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Extremal quantum states and their Majorana constellations
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The characterization of quantum polarization of light requires knowledge of all the moments of the Stokes
variables, which are appropriately encoded in the multipole expansion of the density matrix. We look into the
cumulative distribution of those multipoles and work out the corresponding extremal pure states. We find that
SU(2) coherent states are maximal to any order whereas the converse case of minimal states (which can be seen
as the most quantum ones) is investigated for a diverse range of the number of photons. Taking advantage of
the Majorana representation, we recast the problem as that of distributing a number of points uniformly over the

surface of the Poincaré sphere.
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Introduction. Stokes variables constitute an invaluable tool
for assessing light polarization, both in the classical and
quantum domains. They can be efficiently measured and lead
to an elegant geometric representation, the Poincaré sphere,
which not only provides remarkable insights, but also greatly
simplifies otherwise complex problems.

Classical polarization is chiefly built on the first-order
moments of the Stokes parameters: states are pictured as
points on the Poincaré sphere (i.e., neglecting fluctuations
altogether). Nowadays, however, there is a general agreement
that a thorough understanding of the effects arising in the realm
of the quantum world calls for an analysis of higher-order
polarization fluctuations [1-7]. In fact, this is what comes up
in coherence theory, where, in general, one needs a hierarchy
of correlation functions to specify a field.

Recently, we have laid the foundations for a systematic
solution to this fundamental and longstanding question [8§—10].
The backbone of our proposal is a multipole expansion of
the density matrix, which naturally sorts successive moments
of the Stokes variables. The dipole term, being just the
first-order moment, renders the classical picture, while the
other multipoles account for the fluctuations we wish to
scrutinize. Consequently, the cumulative distribution for these
multipoles yields complete information about the polarization
properties.

This Rapid Communication represents a substantial step
ahead in this program, as we elaborate on the extremal
states for the aforementioned multipole distribution. We find
that the SU(2) coherent states maximize it to any order,
so they are the most polarized allowed by quantum theory.
We determine as well the states that kill the cumulative
distribution up to a given order M: they serve precisely as the
opposite of SU(2) coherent states and hence can be considered
as the kings of quantumness. Furthermore, employing the
striking advantages of the Majorana representation [11],
these kings appear naturally related to the problem of
distributing N points on the Poincaré sphere in the “most
symmetric” fashion, a problem with a long history and many
different solutions depending on the cost function one tries to
optimize [12,13].
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Polarization multipoles. The quantum Stokes operators are
defined as [14]

o _ Loy ¢ _ Loy g
Sy = 2(a+a, +alay), S,= 2(a+a, aya_),
o _Lov .
§. = j@la, —ala), (1)

together with the total photon number N = éjrfur +ala_.
Here, a; and a_ represent the amplitudes in two circularly
polarized orthogonal modes. We have that [&k,&Z] = Skes
k,¢ € {+,—}, with i =1 throughout and the superscript
stands for the Hermitian conjugate. The definition (1) differs
by a factor 1/2 from its classical counterpart [15], but in
this way the components of the vector S = (S‘X,S'y,S‘Z) satisfy
the su(2) commutation relations: [S’X,S'y] =i S'Z and cyclic
permutations. For an N-photon state, 2=9 S+ l)ﬂ, where
S = N/2, so the number of photons fixes the effective spin.

Put in a different way, (1) is nothing but the Schwinger
representation of the su(2) algebra. Consequently, the ideas to
be explored here are by no means restricted to polarization, but
concern numerous instances wherein su(2) is the fundamental
symmetry [16].

In our case, [1\7 ,S] =0, so each subspace with a fixed
number of photons ought to be addressed separately. To
bring out this fact more prominently, instead of the Fock
states {|ny,n_)}, we employ the relabeling |S,m) = |n. =
S+ m,n_ =S — m), which can be thought of as the common
eigenstates of $2 and S'Z. For each fixed S, m runs from —Sto S,
and the states {|.S,m)} span a (25 + 1)-dimensional invariant
subspace [17].

