
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 92, 030302(R) (2015)

Secret sharing with a single d-level quantum system

Armin Tavakoli,1 Isabelle Herbauts,1 Marek Żukowski,2 and Mohamed Bourennane1
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We give an example of a wide class of problems for which quantum-information protocols based on multisystem
entanglement can be mapped into much simpler ones involving one system. Secret sharing is a cryptographic
primitive which plays a central role in various secure multiparty computation tasks and management of keys in
cryptography. In secret sharing protocols, a classical message is divided into shares given to recipient parties
in such a way that some number of parties need to collaborate in order to reconstruct the message. Quantum
protocols for the task commonly rely on multipartite GHZ entanglement. We present a multiparty secret sharing
protocol which requires only sequential communication of a single quantum d-level system (for any prime d). It
has huge advantages in scalability and can be realized with state-of-the-art technology.
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I. INTRODUCTION

Splitting a message into N shares so that the original
message can be reconstructed if and only if at least k � N of
the shares are known is called a (N,k) secret sharing threshold
scheme (the threshold is k). This can be achieved by directly
splitting the secret, or distribution of a random key in a split
form, in such a way that it can be reconstructed from at least
k of its N shares. The key is used to encrypt the message
using the one-time pad method. Secret sharing constitutes
an important cryptographic primitive in protocols for secure
multiparty computation including password-authenticated key
agreement, hardware security modules, private querying of
databases, and establishment of access codes with restricted
access. The first secret sharing schemes were presented
independently by Shamir and Blakley by means of classical
algorithms to split the message and classical communication
to distribute the shares [1,2].

In Shamir’s (N,k) secret sharing threshold scheme, the
distributor chooses a set of k positive integers, known only
to him or her, a0, . . . ,ak−1 ∈ {1, . . . ,P }, where P is some
large prime. The first integer a0 is the secret. The kth-order
polynomial p(x) = a0 + a1x + · · · + ak−1x

k−1, is used for
coding the data. For l = 1, . . . ,N the distributor computes p(l)
and communicates the value only to the lth party. If at least k

of the recipients collaborate, they can easily recover the secret
a0, whereas knowing fewer than k shares yields no information
on a0. However, like many schemes in classical cryptography,
Shamir’s scheme is vulnerable to intercept-resend attacks on
the communications of the distributor.

The security for cryptographic tasks can be enforced
by introducing quantum resources [3,4]. Quantum methods
for (classical) secret sharing by three parties in a form
of cryptographic protocol based on three-particle GHZ en-
tanglement [5] were given in [6]. In an independent later
development, secret sharing protocols for three or four parties
were proposed in Ref. [7]. Secret sharing for arbitrary many
parties exploiting multipartite qubit entanglement can be found
in Ref. [8], wherein security issues were shown to be linked
to Bell inequalities. A general secret sharing scheme using
multipartite d-level entanglement is given in [9]. Also, general
(N,k) quantum secret sharing threshold schemes have been
analyzed in Ref. [10].

There are several experimental demonstrations of secret
sharing schemes with quantum resources. Three- and
four-partite secret sharing schemes using entanglement were
reported in Refs. [11,12]. However, entanglement-based
protocols are not scalable. The difficulty of obtaining the
required quantum correlations grows with the number of
parties involved.

Fortunately, a more scalable secret sharing (of classical
data) can be achieved using only sequential communication of
a single qubit, see Ref. [13]. The work reports a successful
proof-of-principle experimental demonstration of six-party
secret sharing of such a kind. Nevertheless, the security of
proposed secret sharing schemes is not as robust as the security
of quantum key distribution (QKD). This is discussed in
Refs. [14,15] for both the entanglement-based scheme of [6,7]
and the single-qubit scheme of [13].

In this Rapid Communication, we present an (N,N ) secret
sharing threshold scheme using a single d-level quantum
system for the odd prime dimension d. We investigate
eavesdropping attacks and security issues. Finally, we discuss
the scalability and efficiency of our protocol in comparison to
other schemes involving qudit systems. Our principal aim is to
show that you can map GHZ state protocols extended to d-level
systems into protocols involving sequential transfer of a single
qudit (as this is a significant simplification of such schemes).
We restrict d to odd primes because our protocol uses a
cyclic property of a set of mutually unbiased (orthonormal)
bases (MUBs). Many MUBs are still unknown [16]. Complete
sets are only known for dimensions which are powers of
prime numbers [17]. For this restricted set of dimensions, the
algebraic property on which our scheme relies was found only
for odd prime dimensions.

