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Measure of nonlocality which is maximal for maximally entangled qutrits
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There is no doubt about the fact that entanglement and nonlocality are distinct resources. It is acknowledged
that a clear illustration of this point is the difference between maximally entangled states and states that maximally
violate a Bell inequality. We give strong evidence that this anomaly may be an artifact of the measures that have
been used to quantify nonlocality. By reasoning that the numeric value of a Bell function is akin to a witness
rather than a quantifier, we define a measure of nonlocality and show that, for pairs of qutrits and of four-level
systems, maximal entanglement does correspond to maximal nonlocality in the same scenario that gave rise to
the discrepancy.
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Entanglement [1,2] is behind some of the most perplexing
physical effects ever observed. In spite of this, it alone may
be regarded as a purely mathematical concept: the failure of a
vector in a Hilbert space H to be factorized as a single product
of vectors in spaces Hi that together form H (=⊗

i Hi) [3].
For mixed states there is a corresponding definition in terms
of convex sums of explicitly separable density operators [4].
Nonlocality [5–7], in contrast, also refers to the experimental
scheme that is used to investigate the entangled state and
thus to angles of Stern-Gerlach apparatuses or to the spatial
disposition of beam splitters, for instance. That is to say,
entanglement happens in Hilbert spaces while nonlocality
manifests itself in our ordinary (3 + 1)-dimensional [(3 + 1)D]
space (see, however, Ref. [8]). Therefore, from a physical
perspective, to carefully quantify nonlocality is as important
as it is to seek entanglement measures. A faulty estimation of
the extent of nonlocality embodied by a physical situation may
lead to deceptive conclusions.

In an essay in honor of Shimony, Gisin provides a list of
questions on Bell inequalities [9]. The one closely related to
our goal in this Rapid Communication is “why are almost all
known Bell inequalities for more than 2 outcomes maximally
violated by states that are not maximally entangled?” (for
exceptions, see Refs. [10,11]). This fact, which was originally
reported in Ref. [12] and referred to as an anomaly [13] of
nonlocality, has received a great deal of attention [10,14–18].
To investigate this issue, we begin by addressing the tacit
association often made between states that maximally violate
a Bell inequality and maximally nonlocal states.

Given a Bell function I , let us generically denote the
associated inequality by

I � ξ, (1)

with ξ representing the bound imposed by local causality
(we use this terminology instead of “local realism” [19]).
Then, if a state satisfies (1) for all possible settings of
the measurement apparatus, it is local with respect to the
inequality. Otherwise, the state is said to be nonlocal. Recall
that the Werner matrices [4], which are local with respect
to the Clauser-Horne-Shimony-Holt (CHSH) inequality, are
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nonlocal if more complex measurements are considered for
dimension five or higher [20]. A complete definition of locality
must be exhaustive: A state is said to be local, with no further
qualifiers, if it satisfies all relevant Bell inequalities.

So, the notion of Bell nonlocality is quite neat. The sensitive
question is about ordering. What should one imply by asserting
that state ρ is more nonlocal than state σ? A common answer
is that ρ is more nonlocal than σ if Imax(ρ) is larger than
Imax(σ ). The maxima is determined by scanning all possible
settings. Although it is known that for any Bell function
one can find another, equivalent function that arbitrarily
increases the numerical value of the maximal violation [6],
it is acknowledged that carefully normalized Bell inequalities
may provide objective figures to quantify nonlocality. In what
follows we reason against this view.

Insightful alternatives have been put forward in the last two
decades. The tolerance of nonclassical correlations against
noise has been considered as an operational measure of
nonlocality [21,22], but this approach is not consensual [12]. In
Ref. [23], it is shown that optimal Bell tests occur for states that
are neither maximally entangled nor maximally violating. The
(statistically) optimal state found by the authors is the most
suitable to unveil nonlocality, given that the experimentalist
can only perform a finite number N of realizations, as is
always the case. However, at least in principle, one should
be allowed to think of the limit N → ∞, as we do with
many other concepts in quantum theory. In this limit all
nonlocal states can be safely devised. In a different framework,
the communication cost for a local model to reproduce the
quantum correlations has also been used as a task-based
quantifier of nonlocality [24–26]. However, different tasks
usually induce different state orderings [6].

