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Quantum secret sharing (QSS) protocols between N players, for sharing classical secrets, either use multipartite
entangled states or use sequential manipulation of single d-level states only when d is prime (A. Tavakoli et al.,
arXiv:1501.05582). We propose a sequential scheme which is valid for any value of d . In contrast to A. Tavakoli
et al. whose efficiency (number of valid rounds) is 1

d
, the efficiency of our scheme is 1

2 for any d . This, together
with the fact that in the limit d −→ ∞ the scheme can be implemented by continuous variable optical states,
brings the scheme into the domain of present day technology.
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Introduction. Quantum key distribution (QKD) [1,2] is
among the best experimentally developed areas [3] in the
field of quantum information science. With the rapid growth
in demand for secure communication in our world, it is
imaginable that in the near future it will soon be an integrated
part of modern communication systems. At the very basis of
this development lies the fact that QKD either uses bipartite
entanglement [2] or sequential preparation and measurements
of states by two parties, both of which are within reach of
present technologies. In view of the need for more and more
collaborative activities, quantum secret sharing (QSS) is at
least at the same level of demand as QKD. QSS is the act
of splitting a message so that only by collaboration of all
the receivers, can it be retrieved. The question now is, is it
possible to put QSS between an arbitrary number of parties,
on the same level of experimental feasibility as QKD? Until a
few years ago, the answer seemed to be no, because the known
QSS schemes relied on multipartite entangled states which are
much more difficult to prepare and more fragile than bipartite
ones. Recent developments seem to point to a positive answer
to this question.

The idea of using entanglement for sharing a secret key
between three persons was first briefly pointed out in [4]
and then developed in [5], where it was shown that local
measurements of a Greenberger-Horne-Zeilinger state [6],
enable three or four parties to share a random sequence of
bits as a secret key. Generalization to many parties using
multipartite entangled two-level states were developed in [7,8],
and with separable two-level states in [9]. Generalization of
QKD and QSS schemes to d-level states, again relying on
multipartite entanglement, were studied in [10] and [11],
respectively. Finally generalization of these entanglement-
based schemes to continuous variable states [14] was reported
in many works [12,13,15–20], where in some of them, such as
[12,13], the polarization degrees of freedom of photons were
used, and in the others, coherent or Gaussian states of light
were used.

Along with all this theoretical and experimental success,
and in view of the difficulty in creating and maintaining
multiparty entangled states, a basic question has always been
whether it is possible to do QSS between n parties by using
a lesser amount of entanglement. This question received a
partial positive answer, where it was shown that multipar-
tite entanglement of qubits can be replaced by two-body

entanglement [21] or by product states [22,23], the latter
works being a combination of two or more QKD protocols
of BB84 types [1] and all of them using qubit states. A
sequential scheme with a proof of principle for its experimental
realization was then reported in [24] where its security problem
was discussed in [25,26].

It was then quite natural to ask if this sequential scheme can
be generalized for d-level states, to which a positive answer
was found for d being an odd prime in [27]. The efficiency
(the average percentage of valid rounds) of this scheme which
uses a system of d + 1 Gaussian MUB’s, is 1

d
, which becomes

negligible for large d and vanishes for continuous variables.
The aim of this Rapid Communication is to propose an
entanglement-free QSS protocol which is valid for any d,
uses the simple generalized Pauli and Hadamard gates, and
leads to familiar operations in the continuous variable limit
and, moreover, whose efficiency is 1

2 for all d. We hope that
removing the previous restrictions will bring the QSS scheme
closer to experimental realization with current technology.