The relation of our single-qudit scheme with respect to GHZ
state qudit secret sharing can be thought to be similar to that of
the BB84 QKD protocol [3] and the E91 QKD protocol [18]
based on entanglement. However, significant advantages of the
single-qudit scheme emerge with the growing number parties.

II. SECRET SHARING USING GHZ STATE
CORRELATIONS

Let us first describe a secret sharing protocol using multi-
partite d-level entanglement, for which d is an odd prime. This
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particular protocol is outlined in [9]. The protocol is designed
for N + 1 party secret sharing and requires an N + 1 partite
d-level GHZ state: |GHZN+1

d 〉 = 1√
d

∑d−1
j=0 |j 〉⊗N+1. The party

1 (R1) acting as the distributor prepares the GHZ state, keeps
one particle, and distributes the remaining N particles to the
N recipient parties. In the given run, each of the N + 1 parties
independently chooses one of d possible bases in which the
local particle is measured.

For security purposes, all parties choose their measurement
bases from a set of d MUBs. The unit vectors belonging to
the full set of d + 1 MUBs will be denoted as |e(j )

l 〉 where
j = 0, . . . ,d labels the basis and l = 0, . . . ,d − 1 enumerates
the vectors of the given basis. One has for j �= j ′

∣∣〈e(j )
l

∣∣e(j ′)
l′

〉∣∣2 = 1

d
. (1)

Apart from the computational basis, for which we give the
index j = d, and denote its states by |k〉, the remaining d

MUBs are given by

∣∣e(j )
l

〉 = 1√
d

d−1∑
k=0

ωk(l+jk)|k〉, (2)

where ω = e2πi/d . It can be easily shown that Eq. (2) satisfies
Eq. (1) for all prime dimensions [19]. We will denote by M

the set of all vectors belonging to the MUB defined by Eq. (2),
and its elements by Ml,j , with the meaning of the indices as
above.

In each run of the experiment, party n (denoted by
Rn) chooses randomly a measurement basis jn. The local
measurement in the basis projects Rn’s particle onto one of the
vectors Ml,jn

. This is governed by the probability distribution

P (l1, . . . ,lN+1|j1, . . . ,jN+1) = 1

dN+2

∣∣∣∣∣
d−1∑
k=0

ω− ∑N+1
n=1 (kln+k2jn)

∣∣∣∣∣
2

.

Perfect GHZ correlations are possible if

N+1∑
n=1

jn = 0 mod d. (3)

In such a case, only results satisfying
∑N+1

n=1 ln = 0 mod d

occur, and all sets satisfying this relation are equally probable.
However, if condition (3) does not hold, then the probability
distribution of the results is uniform. This is easy to see once
one realizes that Eqs. (2) and (1) imply that |∑d−1

k=0 ωk(l+jk)|2 =
d for j �= 0 and any l.

Once the measurements are performed, the parties an-
nounce their choices of jn. The distributor checks condition
(3). If it is satisfied, the round is treated as valid and used for
secret sharing. The local results satisfy

∑N+1
n=1 ln = 0 mod d,

whereas a sum with one or more ln missing has an arbitrary
value (mod d). Thus even N − 1 collaborating parties cannot
learn the values obtained by the other two. But N parties can
establish the value of the remaining party. As the choices of jn

are random, the protocol succeeds in 1/d of the cases.

III. SECRET SHARING WITH A SINGLE QUDIT

Our protocol relies on a cyclic property of the set of MUBs:
there exist unitary transformations Ul′j ′ , such that for any
l′,j ′ ∈ {0, . . . ,d − 1}, any vector Ml,j can be mapped into
Ml+l′,j+j ′ . That is, elements of M are mapped into elements
of M . Note that, for any vector Ml,j can be transformed into
Ml+1,j by applying the transformation

Xd =
d−1∑
n=0

ωn|n〉〈n|. (4)

Simply using Eqs. (4) and (2), one gets

Xd

∣∣e(j )
l

〉 = 1√
d

d−1∑
n=0

ωn|n〉〈n|
d−1∑
k=0

ωk(l+jk)|k〉

= 1√
d

d−1∑
k=1

ωk((l+1)+jk)|k〉 = ∣∣e(j )
l+1

〉
. (5)

Also, any Ml,j can be transformed into Ml,j+1 by

Yd =
d−1∑
n=0

ωn2 |n〉〈n|. (6)

This can be shown in a similar way. Thus, by applying the
operator Ul′j ′ = Xl′

d Y
j ′
d , any Ml,j is mapped into Ml+l′,j+j ′ .