One can also ask what is the minimal detector efficiency
required to evidence nonlocality for a given state. The
interesting fact is that the efficiency required for the maximally
entangled state of two qubits is larger than that of some
partially entangled states [27,28] for the CHSH inequality [29].
This might be considered to be an independent instance of
the nonlocality anomaly. About this point, let us appeal to
an analogy with entanglement. There is little doubt that the
Greenberger-Horne-Zeilinger (GHZ) state is the maximally
entangled state of three qubits, in particular, that it is more
entangled than the W state. However, in measuring the three
particles on |GHZ〉, if the three detectors have an efficiency of
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p < 1, then the probability to witness the entangled character
of |GHZ〉 is only p3, since, whenever a single detector fails,
one only sees a maximally mixed, nonentangled ensemble
for the remaining particles. In contrast, the probability to
perceive entanglement in |W 〉, with the same detectors, is
p3 + 3(1 − p)p2 × 2/3, since, by losing any of the particles,
we still have a noisy Einstein-Podolsky-Rosen (EPR) pair
(with a fidelity of 2/3). Back to our problem, by the same
token, although (|00〉 + |11〉)/√2 is the most nonlocal, another
state, only partially entangled, may present a nonlocality that
is more resilient against detection inefficiency. The fact that a
state is maximally nonlocal does not necessarily mean that its
nonlocality is either the easiest to detect or the most resistant
against imperfections.

Recently, two measures have been experimentally imple-
mented in Ref. [30]: The first one is based on how far the state
is from the local polytope, and the second is also related to the
amount of communication needed to establish correlations.
In Ref. [31] a nonlocality quantifier has been defined, such
that in certain scenarios it is inversely related to concurrence.
Some other proposals to quantify nonlocality can be found
in the literature, focusing on multipartite systems [32,33] and
presenting nonlocality as a concept derivable from a notion of
“irreality” [34].

Common to these previous works is the fact that the
different figures of merit associated (or identified) with
nonlocality attain their maxima for non-maximally-entangled
states. This does not violate any logical necessity, but one
should not refrain from a critical assessment of this, arguably,
counterintuitive finding. In this work we define a measure of
nonlocality which indicates that the anomaly that appears to
exist for two entangled three- and four-level systems may well
be an artifact of the previous definitions. Our suggestion seems
to have deep, though simply definable, physical and statistical
meanings.

A tenable reasoning about the quantification of nonlocality
is that some clue might come from nonlocal hidden variable
(NLHV) models capable of reproducing the quantum correla-
tions. For example, one could say that a state is more nonlocal
than another if the underlying NLHV model violates local
causality in different degrees for these different states. This,
however, cannot be inferred from these models in any obvious
way. The distance between subsystems does not enter in the
Bell functions, after all. As a first illustration we refer to the
model developed by Bell in his seminal paper [35]. It is simply
assumed that “the results of measurements with one magnet
now depend on the setting of the distant magnet [...].” The
mutual influence between the subsystems is instantaneous, no
matter the numerical value assumed by the Bell function. In
a more general picture, consider the archetypal NLHV theory,
Bohmian mechanics [36]. The so-called quantum potential
does not react faster or slower, for different states, under a
measurement on one of the subsystems. In particular, this holds
for two entangled rotors of spin-1/2 [37]. The fact that, for a
given Bell inequality, some of these instantaneous interactions
are related to nonviolating states must be understood in the
light of the generalized Gisin’s theorem: All bipartite N × N

entangled states violate some Bell inequality [38,39]. The
action at a distance appears to be equal for all nonlocal states
within these NLHV models.

Even for theories relying on finite (superluminal) signaling
speed, the relation Imax(ρ) > Imax(σ ) > ξ does not necessarily
imply that vρ > vσ > c, where v is the signal velocity for each
state and c is the speed of light. This reasoning suggests that all
violating states for a particular setting are equally nonlocal,
and that the essential information provided by a Bell inequality
is of a seemingly Boolean nature, a state being either local or
nonlocal with respect to those settings, without gradations.