In order to proceed, a quick review of the method of
[27] is in order, which is based on using mutually unbiased
bases (MUBs) in Hilbert spaces of prime dimensions. There
are N + 1 players which are denoted by R0,R1,R2, . . . ,RN .
The first player, R0, prepares a reference state and acts on
it by an operator which depends on two random integers
0 � a0, b0 � d − 1 and passes the state to the next player who
acts similarly on the state. In the end, the state which reaches
the last player, Bob, depends on two parameters, A := ∑N

i=0 ai

and B := ∑N
i=0 bi . This player always measures the received

state in a fixed basis, and only when B = 0 which happens
one out of d runs, is there a perfect correlation between his
measured result m and the random numbers ai in the form

N∑
i=0

ai = m. (1)

In other rounds no correlation exists and the round is
discarded. If the protocol is run for ≈Ld rounds and a number
of L rounds are successful, then a sequence of perfectly
correlated random strings are shared between all the players. If
we denote by Ki the long sequence of dits (ai,1,ai,2,ai,3 · · · ai,L)
for the ith player, and by K = (−m1,−m2, . . . ,−mL) the long
sequence of negative-measured values by RN , then according
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to (1) we have

K ⊕ K0 ⊕ K1 ⊕ K2 ⊕ · · · ⊕ KN = 0, (2)

where by ⊕ we mean a dit-wise sum modulo d between all the
strings.

While this is an important step, the restriction to prime
dimensions and the specific form of the operators used by
the players make it difficult to go to the limit of continuous
variables, a limit which has been most promising in actual
implementation of many protocols by optical means [14].

In this Rapid Communication we report an entanglement-
free QSS scheme between N + 1 players who use a d-level
state, where d is arbitrary. With d being arbitrary, one can now
hope that experimental implementation will be much more
feasible.

QSS scheme using a single qudit state for general d. The
key insight is to look at the protocol of [27] as a random walk
in a lattice of states, comprised of the bases of MUBs. With this
random walk picture at hand, we can alleviate the restriction
to prime numbers by devising a new lattice and new hopping
operators. We take a 4 × d lattice folded into a torus, where
d is arbitrary. Let d be any positive integer and consider the
computational orthonormal basis states for Cd , the complex
d-dimensional Hilbert space as

B = {|k〉,0 � k � d − 1}. (3)

Let ω = e2πi/d be the dth root of unity and F be the Fourier
transform operator defined as

F := 1√
d

d−1∑
i,j=0

ωij |i〉〈j |. (4)

The operator F has the following interesting properties, which
result from the identity

∑d−1
i=0 ωr = dδr,0:

F 2 =
d−1∑
k=0

| − k〉〈k|, F 4 = I. (5)

Furthermore, when acting on the state |k〉, F creates another
state |ak〉,

|ξk〉 = 1√
d

d−1∑
j=0

ωjk|k〉, (6)

which constitutes another basis B̂,

B̂ = {|ξk〉,0 � k � d − 1}, (7)

mutually unbiased basis with respect to B. Consider now the
generalized Pauli operators X := ∑d−1

k=0 |k + 1〉〈k| and Z :=∑d−1
k=0 ωk|k〉〈k|. These two operators act as shift operators on

the bases B and B̂, respectively:

X|k〉 = |k + 1〉, Z|ξk〉 = |ξk+1〉. (8)

Conversely when acting on the bases B̂ and B, the operators
X and Z act as phase operators:

X|ξk〉 = ω−k|ξk〉, Z|k〉 = ωk|k〉. (9)

We also note that

F |k〉 = |ξk〉, F |ξk〉 = | − k〉. (10)
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FIG. 1. (Color online) The action of each player causes the point
representing the state to do a random hopping in this lattice of states.
It is important to note that the Z operators in the first and the third
rows and the X operators in the second and fourth rows do nothing
(they just add overall phases). These phases can safely be ignored.

In view of these relations it is convenient to draw the four rows
of states of B and B̂ in the order shown in Fig. 1.

Running the protocol. The steps of the protocol are as
follows:

(1) R0 starts from the state |0〉 and acts on it by the operators
Xa0Zb0Fc0 (where 0 � a0, b0 � d − 1 are random integers
and c0 = 0,1). She then sends this state to the first player, R1,
who acts on the received state by Xa1Zb1Fc1 and then sends
the state to the second player, R2, who does the same thing.
The process repeats until the state reaches the last player,
RN . He also acts on the state by XaN ZbN F cN and measures
it in the computational or B basis. The final state before this
measurement is given by

|�〉 =
N∏

i=0

(Xai Zbi F ci )|0〉. (11)

(2) After measurement of RN , all the players
R0,R1,R2, . . . ,RN are asked by Alice (the one who controls
the protocol whom we call Alice; she can be any of the players)
to publicly announce their integers ci which are 0 or 1. Also
they can be asked by Alice to make this announcement in
random order. It is crucial that the integers ai and bi are kept
secret from the players and are not announced at any stage. If

N∑
i=0

ci = 0 mod 2, (12)

the round is treated as valid, since this means that the point
has landed on the correct basis B for the measurement of RN ,
otherwise it is discarded.