As a result, the only accessible information from any
density matrix p is its block-diagonal form ppo = Pg %,
where $ is the density matrix in the subspace of spin S.
This ppol has been termed the polarization sector [18] or the
polarization density matrix [19]. It is advantageous to expand
each p as

2§ K

~ S) (S
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rather than using directly the basis {|S,m)}. The irreducible
tensor operators T,((‘? are [20,21]

A /2K+1
G)
2S+1 Z CSm ](q|5,”l/><5,m|, (3)

m, m'=—

with C;’}: Kq being Clebsch-Gordan coefficients (0 < K <
285). These tensors form an orthonormal basis and have the
right properties under SU(2) transformations. The crucial point
is that T,((fz) can be jotted down in terms of the Kth power of
the Stokes operators.

The expansion coefficients p(S) Tr [ﬁ(S)T(S) "] are known

as state multipoles. The quantity Z | p(5)| gauges the state

overlapping with the Kth multipole pattern For most states,
only a limited number of multipoles play a substantive role
and the rest of them have an exceedingly small contribution.
Therefore, it seems more convenient to look at the cumulative
distribution [9]

) 4)

M K
A4 =3 3 1A

K=1g=—K

which sums polarization information up toorder M (1 < M <
2S). Note that the monopole K = 0 is omitted, as it is just a
constant term. As with any cumulative distribution, Aﬁg) isa
monotonically nondecreasing function of the multipole order.

Maximal states. The distribution AEEI) can be regarded as
a nonlinear functional of the density matrix 4. On that
account, one can try to ascertain the states that maximize
AE\? for each order M. We shall be considering only pure
states, which we expand as |V) = ZS W, |S,m), with

m=—=5

coefficients W,, = (S,m|W¥). We easily get

M K 2K 1 N
A =2 2 2511 2 CS"”(” - G

K=1g9g=—K m,m'=—

The details of the calculation are presented in the Appendix.
We content ourselves with the final result: the maximum value
is

A(S) 28 [C2S + D] ’ ©)

28 + 1 F(ZS—M)F(2S+M+2)

and this happens for the state |S, £ S), irrespective of M.
Here, I'(x) stands for the Gamma function. Since AS{? is
invariant under polarization transformations, all the displaced
versions |0,¢) = (1 + |a]?)” Sexp (aS+)|S —S) [with S, =
S, + lS and the stereographic projection a = tan(6/2)e~"¢]
also maximize Ag). In other words, SU(2) coherent states

|0,¢) [22] maximize A(Ai) for all orders M.

It will be useful in the following to exploit the Majorana
representation [11], which maps every (2S5 + 1)-dimensional
pure state |V) into the polynomial

i 29)! 7] (¥S+m (7)
S —m!iS+m! " '

Y(a) =

m=—=S

Up to a global unphysical factor, V) is determined by the
set {o;} of the 25 complex zeros of W(«), suitably completed
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by points at infinity if the degree of W(wx) is less than 2S.
A nice geometrical representation of |W) by 2§ points on
the unit sphere (often called the constellation) is obtained by
an inverse stereographic map of {o;} — {6;,¢;}. For SU(2)
coherent states, the Majorana constellation collapses to a single
point. States with the same Majorana constellation, irrespec-
tive of its relative orientation, share the same polarization
properties.

The SU(2) Q function, defined as Q(6,¢) = |(0,¢|¥)|?, is
an alternative way to depict the state. Although Q(6,¢) can be
expressed in terms of the Majorana polynomial [and so {«;}
are also the zeros of Q(6,¢)], sometimes the symmetry group
of |W) can be better appreciated with this function, which can
be very valuable.

Minimal states. Next, we concentrate on minimizing A(S)

Obviously, the maximally mixed state p* = 5507 +1 ]125+1 kills
all the multipoles and so indeed causes (4) to vanish for
all M, being fully unpolarized [23,24]. Nonetheless, we are
interested in pure Mth-order unpolarized states. The strategy
we adopt is thus very simple to state: starting from a set of
unknown normalized state amplitudes in Eq. (5), which we
write as V,, = a,, + b, (an,b,, € R), we try to get AE\? =0
for the highest possible M. This yields a system of polynomial
equations of degree two for a,, and b,,, which we solve using
Grobner bases implemented in the computer algebra system
MAGMA [25]. In this way, we get exact algebraic expressions
and we can detect when there is no feasible solution.

Table I lists the resulting states (which, in some cases,
are not unique) for different selected values of S [26]. We
also indicate the associated Majorana constellations. For
completeness, in Fig. 1 we also plot the constellations as well
as the Q functions for some of these states.