This apparently all-or-nothing picture, however, does not
lead to a dead end. On the contrary, it points to a conceptually
simple solution.

Given a state and a specific Bell inequality, the most
exhaustive experiment one can go through is to investigate
local causality for all settings. For simplicity of presentation we
refer to inequalities associated to nondegenerate von Neumann
measurements [40]. Based on our previous discussion, we are
led to state that ρ is more nonlocal than σ if the former violates
the inequality, by any extent, for a larger amount of setting
parameters than the latter. This statement can be cast in very
simple statistical terms: ρ is more nonlocal than σ if, for an
unbiased random choice of settings, the probability to obtain
a violation is larger for ρ.

To formalize this idea, we define the spaceX = {x1, . . . ,xn}
of all possible parameters that determine the settings for a
given (preferably tight) Bell inequality. For a particular state ρ,
let �ρ ⊂ X be the set of points that lead to violation and
V (ρ) be proportional to the volume of �ρ . We say that if
V (ρ) > V (σ ), then ρ is more nonlocal than σ , with

V (ρ) ≡ 1

N

∫
�ρ

dnx, (2)

where N is a normalization constant. The measure of in-
tegration is such that every setting (set of parameters) has
equal weight. For instance, one setting corresponding to a
direction in space demands two parameters, one polar (ϕ) and
one azimutal (θ ) angle, leading to d2x = d� = sin θdθdϕ. If,
on the other hand, the settings are defined by the plane angles
of n polarizers, e.g., then we simply have dnx = dϕ1 · · · dϕn.
We call V the volume of violation. Hereafter we focus on
the important case where the settings are such that X is a
bounded set. We remark that the numeric calculations needed
to determine the volume of violation are the paradigmatic
problem for which Monte Carlo methods are intended [41].
The above definition has no relation to the volume of the set of
separable states defined in Ref. [42]; the volume of violation
is an integration over the experimental parameters that can be
varied within the context of a given Bell inequality.

A more fundamental definition should not invoke a particu-
lar Bell inequality, but rather the set of conditional probabilities
P (ab|xy) (also called behaviors), where a and b are outputs
and x and y are inputs (see Ref. [43]). This amounts to an
integration similar to (2), but over the exterior, no signaling
part of the local polytope, which, however, is an exponentially
hard computational problem. In addition, here we intend to
address the very same situation that gave rise to the anomaly.
In Ref. [43], some criteria are given that reasonable measures
should fulfill in terms of operations in the space of behaviors. In
this more general picture, one interesting question is whether
V satisfies those criteria.
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FIG. 1. (Color online) In (a), we show the entropy of entangle-
ment (circles), Imax (triangles), and V (squares) vs α for the pure state
|ψα〉. In (b), noise is considered and the plots correspond to V (α)
compared to the concurrence C(α) for different values of the noise
fraction F .

As an initial test, we consider the CHSH inequality [29] for
two entangled qubits in pure and mixed states. In this case the
Bell function depends on four unit vectors, ICHSH(â,b̂,ĉ,d̂) =
|E(â,b̂) − E(â,d̂)| + E(ĉ,d̂) + E(ĉ,b̂), with E being a cor-
relation function defined for a pair of directions. We can
write it more explicitly in terms of eight angular parame-
ters, ICHSH = I (θa,ϕa,θb,ϕb,θc,ϕc,θd,ϕd,), X corresponding
to the Cartesian product of four unit spheres, yielding dnx =
d�ad�bd�cd�d , with d�i = sin θidθidϕi . We found that
the maximally entangled state maximizes both I and V . In
Fig. 1(a) we show these quantities, along with the entropy of
entanglement for the family of pure states,

|ψα〉 = α|00〉 +
√

1 − α2|11〉, (3)

as functions of α. The volume V is rather sensitive to variations
of α, presenting the steepest descent from its maximum at
α = 1/

