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Limited preparation contextuality in quantum theory and its relation to the Cirel’son bound
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The Kochen–Specker (KS) theorem lies at the heart of the foundations of quantum mechanics. It establishes
the impossibility of explaining predictions of quantum theory by any noncontextual ontological model. Spekkens
generalized the notion of KS contextuality in [Phys. Rev. A 71, 052108 (2005)] for arbitrary experimental
procedures (preparation, measurement, and transformation procedures). Interestingly, later on it was shown that
preparation contextuality powers parity-oblivious multiplexing [Phys. Rev. Lett. 102, 010401 (2009)], a two-party
information theoretic game. Thus, using resources of a given operational theory, the maximum success probability
achievable in such a game suffices as a bona fide measure of preparation contextuality for the underlying theory.
In this work we show that preparation contextuality in quantum theory is more restricted compared to a general
operational theory known as box world. Moreover, we find that this limitation of quantum theory implies the
quantitative bound on quantum nonlocality as depicted by the Cirel’son bound.
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Quantum mechanics (QM) departs fundamentally from the
well-known local-realistic world view of classical physics.
This stark contrast of quantum theory with classical physics
was illuminated by Bell [1]. Since the Bell’s seminal work,
nonlocality remains at the center of quantum foundational
research [2,3]. More recently quantum nonlocality has been
also established as a key resource for device-independent
information technology [3,4]. Quantum nonlocality does not
contradict the relativistic causality principle; however, QM
is not the only possible theory that exhibits nonlocality
along with satisfying the no-signaling principle; there can be
nonquantum no-signaling correlations exhibiting nonlocality.
One extreme example of such a correlation (more nonlocal than
QM) was first constructed by Popescu and Rohrlich (PR) [5].
Whereas the PR correlation violates the Bell–Clauser–Horne–
Shimony–Holt (Bell-CHSH) [1,6] inequality by algebraic
maximum, the optimal Bell-CHSH violation in quantum
theory is restricted by the Cirel’son bound [7]. In this work,
we show that Cirel’son limit on nonlocal behavior of quantum
theory can be explained from another of its very interesting
features; namely, restricted preparation contextuality.

Nearly at the same time of Bell’s result, Kochen and
Specker proved another important no-go theorem showing that
predictions of sharp (projective) measurements in QM cannot
be reproduced by any noncontextual ontological model [8].
Unlike Bell-nonlocality, the structure of QM is implicit in the
definition of KS contextuality. However, recently the idea of
KS contextuality has been generalized by Spekkens [9] for
arbitrary operational theories rather than just quantum theory
and for arbitrary experimental procedures rather than just sharp
measurements. It was then shown that mixed preparations
(density matrices) in quantum theory exhibit preparation con-
textuality [9,10]. Interestingly, invoking another nonclassical
concept called steering [11,12] along with this new idea of
preparation contextuality one can establish nonlocality of QM
without using any Bell-type inequalities; it has been shown
that nonlocality of some hidden-variable models, underlying
QM, directly follows from the steerability of bipartite pure

entangled states and the preparation contextuality of mixed
states [10,13,14].

The traditional definition of contextuality addresses only
the contexts of projective measurements, which have been
studied in much depth [15,16]. However, the generalized
notion of contextuality developed by Spekkens define three
different types of contexts: measurement (generalized), prepa-
ration, and transformation contexts [9]. Interest in studying
contextuality in this general framework is relatively new and
growing [10,13,14,17–20]. This generalized approach has led
to designing more robust experimental tests of contextual-
ity [18–20]; these recent results are very promising given that
previous requirements for testing contextuality in experiments
has been a topic of much controversy (for more discussion,
see Ref. [20], and relevant references therein).

Our work here is build upon the notion of preparation
contextuality, which addresses the impossibility of repre-
senting two equivalent preparation procedures, of an op-
erational theory equivalently in some ontological model.
More precisely, suppose we have two equivalent oper-
ational preparations P, P ′, i.e., the outcome probabili-
ties p(k|P,T ,M) = p(k|P ′,T ,M) ∀ outcomes k, transfor-
mations T , and measurements M . Then a hidden-variable
(ontic) model, which reproduces p(k|P,T ,M) by aver-
aging over the ontic states λ is preparation noncontex-
tual if ∀ M,T : p(k|P,T ,M) = p(k|P ′,T ,M) ⇒ p(λ|P ) =
p(λ|P ′), where p(λ|P ) and p(λ|P ′) represent respective
distributions over the ontic states followed by operational
preparations P and P ′ [9].

