing of
this measure under wirings. We leave this remaining question
as an open problem.

Finally, checking whether other measures of contextuality
or nonlocality such as, e.g., [36,37] satisfy proposed axioms,
would be vital for their further use, and it would be also
interesting to find new ones which satisfy the axioms by
definition.

Note added in proof. Recently, we became aware of the
results of [38]. It seems that our results can be set in a more
general framework of general resource theories formulated
there in more abstract language. We also note that in [39]
a general formalism for contextuality scenarios based on the
combinatorics of hypergraphs has been developed.
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APPENDIX A: FORMAL PROOF OF LEMMA 1

Here, we give the formal proof of Lemma 1.
Proof. By definition of infimum, for any δn > 0 there exists

a sequence ρn such that

f ∗
T := inf

ρ∈T
f (ρ) � f (ρn) � f ∗

T + δn. (A1)

Moreover, by the assumption (47) there exists a sequence σn,
such that

f (ρn) − g(δ) � f (σn) � f (ρn) + g(δ). (A2)

Combining the above two sequences of inequalities we obtain

f ∗
T − g(δ) � f (σn) � f ∗

T + δn + g(δ). (A3)

Now, there exists n0 such that for every n � n0 there holds
δ > δn, and hence

f ∗
T − g(δ) − δ � f (σn) � f ∗

T + δ + g(δ). (A4)

This means that we obtained a sequence f (σn) which is
bounded (we use here the fact that the infima are bounded), and
by Bolzano-Weierstrass theorem there exists a subsequence nk ,
such that f (σnk

) has a limit. Thus, we have in particular

lim
n→∞ f

(
σnk

) − f ∗
T � g(δ) + δ. (A5)

Since by definition f ∗
T ′ := infT ′ f (σ ) = limn→∞ f (σni

) for
some sequence {σni

}, we have from the above inequality that
{σnk

} may be suboptimal (the infimum over a set is the infimum
of the set of limits of sequences from this set), hence,

f ∗
T ′ − f ∗

T � g(δ) + δ. (A6)

Analogously, exchanging T and T ′ we can arrive at

f ∗
T − f ∗

T ′ � g(δ) + δ, (A7)

which proves the thesis for infima. The proof for supremum
goes analogously, with only a change of inequalities to
opposite and signs in front of δn in (A1), which leads us exactly
to the expression (A4), but for the supremum. The rest of the
proof goes symmetrically, hence we skip it. �

APPENDIX B: CONVEXITY OF Imax

In this section, we will present an explicit proof of another
property of the measure of contextuality, which is its convexity.
This property was used in Ref. [27] (see Eq. (2)), but without
formal proof. We will first prove convexity of Ip(c) and then
using the definition of supremum we will show convexity
of the measure Imax. Note that the convexity of the mutual
information of contextuality Imax means that the relative
entropy of contextuality Xmax is also convex because of
equivalence of the two measures.

Let us denote Bmix as a convex combination of boxes:

Bmix =
∑

i

piBi, (B1)
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where Bi are not necessarily extremal (or deterministic) boxes.
Then, by definition of a box we have

pBmix (λc) =
∑

i

pipBi
(λc). (B2)

We now have the following:

Ip(c)

(∑
i

piBi

)
= Ip(c)(Bmix)

= min
p(λ)

∑
c

p(c)D(pBmix (λc)||p(λc))

�
∑

c

p(c)D

(
pBmix (λc)||

∑
i

pip
i∗(λc)

)
,

(B3)

where pi∗(λc) is a marginal distribution obtained from a joint
probability distribution pi∗(λ) optimal for a particular box Bi .
The above inequality comes from the fact that the distribution
p∗(λ) = ∑

i pip
i∗(λ) does not necessarily give a desired

minimum over all distributions p(λ). Furthermore, we have

∑
c

p(c)D

(∑
i

pipBi
(λc)||

∑
i

pip
i∗(λc)

)

�
∑

i

pi

∑
c

p(c)D(pBi
(λc)||pi∗(λc))

=
∑

i

piIp(c)(Bi), (B4)

where the inequality comes from joint convexity of relative
entropy distance for each c, while for the last equality we
utilized the optimality of pi∗(λ) for each box Bi . Using the
results (B3) and (B4) we arrive at

Ip(c)

(∑
i

piBi

)
�

∑
i

piIp(c)(Bi). (B5)

Now, by the definition of supremum, for any δn > 0 there
exists a distribution pn(c), such that

Imax

(∑
i

piBi

)
� Ipn(c)

(∑
i

piBi

)
+ δn, (B6)

hence, by convexity of Ipn(c) we have

Imax

(∑
i

piBi

)
�

∑
i

piIpn(c)(Bi) + δn. (B7)

Notice that for each i the definition of Imax assures that
Ipn(c)(Bi) � Imax(Bi). Thus,

Imax

(∑
i

piBi

)
�

∑
i

piImax(Bi) + δn, (B8)

and because δn can be arbitrarily small, we obtain the desired
convexity of Imax.

APPENDIX C: LOCALLY PERFORMED WIRINGS
SATISFY THE AXIOM (O2)

In this section, we present a formal proof of the fact that if
Alice and Bob have access to n boxes, such that the collection
of the latter admits a local hidden variable model, then by
means of locally performed wirings [23] one cannot transform
the collection of boxes into a valuable (nonlocal) resource
shared by the two parties.

Consider then a collection of n boxes shared by Alice and
Bob which admits a local hidden variable model with respect
to both parties:

Bn
L =

∑
λ

pλp
(λ)(a|x) ⊗ p(λ)(b|y), (C1)

for some probability distribution {pλ}, where a = (a1, . . . ,am)
(b = (b1, . . . ,bm)) is the vector of Alice’s (Bob’s) outputs
when one of the input from x = (x1, . . . ,xn) (y = (y1, . . . ,yn))
is chosen.

We will assume that locally the distribution of the collection
of boxes as seen by one party (e.g., Alice) p(a|x) is nonsignal-
ing [33], i.e., the following conditions are satisfied:

∀1�i�m,a�=i ,x�=i ,xi ,x
′
i

∑
ai

p(a|x�=i ,xi) =
∑
ai

p(a|x�=i ,x ′
i), (C2)

and analogously for Bob. Note that the nonsignaling conditions
given above imply nonsignaling with respect to all subsets of
inputs, i.e., marginal distribution of the outputs a�=i,j,... does
not depend on changing the inputs x�=i,j,... [35].

Consider now the partition of constituent boxes A1 :
A2 : B, where A1 ≡ {x1, . . . ,xk},A2 ≡ {xk+1, . . . ,xn},B ≡
{y1, . . . ,yn} for an arbitrary 1 � k � n − 1. As it was shown
in Ref. [34], the locality in the partition A1,A2 : B may not
be preserved when the subsystems A1 and A2 cooperate, i.e.,
when they perform a suitable wiring. This happens when no
constraints are imposed on the distribution p(λ)(a|x) in the
decomposition (C1). However, when the local distribution
admits nonsignaling conditions (C2), then the operation of
wiring of the subsystems A1 and A2 will not lead to emergence
of signaling for the one-partite distribution p(a|x). Since such
nonsignaling bilocal distributions (NSBL) constitute a closed
set under wirings [34], then we see that locally performed
wirings will not produce a valuable (nonlocal) resource from
useless (local) objects (see Supplemental Material of Ref. [34],
where the nonsignaling conditions (C2) need to be assumed).
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