√
2. In Fig. 1(b) we plot the concurrence C(α) [44,45]

and V (α) ≡ V (ρα) of the noisy state ρα = (1 − F )|ψα〉〈ψα| +
F I/4, where I is the 4 × 4 identity operator and F is the
noise fraction. The volume of violation is more fragile against
noise than entanglement. Around a noise fraction of F ≈ 0.3,
nonlocality, as rendered by V , completely disappears. We also
applied our measure to the first Bell [35] inequality (CHSH
with ĉ = d̂) and, importantly, to the inequality 3322 [46]
(inequivalent to CHSH), with similar results. So far, the
volume of violation gives no sensible new information in
comparison to the maximum of the Bell functions, yet it
is consistent with our expectations on what should be a
nonlocality measure in the safe terrain of two entangled qubits.
This agreement between V and Imax ceases to happen when
two higher-dimensional systems are considered, even in the
pure case.

Now we consider two entangled qutrits, i.e., a com-
posite system with Hilbert space H = H1 ⊗ H2,dimH1 =
dimH2 = 3. Let {|0〉i ,|1〉i ,|2〉i} be an orthonormal basis in
Hi (i = 1,2) and consider the three-outcome observables Aa

for system 1, and Bb for system 2 (a,b = 1,2). It has been
shown in Ref. [47] that local hidden variable models must
satisfy the tight inequality

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+P (B2 = A1) − P (A1 = B1 − 1) − P (B1 = A2)

−P (B2 = A1 − 1) � 2, (4)

where the arguments of the probabilities above are taken mod-
ulo 3, e.g., P (B1 = A2 + 1) = P (B1 = 0,A2 = 1) + P (B1 =
1,A2 = 2) + P (B1 = 2,A2 = 0). As in Ref. [12], let us focus
on the family of pure states

|�γ 〉 = 1√
2 + γ 2

(|00〉 + γ |11〉 + |22〉). (5)

The maximal entropy of entanglement is, naturally, given by
γ = 1, while it was shown that (4) is maximally violated by
the state with γ ≡ γ̃ ≈ 0.792 [12]. Entanglement and Bell
nonlocality are, indeed, physically distinct, but the fact is
that the former constitutes the sole source of the latter (we
exclusively refer to Bell nonlocality [48]). Thus, it is not
unreasonable to expect that the maxima should coincide.

Let us apply measure (2) to this problem. Note carefully
that general Stern-Gerlach-type measurements on a pair of
spin-1 particles only demand eight parameters. However,
these measurements do not reveal the whole richness of the
Hilbert space [21]. For this reason, in order to calculate
V (γ ) ≡ V (|�γ 〉〈�γ |), one must perform an integration in
a 12-dimensional space, as we will see. General unitary
operations are achievable in the laboratory via multiport beam
splitters [49–51]. In this optical context the whole space of
parameters can be visited by varying the reflectivity of beam
splitters and the angle of phase shifters, for instance. From the
family of states (5), with these linear optical elements, we can
get

|� ′〉 = 1

3

2∑
j,k,l=0

αje
i[φa (j )+ϕb(j )]ei 2π

3 j (k+l)|kl〉, (6)

with a,b = 1,2, α0 = α2 = 1, and α1 = γ . The optimal pa-
rameters for violations of (4) by the maximally entangled state
have been determined in Refs. [47,52] and read φ1(j ) = 0,
φ2(j ) = πj/3, and ϕ1(j ) = πj/6 = −ϕ2(j ). The puzzling
situation arises when one sees that the maximal violation has
a peak at γ = γ̃ .

In Fig. 2 we compare our numeric calculations of V (γ )
to the normalized entropy of entanglement E and to the
maximum of I3. The maxima of E and V coincide exactly

FIG. 2. (Color online) Entropy of entanglement (circles), I3max

(triangles), and V (squares) as functions of γ for state (5). All
quantities are normalized such that their maximal value is 1. The
inset shows a zoom in of the region marked by the rectangle in
dashed lines.
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FIG. 3. (Color online) Sections φ1(0) − ϕ2(2) of the
12-dimensional space X . Some parameters were set away
from the optimal values. The area of violation for (a) γ = 1 is 14%
larger than that for (b) γ = 0.792.

at γ = 1, as can be seen in the inset, while I3max attains
its maximum at γ = γ̃ . This shows that the anomaly in the
nonlocality of two entangled qutrits does not exist, if one
adopts the volume of violation as the measure of nonlocality.