Preparation contextuality has operational usefulness be-
cause it powers parity-oblivious multiplexing (POM), a two-
party secure computation task [17]; in this work, Spekkens
et al. derived a “noncontextuality inequality” which places
an upper bound on any operational theory that admits a
preparation noncontextual ontological model. Furthermore,
the authors showed that the success rate of the POM game
played with only classical resources is restricted by the same
inequality. Thus, Spekkens and coauthors concluded that any
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operational theory is preparation contextual if it can beat the
classical bound in a POM task.

It turns out that, in performing a POM task, certain
quantum resources can do better than any classical resource,
thus proving that QM is a preparation-contextual theory.
Interestingly, in this work we show that, for performing a
POM task, there exists an operational (toy) theory; namely, box
world [21,22], which can do better than QM. Thus, although
QM is preparation contextual, the amount of preparation
contextuality in QM is constrained compared to the box
world. Furthermore, we show that the restricted preparation
contextuality of quantum theory leads to its limited nonlocal
behavior as depicted in the Cirel’son bound. Therefore, our
result brings the qualitative connection between preparation
contextuality and nonlocality explored in Refs. [10,13,14] to
a quantitative footing.

Parity-oblivious multiplexing. Parity-oblivious multiplex-
ing is a variant of the well-studied information-processing
task called random access code (AC) [23–25]. Suppose an
n-bit string x, chosen uniformly at random from {0,1}n, is
given to Alice. An integer y, chosen uniformly at random from
{1,2, . . . ,n}, is given to Bob, whose task now task is to guess
the yth bit of Alice’s input. Let us denote Bob’s guess as βy .
In the POM game Alice and Bob collaborate to optimize the
guessing probability p(βy = yth bit of Alice). Alice can send
to Bob any information which encodes her input. However,
there is a cryptographic constraint: no information about any
parity of x can be transmitted to Bob. More specifically, letting
s ∈ Par where Par ≡ {r|r ∈ {0,1}n, ∑

i ri � 2} is the set of
n-bit strings with at least 2 bits that are 1, no information
about x · s = ⊕ixisi (termed the s parity) for any such s can
be transmitted to Bob (here ⊕ denotes sum modulo 2).

The main result of Spekkens et al. [17] can be now
stated more precisely: for an n-bit POM game played with
states (resources) from a preparation-noncontextual theory,
the average success probability is bounded as follows:

pNC

(
βy = yth bit of Alice

)
� 1

2

(
1 + 1

n

)
.

Motivated by this result, in our work, we define the maximum
success probability in a POM task in an operational theory as
a bona fide measure to quantify the strength of preparation
contextuality of the concerned theory. The approach we
adopt here is similar to defining the strength of nonlocality
of correlations as the amount of Bell-CHSH violation (or
maximum success probability in a Bell-CHSH game). In
the remainder of this paper, we focus on a 2-bit POM task.
For the 2-bit POM game we adopt two different schemes:
(1) an encoding-decoding scheme and (2) a correlation-
assisted scheme.

(1) Encoding-decoding scheme. Alice and Bob can perform
a POM task by using resources of a general operational
theory. In an operational theory, the primitives of description
are preparations and measurements (for simplicity, here we
do not consider dynamics or transformations of the sys-
tem)[21,22,26–30]. The theory simply provides an algorithm
for calculating the probability p(k|P,M) of an outcome k of
measurement M given a preparation (state) P . The collection
of all states in which the system can be prepared forms a
compact and convex subset � of a finite-dimensional vector

space V . Results of a measurement on any state ω of the
theory is described by an effect e : � → [0,1], which is a map
such that e(ω) is the probability of obtaining the outcome e.
There is a unit effect u such that u(ω) = 1 ∀ ω ∈ �. Any
measurement can now be expressed as some set of effects {ei}
such that

∑
i ei = u.

Alice, depending on the input string x ∈ {00,01,10,11} that
is given to her uniformly at random, implements a preparation
procedure Px ∈ �A in an operational theory T and sends
the encoded particle to Bob. For each integer y ∈ {1,2}, Bob
implements a binary-outcome measurement My and reports
the outcome as his output. The average probability of winning
is given by

pT (βy = yth bit of Alice)

≡ p(βy = xy)

= 1

8

2∑
y=1

∑
x∈{00,01,10,11}

p(βy = xy |Px,My). (1)

The optimal success probability in an operational theory is
p

opt
T (βy = xy) := maxPx,My

p(βy = xy), where optimization is
performed over all possible encoding and decoding procedures
allowed in the theory T . Of course the encoding and decoding
must satisfy the parity-oblivious constraint, expressed here as

p(P00|k,M) + p(P11|k,M)

= p(P01|k,M)

