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Quantum impurity in a one-dimensional trapped Bose gas
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We present a theoretical framework for describing an impurity in a trapped Bose system in one spatial
dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be
included between the Bose particles. To demonstrate our technique, we calculate the ground-state energy and
properties of a sample system with eight bosons and find an excellent agreement with numerically exact results.
Our theory can thus provide definite predictions for experiments in cold atomic gases.
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An impurity interacting with a reservoir of quantum
particles is an essential problem of fundamental physics.
Famous examples include a single charge in a polarizable
environment, the Landau-Pekar polaron [1,2], a neutral particle
in superfluid 4He [3], a magnetic impurity in a metal resulting
in the Kondo effect [4], and a single scattering potential inside
an ideal Fermi gas [5,6]. The latter system is famous for the
Anderson’s orthogonality catastrophe [7]. In these settings the
impurity behavior can provide key insights into the many-body
physics and guide our understanding of more general setups.

A complicating feature of many impurity problems is the
presence of interactions at a level that often precludes the use of
perturbative analysis and self-consistent mean-field approxi-
mations. This implies that analytical approaches are highly
desirable and exact solutions are, when available, coveted
tools for benchmarking other techniques. This is particularly
true for one-dimensional (1D) homogeneous systems where
solutions can often be found based on the Bethe ansatz [8–13].
These solutions are the essential ingredients for our analytical
understanding of highly controllable experiments with cold
atoms [14–19]. For instance, the exactly solvable problem
of the single impurity in a 1D Fermi sea [10]—the Fermi
polaron—can be used to study the atom-by-atom formation of
a 1D Fermi sea [20].

While Fermi polarons have been studied intensively in
recent times using cold atomic setups both experimentally
and theoretically [21–25], the physics of impurities in a
bosonic environment is only now becoming a frontier in cold
atom experiments [26–29]. This pursuit requires theoretical
models for describing the Bose polaron [30–48], where,
in contrast to the Fermi polaron, an exact solution is not
known even for a homogeneous 1D system. Here, we provide
a theoretical framework that captures the properties of an
impurity in a bosonic bath confined in one spatial dimension.
Our (semi)analytical theory thus provides a state-of-the-art
tool for exploring the properties of Bose polarons in 1D.

The proposed framework works with a zero-range potential
of any strength and handles any number of majority particles
in external confinement of various shapes. Our method is
also applicable to describe experimental setups that have
different trapping potentials for the impurity and majority
particles and different mass ratios. In addition, weak majority
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interactions may be included using the well-known Gross-
Pitaevskii equation (GPE). While our method is not exact,
we have benchmarked the energetics and density profiles
against numerical results [40] and find agreement for up to
ten particles at the level of a few percent. To illustrate the
method in this Rapid Communication, we examine a system
of eight bosons and an impurity in a harmonic trap. Figure 1(a)
shows a sketch of this system with vanishing boson-boson and
large boson-impurity interactions. This leads to a separation of
the two components. Notice that the ground state must retain
parity and is thus a linear superposition of the two spatial
configurations outlined. Using the pair-correlation function,
we can clearly see in Figs. 1(b)–1(d) how the impurity moves
to the edge of the system as a function of the interspecies
interaction. Increasing the intraspecies interaction, we witness
the opposite effect as the impurity goes to the center of the
system, as seen in Figs. 1(e)–1(g).

Formalism. Our two-component system consists of one type
A (impurity), and NB identical type B bosons (majority) with
masses mA and mB , respectively. For the sake of argument,
we confine particles in harmonic potentials with a trapping
frequency ωB for the bosons and ωA for the impurity. In
this Rapid Communication we adopt harmonic oscillator units
for the majority particles, i.e., we measure length in units of
b = √

�/mBωB and energy in units of �ωB . Accordingly, the
Hamiltonians, for the impurity atom with coordinate x and a
majority atom with coordinate y, are expressed as

