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Comment on “Role of potentials in the Aharonov-Bohm effect”
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Are the electromagnetic scalar and vector potentials dispensable? Vaidman [Phys. Rev. A 86, 040101(R)
(2012)] has suggested that local interactions of gauge-invariant quantities, e.g., magnetic torques, suffice for the
description of all quantum electromagnetic phenomena. We analyze six thought experiments that challenge this
suggestion. All of them have explanations in terms of local interactions of gauge-dependent quantities, and,
in addition, some have explanations in terms of nonlocal interactions of gauge-invariant quantities. We claim,
however, that two of our examples have no gauge-invariant formal description and that, in general, no local
description can dispense with electromagnetic potentials.
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The conventional statement of the Aharonov-Bohm [1]
(AB) effect is that, while electromagnetic scalar V (x,t) and
vector A(x,t) potentials are mere calculational aids in classical
mechanics, in quantum mechanics they are an essential part
of the formalism: A charged quantum particle can interact
with, and respond to, electromagnetic potentials, without ever
passing through an electromagnetic field. At the same time,
only gauge-invariant quantities are measurable, and quantum
mechanics is manifestly gauge invariant. It is, therefore, natural
to try to dispense with electromagnetic potentials, yet attempts
to do so, over the years, have been unsuccessful.

Recently, Vaidman [2] proposed an explanation for the AB
effect, via forces rather than via electromagnetic potentials.
For the magnetic effect, he considers a solenoid made of
two counter-rotating, oppositely charged coaxial cylinders. He
notes that even if the magnetic field of the solenoid is screened
from the electron diffracting around it, the transient magnetic
field of the passing electron, which is not screened from the
rotating cylinders, either increases or decreases the relative
rotation rate of the cylinders, according to whether the electron
passed on one side or the other of the solenoid. The overall
wave function of the electron and solenoid is a superposition
of two terms, one for each electron path (with corresponding
solenoid motion), and their relative phase—the AB phase—is
proportional to the torques induced by the transient magnetic
fields integrated over the angular displacements of the cylin-
ders. Are the potentials, then, dispensable in this case? Our
claim in this Comment is that as part of the formalism of
quantum mechanics they are not dispensable, and that as an
explanation of the dynamics they may be dispensable, but
only if locality, as well, is dispensable. Below, we present six
examples that make Vaidman’s proposal implausible.

As a prelude to our examples, let us consider replacing
the solenoid with a spatially constant magnetic field that
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persists briefly after its source has vanished. According to
an analysis based on local forces, the AB phase arises from
the local action of the electron on the source of magnetic
flux. So if an electron interferes with itself in a magnetic
field that no longer has a source, it should not acquire an
AB phase. According to quantum mechanics, the electron
will indeed acquire an AB phase. One could try to explain
the AB phase as arising from an interaction of the electron
with photons making up the magnetic field, but the photons
would have low frequencies and momenta, hence large position
uncertainties, and presumably would not yield phase effects.
Moreover, a detailed analysis within QED would require an
interaction between the electron’s fermionic field and the
gauge-dependent electromagnetic potential of the photons.

Now, our first three examples do not include any force at all
upon which to base an explanation of the AB effect. First, we
consider a topological model of the effect. Let a system of two
particles in two dimensions have the following Lagrangian:

L = 1
2m1v

2
1 + 1

2m2v
2
2 + (v1 − v2) · A(r1 − r2). (1)

To define a topological effect with no forces at all, we take A =
∇(αφ12), where α is a constant and φ12 is the angle between
r2 − r1 and the positive x axis. It is clear from our choice that
both E and B vanish (since, locally, A is a pure gauge) except
at the positions r1 and r2, where they are unphysical, since they
diverge. Yet, when one particle encircles the other, the system
acquires a phase 2πα. The fact that there is no source here
that could be subject to a local (re)action raises doubts about
an explanation via local forces such as the one in Ref. [2]. The
electromagnetic potential seems essential for describing the
dynamics.

The second example involves a charged particle, say, an
electron, restricted to the inside of a toroid or, for simplicity,
a two-dimensional annular region. (See Fig. 1.) The potential
V (x,y) (defining the walls of the annular region) is symmetric
under rotation about the z axis. Aside from V (x,y) the
electron is free, not subject to any force, and in its ground
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FIG. 1. An electron confined to an annular region. A magnetic
flux (a) may or (b) may not thread the inside region, centered on the
origin, where the electron cannot go.

state. What, indeed, is its ground state? By virtue of the
rotational symmetry, the angular momentum Lz should be
a good quantum number n�, with n an integer and n = 0 in
the ground state. Note that we have not specified whether any
magnetic flux threads the annular region. Why should we?
A flux threading the annular region, as long as the electron
never encounters it, cannot exert a force on the electron. And
since the electron is in its ground state, it should not exert
any force on the source of the flux. But here, in particular,
quantum mechanics ignores explanations based on forces. If
there is magnetic flux �B threading the annulus and it is not
a multiple of the flux quantum hc/e, then the electron has
nonzero angular velocity and its energy depends on �B . How
can we explain this effect using forces when there are no
forces?