+p(P10|k,M) ∀ M ∈ M and ∀ k. (2)

First we show that the optimal success probability in the
box world is strictly greater than that of quantum theory, i.e.,
p

opt
box(βy = xy) > p

opt
Q (βy = xy). To prove this result we first

consider the quantum case, and then the box world.
(a) Quantum theory. Alice encodes her two bits into the

four pure qubits with Bloch vectors {(±1,0,0),(0,0,±1)}
equally distributed on the equatorial X-Z plane of the Bloch
sphere; as shown in Fig. 1. Bob performs the measurement
(σx + σz)/

√
2 if he wishes to learn the first bit, and the

measurement (σx − σz)/
√

2 if he wishes to learn the second.
He guesses the bit value 0 upon obtaining the positive outcome,
otherwise he guesses the bit value 1. In all cases, the guessed
value is correct with probability 1

2 (1 + 1√
2
), which results in

FIG. 1. (Color online) � denotes the normalized state space for
the box world. The four corners denote four deterministic states and
the central dot denotes the completely mixed state. �∗ denotes the
space of effects for the box world. {ei |i = 1, . . . ,4} are four extremal
effects of the box world. Two ideal measurements are e1 + e3 = u =
e2 + e4.
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the average success probability pQ(βy = xy) = 1
2 (1 + 1√

2
) >

2
3 = p

opt
NC(βy = xy). Since the parity 0 and parity 1 mixtures in

this protocol are represented by the same density operator, no
information about the parity can be obtained by any quantum
measurement. Interestingly, the qubit protocol just described
turns out to be quantum optimal.

Proposition 1. In a 2-bit POM game, optimum average suc-
cess probability over all quantum encoding-decoding schemes
is p

opt
Q (βy = xy) = 1

2 (1 + 1√
2
).

Proof. Alice prepares and encodes as {ij �−→ ρij :
i,j ∈ {0,1}}, where ρij are state operators acting on
Cd ; she can always find an appropriate pure state
|�12〉 ∈ Cd ⊗ Cd and projectors PA,PA′ such that 1

2ρ00 =
tr1{(PA ⊗ I )|�12〉}, 1

2ρ11 = tr1{[(I − PA) ⊗ I ]|�12〉}, 1
2ρ01 =

tr1{(PA′ ⊗ I )|�12〉}, 1
2ρ10 = tr1{[(I − PA′) ⊗ I ]|�12〉}. Alice

performs one of the following projective measurements:
(i) PA ⊗ I + (I − PA) ⊗ I = I ⊗ I , (ii) PA′ ⊗ I + (I −
PA′) ⊗ I = I ⊗ I , on part one of |�12〉 and depending on
the measurement result she sends part two to Bob (or
discards it). Measurements (i) and (ii) respectively produce
two decompositions 1

2ρ00 + 1
2ρ11 and 1

2ρ01 + 1
2ρ10 for part

two of |�12〉. Alice in this way prepares and sends ρij to
Bob, assured that the parity-oblivious condition is always
satisfied.

Bob, on receiving part two, performs a two-outcome pro-
jective measurement {PB,(I − PB)} [{PB ′ ,(I − PB ′ )}], if he is
asked to guess Alice’s first (second) bit, and answers 0 (1) when
measurement outcome is +1 (−1). Here, PA, PA′ , PB, PB ′

are projectors acting on Cd . Due to the lack of constraint
on the dimension of the Hilbert space, Neumark’s theorem
allows us to consider only projective measurements, without
loss of generality. Substituting ρij in terms of |�12〉, PA and
PA′ in the expression for average success probability for the
2-bit POM game we get pQ = 1

8 [4 + 〈�12|{A ⊗ B + A′ ⊗
B + A ⊗ B ′ − A′ ⊗ B ′}|�12〉], where A = 2PA − I , A′ =
2PA′ − I , B = 2PB − I , B ′ = 2PB ′ − I (see Ref. [31] for
details). Since all four operators (observables) {A,A′,B,B ′}
have eigenvalues {±1} ∈ [−1,1], and any operator from the
set {A,A′} commutes with any operator from the set {B,B ′},
by applying Cirel’son’s result [7] it follows that 〈�12|{A ⊗
B + A′ ⊗ B + A ⊗ B ′ − A′ ⊗ B ′}|�12〉 � 2