It is easy to understand what is going on. Although |�γ̃ 〉
presents a more pronounced maximum of I3max in comparison
to |�1〉, the nonlocality of the former is less robust, for, as we
get farther away from the optimal setting in X , I3(�γ̃ ) falls
off faster than I3(�1). This effect on the volume of violation
is clearly illustrated in Fig. 3, where two-dimensional sections
[φ1(0) − ϕ2(2)] of � are shown for |�1〉 [Fig. 3(a)] and for |�γ̃ 〉
[Fig. 3(b)]. The other parameters are set as φ2(0) = φ2(1) =
πj/6, and ϕ1(j ) = 0, the remaining angles keeping the optimal
values. In this particular example, the violation area for γ =
1 is about 14% larger than that for γ = γ̃ . The scales are
identical in both figures. Finally, to be sure that this conciliation
between the maxima of entanglement and nonlocality is not
an unlikely coincidence, we addressed the problem of two
four-dimensional Hilbert spaces. We considered the following
family of entangled states,

∣∣�λ1,λ2

〉 = 1

�
(|00〉 + λ1|11〉 + λ2|22〉 + |33〉), (7)

with � =
√

2 + λ2
1 + λ2

2 . The Collins-Gisin-Linden-Massar-
Popescu (CGLMP) inequality is maximally violated by a state
that is not maximally entangled, given by λ1 = λ2 ≈ 0.739,
yielding I4 ≈ 2.973. We surveyed the volume of violation
associated with I4 in the region (λ1 ,λ2) ∈ [0.6,1.2] ×
[0.6,1.2]. Once again, V is maximal for λ1 = λ2 = 1 among
all investigated states. In particular, the ratio of the volumes V

of the maximally entangled and maximally violating states is
around 1.24. Exhaustive numerical investigations in the whole
Hilbert spaces in the spirit of Ref. [53] would be very welcome.
However, these demand a large amount of computational
resources.

We argue that, given a state, a Bell inequality, and a
particular setting, there should be no gradations of nonlocality,
with the inequality functioning as a witness. However, by
“tracing over the settings,” attributing equal weight to all
those that violate the inequality and weight zero to those that
do not lead to violations, we showed that it is possible to
quantify Bell nonlocality in a consistent way. In particular,
within the context of our proposal, there is no discrepancy
between maximally entangled and maximally nonlocal states,
at least for entangled qutrits and also for systems composed of
two four-level subsystems.

In this Rapid Communication the normalization constantN
in Eq. (2) played no important role. We simply set it such
that 0 � V � 1, with V = 1 for the maximally nonlocal pure
state. We remark that there is a more absolute definition,
which, however, would make the presented results a little
cumbersome to analyze. This definition is N = (vol. of X ),
leading to V (ρ) = (vol. of �ρ)/(vol. of X ). In this way the
volumes of violation associated with the same state but
different inequalities can be numerically compared.

An interesting point that is presently under consideration
is the possibility to compare the nonlocality of the maximally
entangled state as the dimension of the Hilbert space varies. In
Ref. [21] it is stated that violations in the principle of locality
are stronger for two qunits than for two qubits. This conclusion
was based on resistance to noise, and thus an interesting
question is whether or not we can reach a similar conclusion
by employing the volume of violation.

Another question that has gained relevance is why quantum
mechanics presents weaker nonlocality than “probability
boxes,” such as Popescu-Rohrlich (PR) boxes [54]? In light
of our results, the statement implied in the question should
be reassessed, since it is based solely on the numerical value
associated with the violation for a particular setting. It is an
exciting perspective to check whether or not the volume of
violation of the “supersinglet” presented in Ref. [54] in fact
supports a stronger nonlocality.

To obtain the results described after Eq. (7), an integration
(split in a cluster with 20 cores) in a 16-dimensional (16D)
space took a couple of days. We thus finish with the hope
that the analytical properties of V [Eq. (2)] can be derived,
helping to reduce the computational effort needed to calculate
the volume of violation involving states in Hilbert spaces of
higher dimensions.
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