Intuitively, one would expect that these constellations
should have the points as symmetrically placed on the unit
sphere as possible. This fits well with the notion of states
of maximal Wehrl-Lieb entropy [27]. In more precise mathe-
matical terms, such points may be generated via optimization
with respect to a suitable criterion [13]. Here, we explore the
connection with spherical 7-designs [28], which are patterns
of N points on a sphere such that every polynomial of degree
at most ¢ has the same average over the N points as over the
sphere. Thus, the N points mimic a flat distribution up to order
t, which obviously implies a fairly symmetric distribution.

For a given §, the maximal order of M for which we
can cancel out Aﬁ) does not follow a clear pattern. The
numerical evidence suggests that M,x coincides with #y,,x in
the corresponding spherical design, but further work is needed
to support this conjecture.

The simplest nontrivial example is that of two-photon
states, S = 1. We find only first-order unpolarized states:
these are biphotons generated in spontaneous parametric
down-conversion, which were the first known to have hidden
polarization [30].

With three photons, S = 3/2, we have again only first-order
unpolarized states: the constellation is an equilateral triangle
inscribed in a great circle, which can be taken as the equator.
This coincides with the three-point spherical 1-design.

For § = 2, the Majorana constellation is a regular tetrahe-
dron: it is the least-excited second-order unpolarized state. It
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TABLE I. States that kill A} for the indicated values of S. In the second column, we indicate the order M, which we conjecture is
the highest possible. We give the nonzero state components W,, (m = —S, ...,S) and the Majorana constellation. We include the associated
spherical z-design (with the maximal ¢ value) and the queens of quantumness (with their unpolarization degree). “Same”, “Similar,” and

“Different” always refer to the closest description column to the left.

S M State Constellation Design ¢ Queens M
1 Yy =1 Radial line Same 1 Same 1
2 Vo= = % Equatorial triangle Same 1 Same 1
2 2 v_ = %, U, = \/g Tetrahedron Same 2 Same 2
% 1 w_ 5= \IJ% = % Equatorial triangle + poles Same 1 Same 1
3 3 V,=Y, = % Octahedron Same 3 Same 3
12 Vs =V, =/ v 1= 2 Two triangles + pole ~ Similar 2 Equatorial pentagon + poles 1
4 3 V=W = /2 V=,/% Cube Same 3 See Ref. [29] 1
9 _ _ 1 _ _ 1 . .. ..
5 2 v g = \l/% =7 8 3= \IJ% =5 Three triangles Similar 2 Similar 1
5 3 U 5 =Ws = %, Wy = is Pentagonal prism Similar 3 Two staggered squares + poles 1
43 Vo =Wy =YT W s=Ws =i%> Pentagon + two triangles ~ Similar 3 Similar 1
2 2 2 2
6 5 VU s =—Ws = g U, = —% Icosahedron Same 5 Same 5
T 4 W =VYs= %, V3=V =,/ % +i,/ 957]{?361050 Three squares + poles  Different 4 - -
w, — 12561757 . [ 512603
0= 4/ T63053000 — v/ 2013000
10 5 W_jg=Vp= /7L W s=-Ws= /22 ¥, = /ZL Deformed dodecahedron Similar 5 - -

is not surprising that the tetrahedron is the 2-design with the
lowest number of points.

The case S = 5/2 does not admit a high degree of spherical
symmetry: only first-order unpolarized states exist. There are
neither five-photon M = 2 unpolarized states [31,32] nor five-
point 2-designs [33].

When increasing the number of photons to six, S =3,
another Platonic solid appears: the regular octahedron. Now,
we have the least-excited third-order unpolarized states, which,
in addition, take on the maximum sum of the Stokes variances.

For § =7/2, an M = 2 constellation consists of the north
pole, an equilateral triangle inscribed at the z = 0.2424 plane,
and another equilateral triangle, with the same orientation
(e.g., one vertex on the x axis) at the z = —0.5816 plane.
The spherical ¢-design has a larger separation between the
triangles, but the corresponding Stokes vector does not vanish,
so the #-design does not coincide with any unpolarized state.

A

Yo

&

The next Platonic solid, the cube, appears when § = 4. The
state is third-order unpolarized and its Majorana constellation
coincides with the eight-point spherical 3-design, which is the
tightest for this number of points.