(3) In valid rounds, we are certain that the point representing
the state lies on the computational basis B and when RN

measures this state he obtains a definite and deterministic value
denoted by mN . In invalid rounds, due to the MUB property of
the two bases B and B̃, a completely random result is obtained
and no perfect correlation exists between the result of RN

measurements and the random bits applied by others.
But what is the exact form of the correlation? It is not as

simple as Eq. (1), but it is as perfect as it is. Looking at the
lattice in Fig. 1, it is crucial to note that in the first and third
rows, the Z operator does nothing (it just adds an overall phase
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FIG. 2. (Color online) A simple example of a random path in the
lattice of states, when only two players apply F operators. In order
not to clutter the figure, we have shown all the steps to be of unit size
(between neighboring sites). The steps can be of any size between
non-neighboring sites. The first and the last rows are the same.

to the state). The same is true for the X operator in the second
and fourth rows. This means that the effect of these operators
on these respective rows can safely be ignored. So suppose
that the operator F is applied only twice, by the players Rk

and Rl . Figure 2 shows the path of the random walk. Modulo
an overall phase, the final state is given by

|�〉=
∣∣∣∣∣
k−1∑
i=0

ai+
l−1∑
i=k

bi−
N∑
i=l

ai

〉
:= |A0,k−1 + Bk,l−1 − Al,N 〉,

(13)
where

Ar,s :=
s−1∑
i=r

ai, Br,s :=
s−1∑
i=r

bi . (14)

Or suppose that the operator F is applied four times, by the
players Rk , Rl , Rm, and Rn. Figure 3 shows the path of the
random walk and the final state is given by

|�〉 = |A0,k−1 + Bk,l−1 − Al,m−1 − Bm,n−1 + An,N 〉. (15)

The pattern is now clear. Although it is straightforward, we
do not attempt to clutter the text with writing general formulas
for the final state corresponding to a given random path. The
point to emphasize is that once the numbers ci are publicly
announced, all the parties R0 to RN know the positions of the
F operators—the vertical steps. Note that the vertical steps
are of unit size. In those valid rounds, the value measured by
RN has perfect correlation with those used by all the other
parties. Let us elaborate this by an example. Suppose there are
six players R0 to R5 and two F operators are used in round 1

FIG. 3. (Color online) A simple example of a random path in the
lattice of states, when only four players apply F operators.

and round 2, but in two different places. For example, in round
1 the F operators are in positions 2 and 5, and in round 2 the
F operators are in positions 1 and 4. Then according to (13)
if we denote the values that R5 measures in these two rounds
respectively by m and m′, we will have

a0 + a1 + b2 + b3 + b4 − a5 = m5,
(16)

a′
0 + b′

1 + b′
2 + b′

3 − a′
4 − a′

5 = m′
5.

Since the positions of the F operators (the vertical steps)
are known by the public announcement of all the ci’s, they
know how to arrange their keys K0,K1, . . . ,K5 from the
above d-level integers. For example, the first numbers of
these keys are K0 = (a0,a

′
0, . . .), K1 = (a1,b

′
1, . . .), K2 =

(b2,b
′
2, . . .), K3 = (b3,b

′
3, . . .), K4 = (b4,−a′

4, . . .), K5 =
(−a5,−a′

5, . . .), and M5 = (−m5,−m′
5, . . .). Then we have

K0 ⊕ K1 ⊕ K2 ⊕ K3 ⊕ K4 ⊕ K5 ⊕ M5 = 0. (17)

In this way a secret key is created between all the parties which
can be used for sharing messages via public classical channels.

Using the shared key. Let us denote the random string KN +
MN of the last player byKN . Therefore the shared random key
which has been established satisfies K0 + K1 + · · · + KN−1 +
KN = 0.

