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We use a microscopic model, the mirror-oscillator-field (MOF) model proposed by C. R. Galley, R. O. Behunin,
and B. L. Hu [Phys. Rev. A 87, 043832 (2013)], to describe the quantum entanglement between a mirror’s
center-of-mass (c.m.) motion and a field. In contrast with the conventional approach where the mirror-field
entanglement is understood as arising from the radiation pressure of an optical field inducing the motion of the
mirror’s c.m., the MOF model incorporates the dynamics of the internal degrees of freedom of the mirror that
couple to the optical field directly. The major advantage in this approach is that it provides a self-consistent
treatment of the three pertinent subsystems (the mirror’s c.m. motion, its internal degrees of freedom, and
the field) including their back-actions on each other, thereby giving a more accurate account of the quantum
correlations between the individual subsystems. The optical and the mechanical properties of a mirror arising
from its dynamical interaction with a quantum field are obtained without imposing any boundary conditions on
the field additionally, as is done in the conventional way. As one of the new physical features that arise from this
self-consistent treatment of the coupled optics and mechanics behavior we observe a coherent transfer of quantum
correlations from the field to the mirror via its internal degrees of freedom. We find the quantum entanglement
between the optical field and the mirror’s center-of-mass motion upon coarse-graining over the internal degree of
freedom. Further, we show that in certain parameter regimes the mirror-field entanglement is enhanced when the
field interacts resonantly with the mirror’s internal degree of freedom, a result which highlights the importance
of including the internal structure of the mirror in quantum optomechanical considerations.
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I. INTRODUCTION

Optomechanics describes the interaction of light with
mechanical systems. When an optical field interacts with
a mechanical object there is a redistribution of the photon
momentum upon reflection. At the microscopic level this
interaction results from the coupling of the electromagnetic
(EM) field with the surface charges of the mechanical object
(or the electrons in an atom). Still, the conventional approach
towards studying optomechanical interactions only considers
the effective boundary conditions for the optical field at
the position of the mirror’s center of mass (c.m.) that arise
from the microscopic picture in the steady state limit. While
the role of these internal degrees of freedom is universally
acknowledged in the case of atom-field interactions when
describing the mechanical effects of a field on an atom [1,2],
their relevance in determining the optomechanical properties
of larger systems is seldom discussed. Among the limited
examples, it has been shown in some recent works that the
internal degrees of freedom of a mirror can play a decisive
role when it comes to optomechanical cooling in a variety
of physical setups ranging from photonic crystals wherein
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the strong frequency dependence of the reflectivity coming
from the internal structure of the mirror can allow for efficient
Doppler cooling [3], to semiconductor nanomembranes where
the intrinsic band gap of the semiconductor can lead to an
innovative photothermal cooling mechanism [4–6].

Similarly, questions pertaining to the transfer of quantum
correlations, such as calculating the quantum entanglement
between the mirror and the field [7–13] or the superposition of
two mirrors [14], demand that we take into consideration the
full quantum nature of the macroscopic object including the
dynamics of its quantal internal degrees of freedom (similar to
the two-level atom) to systematically account for all the quan-
tum correlations present between the individual subsystems.
Such a treatment becomes one of a practical necessity when
studying the optomechanical entanglement for well-isolated
systems that preserve coherences for longer time scales, for
example when considering the quantum entanglement between
the motion of atoms or atomic ensembles and a field.

In a recent paper Galley, Behunin, and one of the present au-
thors [15] constructed a microphysics model called the mirror-
oscillator-field (MOF) model that takes into consideration
the microscopics of optomechanical interactions, providing a
physically more complete theory for quantum optomechanics
(QOM). The optical properties of the mirror are captured
in this model by introducing an internal degree of freedom
of the mirror, referred to as the mirror-oscillator, or mirosc
in [15]. The mirror as an optomechanical element is described
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by two separate degrees of freedom corresponding to its
center-of-mass motion (mechanics) and the surface charge that
couples with the field (optics). We henceforth refer to these two
degrees of freedom as the mechanical degree of freedom (mdf)
and the internal degree of freedom (idf). The idf and the mdf
are each depicted by a quantum oscillator, with the idf coupled
to an optical field that is modeled in [15] by a massless scalar
field. The idf is what provides the indirect interaction between
the field and the mirror’s c.m. motion, with its amplitude taking
on field values at the position of the c.m. Compared to the
traditional approach where the effect of the mirror on the field
is represented by imposing boundary conditions on the field at
the position of the mirror, a microscopic treatment captures the
mirror-field interaction in a more physically consistent way as
both the internal and mechanical degrees of freedom of the
mirror enter in determining the dynamics self-consistently. As
shown in [15], different parameters of the idf can describe
a range of optical activities, from broadband to narrowband
reflectivity. With specific parameter choices the authors in [15]
made connections to well-known optomechanical models
including those of Barton and Calogeracos [16], Law [17],
and Golestanian and Kardar [18].