A nine-photon second-order unpolarized state, S = 9/2,
is generated by three equilateral triangles with the same
orientation inscribed in the equator and in two symmetric
rings. The highest nine-point spherical ¢z-design has t = 2
and a similar, but not identical, configuration because the two
smaller triangles are displaced by a larger distance from the
equator than the previous constellation. As a consequence, the
nine-point spherical 2-design is only first-order unpolarized.

The Majorana constellation for a maximally unpolarized
10-photon state (S = 5) is similar to the matching spherical
t-design and consists of two identical regular pentagons
inscribed in rings symmetrically displaced from the equator.
The maximally unpolarized state has the two pentagons a bit

aes
AL,

FIG. 1. (Color online) Density plots of the SU(2) Q functions for the optimal states in Table I for the cases S = 5/2,3,7/2,9/2,5, and 7
(from left to right, blue indicates the zero values and red maximal ones). On top, we sketch the Majorana constellation for each of them.
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closer to the equator than the spherical 3-design (that has
M =1).

For larger photon numbers, the computational complexity
of finding optimal designs becomes a real hurdle. The #-designs
have been investigated in the range 2-100 and numerical
evidence suggests that the optimal designs (in some instances,
they are not unique) have been found [34]. However, for some
dimensions, e.g., 12 (S =6) and 20 (S = 10), one would
naively guess that the optimal designs fit with the icosahedron
and the dodecahedron. For S = 6 this turns out to be a correct
guess, the corresponding state is unpolarized to the same
order as the spherical 5-design formed by the icosahedron.
For S = 10 this intuition fails: the optimal 7-design is indeed
a dodecahedron, but this Majorana constellation is third-order
unpolarized, whereas this is a spherical 5-design. If the
dodecahedron is stretched (i.e., the four pentagonal rings that
define its vertices are displaced against the pole), one can find
a 20-photon fifth-order unpolarized state.

To check the correspondence between unpolarized states
and optimal #-designs we look at dimension 14, which is the
smallest number of points for which a spherical 4-design, but
not a 5-design, exists. This consists of four equilateral triangles
that are pairwise similar in size, displaced from the equator by
the same distance, and rotated an angle +« or =8 around
their surface normal, plus the two poles. The 7-design state
is only first-order unpolarized, but if the spacing and triangle
orientation is optimized, the design can be made third-order
unpolarized. There is indeed a 14-photon state that is fourth-
order unpolarized: its Majorana constellation is made of three
quadrangles and the poles, but this is only a 1-design.

To round up, it is worth commenting on the connections
that our theory shares with two recently introduced notions:
anticoherent states [35] and queens of quantumness [29]. For
completeness, in Table I we have also listed the configurations
and the degree of unpolarization for these queens. Anticoherent
states are in a sense “the opposite” of SU(2) coherent states:
while the latter correspond as nearly as possible to a classical
spin vector pointing in a given direction, the former “point
nowhere,” i.e., the average Stokes vector vanishes and the
fluctuations up to order M are isotropic. The queens of
quantumness are the most distant states (in the sense of a
Hilbert-Schmidt distance) to the classical ones (states than can
be written as a convex sum of projectors onto coherent states).
In particular low-dimensional cases, these two instances
coincide with our optimal states. However, we stress that our
theory is built from first principles, starting from magnitudes
that are routinely determined in the laboratory. Besides, we
have an algebraic criterion, namely, the vanishing of the
cumulative multipole distribution, that can be handled in a
clear and compact manner.

When we interpret our (25 + 1)-dimensional subspace
as the symmetric subspace of a system of S qubits, the
kings appear also closely linked to other intriguing problems,
such as maximally entangled symmetric states [36,37] and
k-maximally mixed states [38,39].

Applications. The main goal of quantum metrology is
to measure a physical magnitude with surprising precision
by exploiting quantum resources. In particular, tailoring
polarization states to better detect SU(2) rotations is quite
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a relevant problem with direct applications to magnetometry,
polarimetry, and metrology, in general [40].