HA(x) = p2
x + m2

ABω2
ABx2

2mAB

, HB(y) = p2
y + y2

2
, (1)

where mAB = mA/mB , ωAB = ωA/ωB , and p denotes the
corresponding momenta. The interaction between A and B

particles is assumed to be of a short range and hence modeled
by the Dirac delta function with strength g. The boson-boson
interaction is also given in the standard pseudopotential
interaction model [49] with a coupling constant gBB . Both
interaction strengths are given in units of [b�ωB]. The overall
Hamiltonian of the system is H = HA(x) + ∑NB

i=1 HB(yi) +∑NB

i=1 gδ(x − yi) + ∑
i<k gBBδ(yi − yk), where yi are the co-

ordinates of the bosons (see the Supplemental Material [50]).
In order to find the eigenspectrum of the Hamiltonian for

arbitrary g, we introduce a (semi)analytical approach. More
specifically, we consider the impurity as the “slow” variable
and introduce the adiabatic decomposition of the total wave
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FIG. 1. (Color online) (a) A sketch of the doubly degenerate ground state for the system of one A and eight B particles trapped in a
one-dimensional harmonic potential for infinitely strong repulsive interspecies interactions. The ± corresponds to the parity of the system.
(b)–(d) show the AB pair-correlation function, the expectation value of the δ(zA − x)δ(zB − y) operator, where zA(B) is the coordinate of
particle A(B). The system under consideration is the same as in (a) although with a finite interspecies interaction strength g. (e)–(g) show the
pair-correlation function for different intraspecies interaction strengths gBB for fixed g.

function

�(x,y1, . . . ,yNB
) =

∑
j=1

φj (x)�j (y1, . . . ,yNB
|x), (2)

where �j is the j th normalized eigenstate of the eigenvalue
problem

∑NB

i=1 HB(yi)�j = Ej (x)�j , which we solve
assuming that the impurity gives rise to a zero-range potential
at a fixed position x (see the Supplemental Material [50]).
First, we consider an ideal Bose gas, i.e., gBB = 0, and write
�j (y1, . . . ,yNB

|x) = Ŝ
∏NB

i=1 f
k

j

i
(yi |x) with a symmetrization

operator Ŝ (acting on the yi coordinates) and f
k

j

i
(yi |x) being

the k
j

i th normalized eigenstate of HB(yi) for a given x. Notice
that every function f

k
j

i
(yi |x) has a discontinuous derivative

at yi = x due to the zero-range interaction. This is quantified
with the standard delta-function boundary condition, which
dictates that the difference in the slopes of the wave function,
from the left and right sides of x, times a 1/(2g) factor
must be equal to the value of the wave function taken at
yi = x. As 1/g → 0, the wave function must therefore vanish
at yi = x.

We can include interactions among the majority particles
under the assumption that these may be described by the
1D GPE (see the Supplemental Material [50]). It has been

previously discussed that this is an accurate description for
weak interactions between the bosons [51–53]. In this case
we need to use a dressed single-particle wave function f̃

k
j

i

instead of f
k

j

i
(yi |x). The function f̃

k
j

i
satisfies the 1D GPE

complemented with the boundary condition at yi = x,

μ(x)f̃
k

j

i
=

(
−1

2

∂2

∂y2
i

+ 1

2
y2

i + NBgBB

∣∣f̃
k

j

i

∣∣2
)

f̃
k

j

i
, (3)

where μ(x) is a chemical potential, and gBB is determined
through the three-dimensional boson-boson scattering length
as as gBB = 2as

b

√
ωB1 ωB2

ωB
, where ωB1 and ωB2 are the two

frequencies in the directions of strong confinement [54]. The
boson-impurity coupling constant can be also related to the
corresponding scattering length [55].