Like any other QSS scheme, any player Ri can play the role
of Alice who wants to send a secret message to another player
Rj (playing the role of Bob) who will retrieve the message by
the collaboration of other parties. Alice can send a message
M in the form M ⊕ Ki to Bob. Ali,e who now controls the
protocol (like any other QSS scheme), asks the other parties to
send their random keys to Bob who retrieves the message by
performing the relation (M ⊕ Ki) ⊕ ∑

j 
=i Kj , which in view
of the previous relation gives the message M.

Security against attacks. We can now consider how the
protocol is secure against attacks. A round of the protocol
corresponds to a random path on the lattice of states as
shown in Fig. 3. If any of the players wants to measure his
received qudit and keeps a copy of it, he should know the
basis, but this is not possible for him, because the integers
ci or equivalently the F moves, are announced only after all
measurements are done. Since the two bases B and B̂ are
MUBs with respect to each other, blind measurement in a
basis causes an error rate of d−1

d
in the final measured qudit by

Bob. This type of intervention or cheating is easily detectable
by publicly comparing a subsequence of the shared key. These
considerations also apply if a group of players enter a plot to
intercept the key, since they can be collectively considered as
a single party to which the basis used by the previous parties
is not known.

Another conceivable attack is that a group of players, each
entangle their respective received qudits from previous players
to some ancilla and store part of the information in these
ancillas. They can then collaborate with each other and share
this collected information to retrieve the key. A standard way
for entangling a received state |ψ〉 to an ancilla is to start
the ancilla in the state |+〉 := 1√

d

∑d−1
i=0 |i〉 and act on the

joint state |+〉 ⊗ |ψ〉 by a generalized controlled-NOT (CNOT)
operator, CNOT|i,j 〉 := |i,i + j 〉. If the received state is a
computational state |q〉, then this action results in CNOT|+〉 ⊗
|q〉 = 1√

d

∑d−1
i=0 |i〉 ⊗ |i + q〉, which is a maximally entangled
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state. In this way the ancilla will be in a completely mixed
state and stores no information of the qudit q. However, if the
received qudit is of the form |ξq〉, that is, a Fourier basis state,
then the ancilla can indeed store some information of q. In this
case we find that CNOT|+〉 ⊗ |ξq〉 = |ξ−q〉 ⊗ |ξq〉. In this way,
information about q is stored in the ancilla without leaving any
trace in the state |ξq〉 which is being communicated between the
players. Each player can then measure his ancilla in the Fourier
basis B̂ and retrieve q. However, since a received state can be
in one of the states |q〉 or |ξq〉 with equal probability, each
player has a 50% chance of successfully storing information
in his ancilla, leaving no trace in the transmitted state |ξq〉,
and 50% chance of completely decohering the state |q〉. In this
second case he commits an error rate of d−1

d
on each state.

Again by publicly announcing a subsequence of the key, the
players can discern the existence of a plot within the group.

Conclusion. We have proposed a scheme for multiparty
secret sharing which uses a single d-level state for arbitrary
d, and alleviates the need for entanglement. The basic idea

is the analogy with a random walk performed by a particle
through a lattice of states. This walk is the result of random
sequential unitary operations on a single particle by the players
one after the other. In view of the fact that the players do not
have information about each others unitary operations, the
path of the particle resembles a random walk which lands
on a particular row (a particular basis) only when certain
conditions are met. This condition is revealed only after public
announcement of some parameters of the operations after all
the measurements have been done. In the limit of d −→ ∞,
the local actions of the players will become X(s)Z(t)Fc

where s and t are continuous variables and c = 0,1. Here
X(s) = eisp̂ and Z(t) = eitx̂ with x̂ and p̂ the position
and momentum operators ([x̂,p̂] = i�) (corresponding to
the quadratures of a mode of electromagnetic field) and F

the Fourier transform between the position and momentum
bases. Quantum optical realizations of these relations then
puts this protocol quite within the reach of present day
technology.
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[15] Tomáš Tyc and Barry C. Sanders, Phys. Rev. A 65, 042310
(2002).

[16] Andrew M. Lance, Thomas Symul, Warwick P. Bowen, Tomáš
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