The protocol runs as follows:
(i) The distributor R1, who by the nature of the task is

always assumed to be an honest party, prepares the state
|e(0)

0 〉 = 1√
d

∑d−1
j=0 |j 〉 ∈ M , which will be denoted by |ψd

0 〉.
(ii) R1 picks two random numbers x1,y1 ∈ {0, . . . ,d − 1},

and performs on |ψd
0 〉 the transformation X

x1
d Y

y1
d . This gives

|ψd
1 〉 ∈ M . The state is sent to party R2.
(iii) For n = 2, . . . ,N + 1, the party Rn generates two

independent random numbers xn,yn ∈ {0, . . . ,d − 1}, and
applies X

xn

d Y
yn

d to the qudit |ψd
n−1〉 received from Rn−1. Rn’s

action gives a state |ψd
n 〉 which is sent to subsequent party

Rn+1, except in the case of RN+1 who sends the qudit back to
the distributor, R1.

(iv) R1 randomly chooses J ∈ {0, . . . ,d − 1} and measures
the qudit in the basis {|e(J )

l 〉}l . The outcome is labeled a ∈
{0, . . . ,d − 1}.

(v) In random order only parties R2, . . . ,RN+1 announce
their choice of yn. The distributor announces only whether the
round is valid or not. It is valid provided

N+1∑
n=1

yn = J mod d. (7)

Otherwise the round is rejected. If the round is valid, the private
data of the parties, {xn}, satisfy globally

N+1∑
n=1

xn = a mod d. (8)

The data exhibit perfect correlations and thus can be used
for secret sharing, as was the case for GHZ based protocols,
provided R1 resets his or her x1 to x

(scrt)
1 = x1 − a. Again, the

probability of a valid round is 1/d.
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(vi) In order to check the security, for a randomly chosen (by
the distributor) subset of the rounds, all parties R2, . . . ,RN+1

announce their values of their private data xn (in the same
sequence as was the announcement of yn’s). The distributor
checks condition (8). If R1 registers a substantial fraction check
runs for which (8) does not hold, R1 declares the whole secret
sharing attempt as corrupt (more details on security checks
later).

(vii) If the secret sharing attempt is not corrupt, parties
R2, . . . ,RN+1, after exchanging all their data xn for a valid
run, not used in the security check, can learn the otherwise
secret value x

(scrt)
1 , for the given run, earlier known only to the

distributor R1.
The protocol works because after all the transformations

the final state reads

∣∣ψd
final

〉 =
(

N+1∏
n=1

X
xn

d Y
yn

d

)∣∣ψd
0

〉

= 1√
d

(
|0〉 +

d−1∑
k=1

ω
∑N+1

n=1 (kxn+k2yn)|k〉
)

. (9)

R1’s measurement of Eq. (9) yields an outcome with unit
probability, provided |ψd

final〉 is an eigenstate of the measured
observable. This happens if and only if Eq. (7) is satisfied.
Otherwise, |ψd

final〉 is some element Ml′,j ′ with j ′ �= J and thus
by Eq. (1) the probability of any outcome is 1/d.

For a valid run the correlations are effectively equivalent
to the ones for the GHZ based protocol: the choice of yn

corresponds to Rn’s choice of measurement basis, while xn is
analogous to the local outcome.

IV. SECURITY DISCUSSION

Protocols for secret sharing have to guarantee security.
Consider an example of an attack by an external eavesdropper.
If the eavesdropper, Eve, attempts an intercept-resend attack
and intercepts the qudit, in the state |e(j )

l 〉, on the way from Rk

to Rk+1, she can choose one of d relevant bases to measure.
With probability 1/d she chooses a basis j ′ = j and the attack
succeeds, but with probability d−1

d
she has j �= j ′ in which case

the state she sends to Rk+1 will be altered. The eavesdropping,
to some extent depending on d, causes inconsistencies between
the private data and condition (8), and is therefore detectable
in step (vi) of the protocol.