After determining the function f
k

j

i
, we obtain a coupled

system of equations for φj (x) (see the Supplemental Mate-
rial [50]). The coupling terms in this system correspond to the
transition of a majority particle from fk to fk′ . For bosons,
this is a coherent process which contributes significantly if
the impurity is placed in a region with a high density of
majority particles. Physical intuition, however, tells us that,
in the ground and low-lying excited states, the impurity is
pushed to the edge of the trap if gBB � g and NB � 1.
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Otherwise, the impurity would deplete the majority particles
notably from the ground state of the one-body harmonic
oscillator, which is very expensive energywise for NB � 1.
Hence, for large NB , we neglect the coupling terms between
different φj (x), which rigorously gives us an upper bound
for the exact energy of the ground state [56]. However,
we expect this approximation to be very accurate also for
low-lying excited states. We can therefore obtain φj (x) by
solving numerically a single differential equation. From a
mathematical point of view, the presented approach is similar
to the Born-Oppenheimer approximation or the hyperspherical
adiabatic method [57]. The physics is, however, different.
Indeed, we develop our method for a many-body system where
we expect that for the same computational time the relative
precision is increasing with the number of particles. Clearly,
the discussion above applies to a Bose polaron problem in
arbitrary confinement. Moreover, the trapping potentials as
well as the masses can be different for the A and the B particles.
Below, we show that our framework compares very well to
exact numerical results for the equal mass case mA = mB . In
the heavy impurity case with mA > mB , we expect our model
to perform equally well as the impurity becomes increasingly
stationary. The final case of a light impurity mA < mB will
not be studied further here, but we note that since it must also
go to the edge of the trap, the arguments above for neglecting
coupling terms still hold. We have checked that we get the
expected separation (the light impurity goes to the edge of
the trap), although further studies will have to be conducted to
investigate the quantitative performance of our method for light
impurities.

FIG. 2. (Color online) The energy spectrum of low-lying states
for a system of eight noninteracting bosons and an impurity with
mAB = ωAB = 1. The inset shows the derivative of the ground-state
energy ∂E/∂(−1/g) divided by NB , which is related to Tan’s contact
parameter. The lines are guides for the eye.

To conclude the presentation of our method, we compare its
predictions with the exact results obtained using the numerical
approach developed in Refs. [40,58] for gBB = 0, mAB =
ωAB = 1. We find that the relative precision of the method
increases with NB and we pick a sample system with NB = 8.
We start by analyzing the energies in Fig. 2. Our model yields
results that are slightly above the numerically exact values
with a maximum deviation of a few percent. Next, we check
that the model reproduces the derivative of the ground-state
energy with respect to the coupling constant ∂E/∂(−1/g)/NB

vs NB (see the inset in Fig. 2). This derivative for fixed g

determines the probability for a given boson to be close to the
impurity [59,60]. We see that for a large number of bosons this
probability becomes smaller, manifesting that the impurity is
pushed far from the center of the trap. It is also interesting to
note that for large NB we find numerically that ∂E/∂(−1/g)
is almost independent of NB .

We have also compared density profiles and pair-correlation
functions for the ground state and again find only minute
differences [see Figs. 3(a) and 3(b)]. Note that the impurity
density splits for large g. On the other hand, the majority
particles are almost unperturbed by the interaction. This means
that an adiabatically slow increase of g moves the impurity to
the edge of the system, as also shown in Figs. 1(a)–1(d). As the
number of bosons increases, the impurity gets pushed further
towards the edge of the trap, and ∂E/∂(−1/g)/NB decreases.
In the energy domain it leads to a doubly degenerate ground

FIG. 3. (Color online) (a) and (b) show the density distributions
for the (a) impurity and (b) majority atoms for NB = 8 and different
values of the interspecies interaction strength g. The numerically ex-
act results are shown with blue dots in (a) for the three corresponding
values of g, and in (b) for g = 50. Notice that the label in (a) also
applies to (b) and vice versa. (c), (d) The density distributions for a
fixed value of g = 1 but different intraspecies interaction strengths
gBB . (e)–(f) The density distributions for different values of mass
ratios, mAB = 1, 3, and 10, with gBB = 0.
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state at 1/g = 0 since the impurity can be pushed to either
the left or the right edges of the trap; see Figs. 1(a) and 2.
This should be contrasted with the Fermi polaron system,
where for large interactions the ground state is NB + 1 times
degenerate and the impurity is localized in the middle of the
trap [58,61,62].

Results. To further illustrate the model, we continue our
discussion of an impurity interacting with eight bosons.
However, now we allow a weak interaction between the bosons
as well as different mass (or frequency) ratios. For large
interactions this setup is already beyond current numerical
approaches. We stress once again that in our method the
numerical complexity does not increase with NB , and NB = 8
is chosen as a particular example.