We could answer this question as follows. We adopt the
rule that, to find the ground state of a system in the presence of
electromagnetic fields, we first set all the fields everywhere
to zero. We thus obtain the ground state of the system
in the absence of electromagnetic fields. To obtain the ground
state in the presence of the fields, we turn them on adiabatically
so that they modify the ground state. We thus obtain the ground
state in the presence of fields. For the example of the electron
in the annulus, this rule tells us that its ground state in the
absence of flux has Lz = 0, and that, when the flux changes
to some value different from 0 and different from nhc/e, the
electron’s angular velocity changes to θ̇ �= 0, as the changing
flux induces a circulating electric field in the annulus, which
in turn accelerates the electron around the origin [3].

We thus describe the ground state of this electron without
reference to potentials. However, the price of this description
is a questionable rule singling out the field-free description as
the correct starting point. What is the physical meaning of this
rule?

Our third example [4] resembles the second in its topology.
This time there is no flux; indeed, there is no electromagnetic
field at all, other than the field of an electron in a wave
function ψn(r,θ ) that is an eigenstate of Lz = −i�∂/∂θ with
eigenvalue n� for integer n. In Fig. 2(a), the quantization of
angular momentum component Lz derives from the continuity
of ψn(r,θ ) in θ , the angular displacement conjugate to Lz.
But now let us consider this electron in the reference frame of
Fig. 2(b), which rotates at a constant angular speed ω relative to
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FIG. 2. (a) The nonrotating reference frame (unprimed axes). (b)
The rotating frame: The primed axes rotate with angular velocity ω

relative to the unprimed axes.

the initial (nonrotating) reference frame of Fig. 2(a). Quantum
mechanics applies in the rotating reference frame as well, but
in the rotating reference frame, as well, the wave function
must be single valued in the angular coordinate. That is, the
transformed wave function ψ ′

n(r,θ ′) must be single valued in
θ ′. But then Lz cannot, in general, be a multiple of � in the
rotating reference frame.

We take the Hamiltonian H = (p2
x + p2

y)/2m + V (x2 +
y2). Since eiLzθ0/� generates an angular displacement of θ0,
we have U = eiLzωt/� as the unitary transformation from the
nonrotating to the rotating reference frame. The transformed
state is |ψ ′

n〉 = U |ψn〉 and the transformed Hamiltonian H ′
satisfies

i�
d

dt
|ψ ′

n〉 = H ′|ψ ′
n〉, (2)

where H ′ = UHU † + i�(dU/dt)U †. For the choice U =
eiLzωt/�, the transformed Hamiltonian is H ′ = H − Lzω; note
that UHU † = H , as is easily seen by writing x2 + y2 = r2

and

p2
x + p2

y = −�
2

r

∂

∂r

(
r

∂

∂r

)
− �

2

r2

∂2

∂θ2
. (3)

Thus

H ′ = 1

2m

(
p2

x + p2
y

) + V (x2 + y2) − Lzω

= 1

2m
[(px + mωy)2 + (py − mωx)2]

− 1

2
mω2(x2 + y2) + V (x2 + y2). (4)

We see that quantum mechanics resolves the apparent contra-
diction by inducing vector and scalar potentials in H ′. These
potentials are therefore not dispensable, yet we distinguish
between this example and the others. In this example, the
potentials are an indispensable part of the quantum formalism,
in the same way that the Hamiltonian is an indispensable
part of the quantum formalism [5] (and the potentials are an
indispensable part of the Hamiltonian). But note that locality
is not an issue in this (noninertial) example.

We began by considering an electron in a field without a
source. By contrast, our fourth and fifth examples consider
sources without fields.
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We return to Vaidman’s explanation regarding the two
counter-rotating charged cylinders, and imagine that they are
enclosed by a superconducting shield, which screens them
from the field of the passing electron. It might be argued that,
whenever the screening is successful, the AB effect disappears,
because the screening current in the superconductor acquires
an AB phase of its own that cancels the phase of the electron.
But this argument cannot be correct, as we see from the
particular instance of a solenoid containing exactly half of the
flux quantum hc/e: In this instance, the Cooper pairs making
up the screening current acquire phases that are multiples of
2π—equivalent to no phase at all—which can never cancel the
AB phase of the electron. Thus the AB effect persists in the
absence of any magnetic fields.