For more general eavesdropping attacks, in the qudit trans-
fer from Rk and Rk+1, we can regard the parties R1, . . . ,Rk as
a “block” effectively representing a single party, and parties
Rk+1, . . . ,RN+1 and R1, acting as the measuring party, we can
treat similarly. Thus, the attack is reducible to the scenario
encountered in the BB84 two-party QKD (see e.g. [20]) in
which the sender and the receiver, both effectively our R1, do
not announce their bases, but only validity of a run. Generally,
this makes security effectively perfect, even if Eve tries this
strategy at more than one qudit transfer link.

An alternative trick which can be used by Eve is to send
via the unitary gate of partner Rk one more qudit or even
a multiqudit pulse, say separated in time, so that it can
be somehow intercepted by her beyond the gate, without
intercepting the protocol qudit. After yk is announced she can

learn the actual unitary transformation and thus xn. However,
this is easily detectable if Rk makes the number of particles
measurement at the exit of his gate (in some randomly chosen
runs).

Yet another possibility is for Eve to intercept the qudit
sent by R1, and send a qudit of her own to R2 in its stead.
Eve collects her qudit once it is sent by RN+1, and waits
for the announcement of yn’s. The intercepted qudit of R1

can be somehow manipulated by her; however it must reach
the measurement station of R1 at the right time. After yn’s
are announced she can measure her qudit and recover the
value x2 + · · · + xN+1 mod d. However, the attack will be
detected in step (vi) of the protocol since R1 performs the
measurement before the yn’s are announced. There is no way
for Eve to perform a yn-dependent manipulation on a qudit
which is already measured by R1.

A. Discussing security against conspiracies

In secret sharing one faces the possibility of conspiring
cheating subsets of parties. In the worst case, only the
distributor R1 and one more party are honest, leaving N − 1
conspiring parties. Conspiracies significantly complicate the
security analysis of secret sharing schemes and much is
therefore unknown about security of various schemes. Here,
we will discuss the robustness of our scheme against some
particular conspiracies. However, rigorous security proof for
general conspiracies is unknown.

In, e.g., Refs. [15,21] eavesdropping attacks using quantum
memories and entangling of systems with an ancilla were
shown to lead to security problems in the protocol of Ref. [13].
However, the attacks of [21] require that either the first or the
final party are cheating, which never happens in our protocol
because R1 is effectively both first and last party. Additionally,
the eavesdropping attacks of [21] require knowledge of also
y1 and J , which is impossible since R1 never announces any
data.

More generally, the cheaters could use some attack based
on entangling the qudit with an ancilla, or possibly storing
the protocol qudit in a quantum memory and creating a new
entangled state, of which a subsystem is communicated further
along the protocol loop. Still, they ought not to be able to
profit. The reason is the absence of data announcement from
R1 renders the qudit available for the cheaters effectively in a
mixed state, for which there is no observable which would give
an outcome with unit probability. Furthermore, if the cheaters
combine their attack with eavesdropping on the actions of the
honest parties, they will be detected in step (vi) of the protocol
on the basis of the arguments from the previous section.

V. COMPARING SECRET SHARING SCHEMES

There exist a number of quantum protocols for secret
sharing. The protocols for three- and four-partite secret
sharing proposed in [7] and their generalization to high-level
multipartite configurations [9] requires the preparation of a
high-fidelity GHZ state with N + 1 subsystems. With growing
N this becomes an increasingly difficult task. The experimental
requirements make these schemes unscalable. Furthermore,
another problem arises if we also consider inefficient detection.
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Let η ∈ [0,1] be the detector efficiency. Given that condition
(3) is satisfied for a particular round, it is required that all
parties succeed with their measurements otherwise the round
has to be rejected. The probability that all N + 1 detection
stations give a successful detection is ηN+1. Furthermore, note
that in GHZ state protocols d(N + 1) detectors are required. As
each detection station introduces possible registration errors,
the overall error would accumulate. However, such GHZ state
protocols can enable security against device manipulation
which is an important security feature when the experimenter
does not fully control its own measuring device.