First, we fix g = 1, mAB = 1, ωAB = 1, and change the
intraspecies interaction strength gBB . In Figs. 3(c) and 3(d)
we show the density for the impurity and majority atoms in
the ground state. In this case the energy is minimized if the
impurity is pushed towards the middle of the trap. This is
readily understood for the case g = gBB , where the impurity
particle should have the same density distribution due to the
boson-impurity exchange symmetry of the Hamiltonian. In our
case the difference in the densities of majority and impurity
for g = gBB = 1 is due to the different treatments of these
components. Notice also that we expect the GPE and our
approach to yield only qualitative results for such a large
boson-boson interaction strength. It is also worth noticing that
if both interactions g and gBB are very large, one can approach
the problem directly by using the Bose-Fermi mapping [63],
where one also expects enhancement of the impurity density
in the middle of the trap compared to the gBB = 0 case.
Next, we compute the pair-correlation function which again
demonstrates that the impurity is situated close to the origin;
see Figs. 1(e)–1(g). Consider now different masses for A and
B particles for gBB = 0, g = 1, and ωAB = 1 [64]. As shown
in Figs. 3(e)–3(f), when mAB becomes larger, the external
potential localizes the impurity in the middle of the system. For
mAB → ∞ the impurity constitutes a delta-function barrier in
the middle of the harmonic trap, the solution to which can be
found in Ref. [65]. From this picture it is apparent that the
density of the majority particles should be suppressed at the
origin [see Fig. 3(f)].

Next, we consider the momentum distribution, which is an
observable to gain information about cold atomic gas systems.
The momentum distributions of the impurity for gBB = 0 and
ωAB = 1 are shown in Fig. 4 for different mass ratios and
interaction strengths. These distributions can be understood
from the discussions above. When the mass ratio increases,
the impurity wave function is almost a Gaussian function,
and therefore the momentum distribution will also assume a
Gaussian form. Notice the characteristic oscillations in the
wings of the distributions which could be very helpful for the
experimental detection of the Bose polaron. The momentum
distribution for majority particles is not plotted because there
is no noticeable change in the distribution as we change g

and/or mAB .
As a final characteristic of the Bose polaron, we consider the

overlap between the noninteracting and strongly interacting
states for different values of gBB and mass ratios as a
function of NB . This quantity is related to the orthogonality

FIG. 4. (Color online) Snapshots of the momentum distribution
for the impurity with different values of g for mAB = 1 (left) and
different values of mAB for g = 1 (right). We assume gBB = 0 and
ωAB = 1.

catastrophe [7] and has generated recent interest as a probe
of many-body physics with cold atoms [38,61,66]. In Fig. 5
we see a power-law behavior, but more interestingly, the
exponent changes with both gBB and mass ratio. The overlaps
remain finite for finite system sizes and only go to zero for
NB → ∞ [67]. The original work of Anderson [7] uses a
potential to model the impurity which corresponds to the limit
mAB → ∞. This limit shows very fast decay (high negative
power dependence on NB), similarly to what Anderson
found for fermions, but already for a mass ratio mAB = 3
the suppression is considerable, as seen in Fig. 5. On the
contrary, in the opposite limit of equal masses we see much
longer tails. Experiments using equal-mass two-component
setups and two atomic species with different masses could
therefore complement each other perfectly when studying the
orthogonality catastrophe for Bose polarons.

Experiments. Our predictions should be addressable using
current experimental setups. In particular, effective 1D systems
have been produced that exhibit behavior consistent with
zero-temperature predictions for both bosonic [14–17] and
fermionic atoms [18–20]. Two-component bosonic systems
in 1D [29,68,69] can be used to explore the equal-mass
Bose polarons. Mass-imbalanced Bose-Bose mixtures in 1D
have been explored with 87Rb and 41K (mAB < 1) [26] and
new experiments with 87Rb and 133Cs (mAB > 1) appear
promising if an effective 1D geometry can be reached [27]. Our
theory provides predictions for experiments in the 1D regime,

FIG. 5. (Color online) The overlap between the total wave func-
tion of the system at g = 0 and g = 50, |〈ψg=0|ψg=50〉|2, as a function
of NB . The best fit and the corresponding parameters are shown in the
figure. The upper value of (β,α) corresponds to the upper curve, etc.
For the infinite mass impurity case, the fit parameters are qualitative
as there is larger uncertainty here due to the small numerical values
involved.
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taking into account any experimental features such as different
trap frequencies for different atoms, relative displacement of
the trap, and mass imbalance.
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