In this respect, NOON states [defined as |[NOON) =
(s,8) —|S ,—S))/ﬁ] are known to be maximally sensitive
to small phase shifts (i.e., to small rotations about the
S, axis) for a fixed excitation S [41]. This can be easily
understood by looking at their Majorana constellation, which
consists in just 25 equidistantly placed points around the
Poincaré sphere equator. Since a rotation around the S, axis
is described by the unitary operator U(9) = exp (—i 5. /2),
the states |[NOON) and U()|NOON) are orthogonal for
/(2S). However, to make optimal use of a NOON state it
is essential to know the rotation axis so as to ensure that
the state is aligned with the axis to achieve its best sensi-
tivity: the rotation resolution is thus highly directional for a
NOON state.

This is precisely the advantage of maximally unpolarized
states: Having a high degree of spherical symmetry, they
resolve rotations around any axis approximately equally
well. This has been confirmed for the Platonic solids [31]:
Platonic states saturate the optimal average sensitivity to
rotations about any axis; NOON states outperform these states
about one specific axis [42]. Indeed, for the Platonic solids,
rotations around all the facets normal axes map the Majorana
constellation onto itself for rotations of 27 /3 (tetrahedron,
octahedron, and icosahedron), 7 /2 (cube), or 27 /5 (dodec-
ahedron). It is clear that for other constellations and other
rotation axes the Majorana constellation will only become ap-
proximately identical, but the statement is more likely to hold
true.

In a different vein, we draw attention to the structural
similarity between the kings of quantumness and quantum
error correcting codes: in both cases, low-order terms in the
expansion of the density matrices are required to vanish.

As a final but relevant remark, we stress that all the basic
tools needed for our treatment (Schwinger representation,
multipole expansion, and constellations) have been extended
in a direct way to other symmetries, such as SU(3) [43]
or Heisenberg-Weyl [44]. Therefore, the notion of kings of
quantumness can be easily developed for other systems. Work
along these lines is already in progress in our group.

Concluding remarks. In short, we have consistently reaped
the benefits of the cumulative distribution of polarization
multipoles, which is a sensible and experimentally realiz-
able quantity. We have proven that SU(2) coherent states
maximize that quantity to all orders: in this way, they
manifest their classical virtues. Their opposite counter-
parts, minimizing that quantity, are certainly the kings of
quantumness.

Apart from their indisputable geometrical beauty, there
surely is plenty of room for the application of these states,
whose generation has started to be seriously considered in
several groups.
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Appendix: Optimal states. We have to maximize the
cumulative multipole distribution (4) for a pure state |W) =
an:_s W, |S,m), which takes the form (5). If we use an
integral representation for the product of two Clebsch-Gordan
coefficients [17], we get

N

25+1 2K 41
AR = Z Z = Z Z S Y U

m,m'=—S n,n'=— =0g=—K

X /dRDS (R)D (R)D (R, (Al)

where D3 are the Wigner D functions and R refers to the

three Euler angles («, 8,y ) and the integration is on the group
manifold

2 b4 2w
de f(R)E/ dOl/ d,Bsin,B/ dyf(a,B,y).
0 0 0

(A2)

Since

Z DJ,(R) = xx (o),

q=—K

(A3)

where x g (w) is a SU(2) generalized character and cos(w/2) =
cos(B/2) cos[(x + y)/2], we rewrite A(,VSI) as

M
2K +1 A
AP =3 /dR i @|(WITSW)P, (Ad)

82
K=0
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and f"g is the group action. Then, we observe that the above is

A = Tr | (W)W ® |9)(F|

1

M
Z 2K+ ! /dRXK(a))TS®T } (AS)

K=0
with
s
= Y (=1, [S.m). (A6)
m=—5
Because the integral
1 s st
ys) dRXK(a))T ®T = cxllg, (A7)

where [1x is the identity on the (2K + 1)-dimensional
irreducible SU(2) subspace which appear in the tensor product
of Hs ® Hys [i.e., Tr(ITg) = 2K + 1], then
M
AR = > (| Tk [ 9)| D).

K=1

(A8)

Such an overlap is maximized (all coefficients are the same)
whenever in every subspace of dim2K + 1 there is only one
element from the decomposition |¥)|¥), which is consistent
with (A6). The only states that produce a single state in each
invariant subspace are the basis states |S,m), so that [0y =
(=1)"|S,—m), then

M

2K +1 2

() SS

Ay = Z 25+ 1 |CSS,K0 :
K=1

(A9)

Since the maximum value of Cgr’n” ko 18 ng ko> the states
|S,+S) maximize .A(S), as heralded before.
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