√
2. This gives,

pQ � 1
2 [1 + 1√

2
]. We have already discussed that there

exists a quantum protocol to achieve this upper
bound. �

(b) Box world. Interestingly, one can exceed the optimal
quantum bound in the box world. This system can be
understood as a black box taking a binary input x = 0,1
and returning a binary output a = 0,1 [22]. The state of the
system is described by a conditional probability distribution
P (a|x). The normalized state space � of the system can
be represented as a square in R2 (see Fig. 1). The system
thus features four pure states {ωj |j = 1, . . . ,4}. For each
pure state, the outcome “a” is a deterministic function of
the input “x” (ω1 → a = 0, ω2 → a = x, ω3 → a = 1, and
ω4 → a = x ⊕ 1). The center of � is the maximally mixed
state; that is, where a is independent of x and random. This
maximally mixed state has a nonunique decomposition in term
of pure states, i.e., 1

2ω1 + 1
2ω3 = 1

2ω2 + 1
2ω4 = 1. The space

of effects, �∗, is the dual of � (see Fig. 1). It features four
extremal effects {ej |j = 1, . . . ,4} which correspond to the
four measurement outcomes, i.e., obtaining output a for a
given input x. The probability of ej on any state is easily
determined. For instance, effect e1 has a probability one for
states ω1, ω2 and probability zero for states ω3, ω4. There are
two pure measurements for this system: the first is composed of
effects e1 and e3 and corresponds to input x = 0; the second is
composed of effects e2 and e4 and corresponds to input x = 1.
Note that e1 + e3 = e2 + e4 = u, where u is the unit effect.
This system is also known as a generalized bit (g-bit) [21].

For performing the 2-bit POM with better-than-quantum
success, Alice and Bob pursue the following strategy in the
box world: Alice encodes her strings as

00 → ω1, 11 → ω3,
(3)

01 → ω2, 10 → ω4,

and sends the encoded g-bit to Bob. The parity-oblivious
condition is satisfied because 1

2ω1 + 1
2ω3 = 1

2ω2 + 1
2ω4 = 1.

To decode Alice’s message, Bob performs (i) measurement
{e1,e3|e1 + e3 = u} if he wishes to learn the first bit and
(ii) measurement {e2,e4|e2 + e4 = u} if he wishes to learn
the second bit and he guesses Alice’s bit as the measurement
result. In every case, the guessed value is correct with certainty
resulting from pbox(βy = xy) = 1 > 1

2 (1 + 1√
2
) = p

opt
Q (βy =

xy). Clearly p
opt
box(βy = xy) = 1 as the said strategy achieves

100% success probability.
(2) Correlation-assisted scheme. Let Alice and Bob now

follow a different scheme in which, instead of sending encoded
states, they use correlations of preshared bipartite states
allowed in an operational theory. In an operational theory a
general bipartite correlation can be thought as a probability dis-
tribution p(C,D|U ,V) ≡ {p(c,d|u,v)}, where u ∈ U , v ∈ V
are inputs given to Alice and Bob, respectively, and c ∈ C,d ∈
D denote their respective outcomes. No-signaling correlations
satisfy the conditions p(c|u) = ∑

d∈D p(c,d|u,v) ∀ c,u,v and
vice versa. If local outcomes depend only on the choice
of local measurements and (possibly) on the value of some
shared (hidden) variable λ ∈ 	 which takes values according
to some distribution p(	) = {p(λ)} then the correlation is
called local, i.e., pL(c,d|u,v) = ∑

λ∈	 p(λ)p(c|u,λ)p(d|v,λ)
for all c, d, u, v. Correlations which cannot be expressed
in such form are called nonlocal [1]. Entangled quantum
particles [32] exhibit nonlocal properties whereas they satisfy
the no-signaling conditions.

By using bipartite correlations Alice and Bob can perform
the POM task in the following manner: Alice, prior to
starting the POM game, shares with Bob a correlated pair
of particles prepared in the state (preparation) PAB ∈ �AB .
Depending on the input string given to her, Alice performs a
measurement on her particle of the correlated pair and sends
the measurement result to Bob via classical communications
(CCs). Bob, receiving the CC from Alice, performs operations
on his particle and tries to guess Alice’s bit. However, the CC
should not contain any information about the parity of Alice’s
input string. It turns out that local correlations are not useful
for performing the POM task.
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Proposition 2. Correlations having a local description when
assisted with classical communications are not useful for
performing the parity-oblivious multiplexing task.

Proof. Any local correlation between Alice and Bob can be
thought of as a shared random variable λ ∈ 	 taking values
according to a probability distribution p(	). Reference [17]
shows that the only classical encodings of x that reveal no in-
formation about any parity (while encoding some information
about x) are those that encode only a single bit xi for some
i. For simplicity, without loss of generality, consider that the
shared variable takes discrete values λi with

∑n
i=1 p(λi) = 1.