It is true that the electric fields of the electron and the
screening current remain. However, as our fifth example we
consider the limit of vanishing electric fields. Let us restrict
the electron to an annulus, the inner wall of which is a
superconductor that perfectly screens the electron’s electric
field via an induced current. This setup corresponds to Fig. 1(a)
if the inner wall of the annulus is the superconductor. There is
no force on the electron due to the magnetic flux �B threading
the annulus, and the electromagnetic field of the electron does
not reach the solenoid. The only force in this example is the
force between the electron and the image current it induces
in the superconductor. This force is proportional to e2, while
the flux quantum equals hc/e; hence, increasing the magnetic
flux �B by 1/e makes the AB phase e�B/�c independent of
e. Now suppose we could make the absolute value e arbitrarily
small. In this limit, all forces vanish, while the AB effect
is unaffected. It is true that this scaling of charge and flux
is unphysical, in the sense that the value of e is a given; but it is
small in reality, and there seems to be no reason not to consider
a more general physical setting in which the physical constant
e scales along with dynamical variables. Then we conclude
that even if the force between the electron and the screening
current vanished asymptotically, the AB effect would persist.

What if we can disconnect the AB phase from the AB
effect, such that (in some sense) one appears without the

other? Our final example departs from the topology of the
circle and assumes an electron moving at constant velocity in
a straight line, passing by a solenoid made of counter-rotating,
oppositely charged coaxial cylinders. According to Ref. [2],
the electron’s magnetic field induces torques on the cylinders
that, integrated with respect to the angular displacements of
the cylinders, induce a phase in the electron’s wave function.
According to quantum mechanics, the phase arises from the
vector potential of the solenoid, and implies no change in the
velocity of the electron. By contrast, an explanation via local
forces has no place for a vector potential and so the change in
the phase of the electron’s wave function implies a change in
the electron’s velocity—a change not seen in experiment. Here,
the phase changes without a corresponding physical effect.

In conclusion, we cannot interpret the AB effect as a local
effect and at the same time dispense with gauge-dependent
quantities. We have elsewhere [6] considered the AB and
related effects as interactions among gauge-invariant quantities
(i.e., quantum fields and particles), and only gauge-invariant
quantities are measurable. But then gauge-invariant quantities
must interact at a distance: An electromagnetic field here must
affect an electron there, etc. Thus the attempt to dispense with
scalar and vector potentials is incompatible with the attempt
to interpret the AB effect as a local effect. Moreover, two
of our examples above have no formal description without
potentials. Thus the electromagnetic potentials are, in general,
indispensable. In a separate work [7], we further elaborate on
the inherently nonlocal features of quantum mechanics. We
show how any topological effect comprises two components:
a continuous effect that fits Vaidman’s approach, and a sudden
effect that has no local explanation.

Y.A. and E.C. thank the Israel Science Foundation (Grant
No. 1311/14) for support, and Y.A. acknowledges support also
from the ICORE Excellence Center “Circle of Light,” and the
German-Israeli Project Cooperation (DIP). D.R. thanks the
John Templeton Foundation (Project ID 43297) and the Israel
Science Foundation (Grant No. 1190/13) for support.

[1] Y. Aharonov and D. Bohm, Significance of electromag-
netic potentials in the quantum theory, Phys. Rev. 115,
485 (1959); see also W. Ehrenberg and R. E. Siday,
The refractive index in electron optics and the principles
of dynamics, Proc. Phys. Soc., London, Sect. B 62, 8
(1949).

[2] L. Vaidman, Role of potentials in the Aharonov-Bohm effect,
Phys. Rev. A 86, 040101(R) (2012).

[3] Indeed, Vaidman (private communication) explains this ex-
ample via the history of the electron-flux system, namely,
via forces that act on the electron as it approaches the flux
from far away and eventually begins to circulate around
it.

[4] E. Cohen, L. Vaidman, and Y. Aharonov, How to measure
magnetic flux with a single position measurement?, Europhys.
Lett. 110, 50004 (2015).

[5] Even the Feynman path integral depends on the Hamiltonian; in
some cases, the correct Feynman path integral is defined only via
the Hamiltonian formalism, i.e., the Lagrangian must be defined
via the Hamiltonian. See P. Ramond, Field Theory: A Modern
Primer (Benjamin/Cummings, London, 1981), p. 79.

[6] See Y. Aharonov and D. Rohrlich, Quantum Paradoxes: Quan-
tum Theory for the Perplexed (Wiley-VCH, Weinheim, 2005),
especially Secs. 4.5, 5.5, and 6.4.

[7] Y. Aharonov, E. Cohen, and D. Rohrlich, The nonlocality of
topological quantum effects (unpublished).

026101-3

http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1088/0370-1301/62/1/303
http://dx.doi.org/10.1088/0370-1301/62/1/303
http://dx.doi.org/10.1088/0370-1301/62/1/303
http://dx.doi.org/10.1088/0370-1301/62/1/303
http://dx.doi.org/10.1103/PhysRevA.86.040101
http://dx.doi.org/10.1103/PhysRevA.86.040101
http://dx.doi.org/10.1103/PhysRevA.86.040101
http://dx.doi.org/10.1103/PhysRevA.86.040101
http://dx.doi.org/10.1209/0295-5075/110/50004
http://dx.doi.org/10.1209/0295-5075/110/50004
http://dx.doi.org/10.1209/0295-5075/110/50004
http://dx.doi.org/10.1209/0295-5075/110/50004