Consider now secret sharing with QKD involving qudits,
in which the distributor uses N pairwise independent QKD
channels, each shared with one of the recipients. The protocol
of such type which is directly comparable to our scheme
involves encoding in d different MUBs. For every round
the distributor sends data xn to party n such that suitable
correlations are obtained to achieve secret sharing. However,
using d-level QKD each recipient has a probability of 1/d

to choose the correct basis. If the QKD scheme between the
distributor and Rn is repeated m times, the probability that
Rn chooses the correct basis at least once is 1 − (1 − 1

d
)
m

.
For successful secret sharing through QKD, the distributor has
to repeat the scheme independently with each party until all
of them report a correct choice of basis at least once. The
probability, psuccess, that for all n = 2, . . . ,N + 1, Rn has at

least one correct choice is psuccess = [1 − (1 − 1
d

)
m

]
N

. Solving

for the number of rounds, m, we find m = 	 ln (1−p
1/N
success)

ln (1−1/d) 
. As an
example, we can choose N = 10, and pick d large, say d = 23,
so that psuccess leads to a good estimate of the number of rounds
required to distribute exactly one number to each recipient.
We require that the probability of success is somewhat high,
say psuccess = 0.8. Then the approximate number of rounds
required is about m = 86. For distributing a secret of realistic
size in many shares and to guarantee its security, one will
typically need to distribute larger data sets. In this estimation
we have not considered the parties having inefficient detectors.
Including this possibility decreases the protocol efficiency by
an average factor of ηN . Therefore, such QKD schemes require
many more rounds and detectors than our scheme. However,
the security of QKD [20] is more robust and well studied than
that of secret sharing, which allows higher security at the price
of lower efficiency.

The security can be further increased for such QKD
schemes by performing the QKD in a device-independent (DI)
manner [22] or a semi-device-independent (SDI) manner [23],
i.e., with parties performing measurements on an entangled
state obtaining data that violate a Bell inequality (DI) or
performing measurements on a communicated quantum sys-
tem violating a dimension witness (SDI). As was the case in
ordinary QKD, such DI and SDI QKD schemes would require
pairwise application in N separate channels and therefore

require multiple repetitions. The cost of the strong security is
additional reduction of efficiency due to the low key rates, high
experimental requirements, and the reduction of the critical
quantum bit error rate. For instance, the critical error rate is
lowered from 11.0% in ordinary QKD to 7.1% in DI QKD
[24].

In our protocol, for any N , only a single qudit is required.
This enhances experimental feasibility: there is no issue
of scalability of the initial state preparation. Because the
protocol involves just one detector station, scalability is further
enhanced. Also, if we ignore the exponential advantage from
the detection efficiency itself and consider the above scenario
with (N,d,psuccess) = (10,23,0.8) we find that approximately
m = 37 rounds are required to distribute one round of data,
which is a considerable gain over the above QKD method.
In addition, from the point of view of interferometry, our
scheme is in the domain of single-particle interference. It
is well known that one can achieve very high interference
visibilities in such cases whereas multiparticle interference
effects for photons can acquire high visibilities only in the
case of two qubits. Multiphoton qudit experiments will
experience alignment problems, errors due to imperfections
in the optical components, and only partial distinguishability
of photons coming from different sources [25]. For security
purposes, it is very important to keep the quantum error
rates to a minimum. However, our scheme requires control
over the devices and the security against collective attacks
remains unknown. Finally, we do note that our scheme requires
the same number of local unitary operations as used in the
corresponding GHZ state protocol [9], and is therefore subject
to the same accumulation of noise due to imperfections in the
local unitary actions.

VI. CONCLUSIONS

Using our methods a wide class of quantum protocols using
(multiparty) entanglement can be mapped into simple ones
involving one qudit. Specifically, we present a secret sharing
protocol using only a communication of a single qudit which
is a map of a GHZ-type protocol involving entangled qudits.
While our security analysis of the protocol does not consider
possible sophisticated attacks, the scheme is secure against
standard attacks. It provides big advantages in scalability over
earlier schemes and thus makes proof-of-concept experiments
feasible.
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