If the variable takes the value λk then Alice encodes her kth bit
and sends it to Bob. Bob, if asked, can correctly reveals this
kth bit while for him other bits (i �= k) are completely random.
Thus, by using local correlation (shared randomness), Alice
and Bob can design a strategy for determining only one bit
with certainty. But, whichever bit Bob guesses correctly, the
(average) success probability of Bob’s guess is bounded by the
noncontextual bound 1

2 (1 + 1
n

). Therefore, due to convexity
of the distribution p(	), it follows that any local correlation
cannot beat the noncontextual bound. �

Remark. Here it is important to note that, in a POM game,
to obtain greater success than the classical bound, the theory
need not contain nonlocal correlations. For example, consider
a theory in which individual state space is identical as for
quantum state space but the composite state space is severely
more restricted than quantum state space. The state space of
the composite system is a minimal tensor product [27] of
individual Hilbert spaces and hence contains only separable
states and hence no nonlocal correlation. In such a theory one
can obtain the success probability of the POM game as much as
quantum theory by following the optimal encoding-decoding
scheme of quantum theory. What Proposition 2 proves is that,
if one wants to play the POM game by using the correlation of
such a local theory, she or he will not get any advantage.

Proposition 3. Any no-signaling correlation {p(ab|xy) :
a,b,x,y ∈ {0,1}} violating the Bell-CHSH inequality can
exceed the classical bound for performing the 2-bit parity-
oblivious multiplexing task. Moreover, if, by using a cor-
relation, the average success in 2-bit POM game exceeds
the quantum limit, then nonlocality of such correlation must
exceed the Cirel’son bound.

Outline of proof. A proof follows from (i) using the
protocol for 2-bit random access code scenario discussed
by Pawlowaski et al. [33] in the context of information
causality, and (ii) showing that this protocol respects the
parity-obliviousness condition. Then this implies that any
nonlocal correlation can achieve more than the classical limit
for a 2-bit POM task. Moreover, the quantum limit for a
2-bit POM game nonlocality of correlation is restricted by the
Cirel’son bound. We give a complete proof of the proposition
in the supplementary material [34]. �

In the quantum world, by using correlations of entangled
particles, Alice and Bob can win the POM game with
more-than-classical (noncontextual) success probability. By
using the steerability [11,12] of the entangled state and
classical communication, Alice tries to prepare Bob’s state in
different preparations depending on the input string given to
her. For achieving the best result, Alice attempts to prepare

Bob’s particle into states which achieve optimal success
probability in the encoding-decoding scheme. By sharing
the two-qubit maximally entangled state, Alice can prepare
the optimal states by echoing an identical procedure as in
the remote-state-preparation protocol [35] (see Ref. [36] for
the protocol).

However, the presence of steering alone in a theory
is not sufficient for achieving more than classical success
probability—the theory must also be preparation contextual.
For instance, there exists hypothetical toy bit theory [37] which
allows steering, but the success probability of POM in this
theory is restricted to the classical bound because the theory
is preparation noncontextual (see Ref. [38]). On the other
hand, although steerability in quantum theory is maximal, the
optimal success probability of the POM task is restricted due
to its limited preparation contextuality.

To conclude, in this work we considered an operational way
to quantify the preparation contextuality of a general theory.
We show that quantum theory turns out to be less preparation
contextual than another operational theory; namely, the box
world. Furthermore, we show that, in the quantum world,
the restricted Bell-CHSH violation follows from the limited
preparation contextuality of the theory. Many researchers
have tried to explain the limits of the nonlocal feature in
QM starting from a number of physically motivated ideas or
principles. In particular, by considering various approaches, it
has been successfully explained why the Bell-CHSH quantity
in quantum theory is restricted to the Cirel’son bound [33].
Having established a link between the concept of nonlocality
and preparation contextuality it would be interesting to suggest
physical principal(s) leading to quantum bound on preparation
contextuality.

Recently, the authors of Ref. [39] have shown that even-
parity-oblivious encodings are equivalent to the INDEX game,
which implies the 2 → 1 POM game is equivalent to the
well-known Bell-CHSH nonlocal game. Therefore, a quantum
encoding of 2 → 1 POM with average success probability pQ

exists only if a quantum strategy for playing the Bell-CHSH
game with the same average success probability exists. We
take a different approach: by maximizing over all possible
encoding-decoding schemes allowed in QM, we find the
optimal success probability of the 2-bit POM game: it turns
out to be restricted compared to a more general operational
theory. We conclude that restricted preparation contextuality,
therefore, bounds the winning probability of Bell-CHSH game
(nonlocality) in quantum theory.
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