The importance of having a general theoretical framework
within which one can study the optomechanics of atomic scale
systems and larger mechanical oscillators on the same footing
has also been emphasized in some previous works [19–21] that
develop a scattering theory approach towards optomechanics
including the backreaction of the optomechanical element on
the field self-consistently, an effect typically neglected for
the case of atoms. It was shown that such a self-consistent
backreaction can lead to a variety of interesting physical
effects such as modifications to the optical forces and cooling
limit [19,20], access to strong single photon–mirror optome-
chanical coupling, and collective long-ranged interactions in
an array of mirrors [21]. In a similar vein, the advantages of
the MOF model over the usual practice of imposing boundary
conditions and the role of the idf in capturing additional
physical phenomenon is further expounded in this paper. We
also use the MOF model to study the quantum entanglement
between the mechanical motion of the mirror and the field. The
conventional mechanism of mirror-field entanglement is by
means of the radiation pressure coupling due to the photons of
an optical field impinging on a mirror, transferring momentum
to its center of mass [7]. There is virtually no consideration
of how the mirror’s internal dynamics that give rise to its
optical properties affect the entanglement of its external or
mechanical degree of freedom with the field. Even though
the full description of this interaction at the microscopic level
is quite complex, to gain a qualitative understanding of the
coupled interplay of the optical and mechanical degrees of
freedom the present relatively simple MOF model can serve
the purpose aptly and economically. As we shall see in this
work, in some parameter regimes the dynamics of a mirror’s
idf play a nontrivial and even a decisive role in determining the
transfer of correlations and hence the entanglement between
the mdf and the quantum field. We expect likewise for other
related QOM effects.

In the rest of this introduction we give a summary of
the MOF model, followed by a description of the classical
mechanical and optical properties of the MOF model in Sec. II.

Section III treats the quantum dynamics of the three interlinked
subsystems—the idf, the mdf, and the field—which leads to all
the interesting physical phenomena in QOM. In particular we
show that the usual radiation pressure coupling is recovered
as an approximation of the MOF model but one can go
beyond these approximations to see new physical effects. With
the solutions of the dynamical equations for this system we
proceed in Sec. IV to derive the covariance matrix and calculate
the entanglement between the mirror’s center of mass and
the quantum field. The role played by the internal degree of
freedom of the mirror is highlighted. We conclude in Sec. V
with a discussion of the main points.

The mirror-oscillator-field (MOF) model

An optomechanical system consists of at least two com-
ponents: a mirror interacting with a quantum field—where
the “mechanics” refers to the mirror motion and “opto” refers
to the field. One can think of three levels of description for
this interaction: classical, semiclassical, and quantum (see,
e.g., [22]) in analogy to the studies of atom-field interaction. In
the simplest classical electromagnetic description, the mirror
is coupled to the field via the radiation pressure which can be
obtained from the momentum flux imparted by the EM field
that goes as the time-averaged Poynting vector of the field
divided by the speed of light. In the semiclassical picture this
force arises from the momentum transfer by the photons hitting
the mirror, equivalently understood in terms of the gradient of
energy density of the EM field on displacing the mirror. This
leads to an interaction Hamiltonian of the intensity-position
coupling form that goes as ∼N̂ x̂, where N̂ denotes the photon
number operator and x̂ the displacement of the mirror. In a
microscopic description of the radiation pressure force, one
can think of the field discontinuity at the mirror’s c.m. position
inducing surface charge currents, which in turn experience a
Lorentz force in the presence of the field that amounts to the
radiation pressure force on the mirror’s c.m. [23]. When one
wishes to probe into issues such as entanglement between a
mirror and a field, a similar detailed treatment of the mirror and
its interaction with the field is necessary, one that accounts for
the transfer of quantum correlations between the mirror motion
and the field as accurately as possible.

Consider, for example, a single atom as an optomechanical
element whose idf is represented by a two-level system. We
know that the interaction between the field and the atom’s
two-level internal degree of freedom via photon emission and
absorption is much stronger than the effective interaction of
the field with the atom’s center-of-mass degree of freedom.
The coupling between the optical field and atomic motion
arises as the c.m. motion alters the field configuration, thereby
affecting the atom’s internal level activities. Thus when dealing
with the case of atoms as an optomechanical element [24–29],
one needs to regard its internal level dynamics with careful
consideration. Similarly, it has also been shown that the atom’s
motional degree of freedom can affect the activities of its
internal degrees of freedom such as spontaneous emission or
motional decoherence as in [30,31]. For this reason, we point
out the inadequacy in the study of mirror-field entanglement
as one needs to take into consideration the idf of the mirror
that is essential in mediating the quantum correlations between
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FIG. 1. (Color online) Schematic representation of the interac-
tion of a mirror with a field via its internal degree of freedom.

the optical field and the mechanical motion. This was one of
the primary motivations in the construction of the MOF model
in [15], which is highlighted in this work.

Let us consider a point mirror interacting with a massless
scalar field in (1+1)-dimensional space-time; the mirror is
described by the two independent degrees of freedom—the
mdf that has a mass M and is suspended in a harmonic potential
of frequency � in addition to the idf described by another
harmonic oscillator of mass m and frequency �, as shown in
Fig. 1.

While the mdf does not interact with the field itself, the
idf is bilinearly coupled to the quantum field and constrained
to be at the center-of-mass position leading to an effective
interaction between the field and the mdf, what we observe as
the radiation pressure. The idf-field interaction determines all
the optical properties of the mirror as has also been studied
in [15]. We assume that the idf-field dynamics that represent
the electronic excitations for the case of an atom happen at
much faster time scales compared to those of the mechanical
motion of the atomic center of mass, such that � � �.

For a nonrelativistically moving mirror in the MOF model,
the action is given by

S =
∫

dt

{(
1

2
MŻ2− 1

2
M�

2Z2

)
+
(

1

2
mq̇2 − 1

2
m�2q2

)

+
∫

dx
ε0

2
[(∂t�

2) − c2(∂x�)2 + λq̇�δ(x − Z)]

}
, (1)

where we denote the center-of-mass position of the mdf by
Z(t), the amplitude of the idf by q(t), and the scalar field
by �(x,t). For relativistic motion which is required for the
treatment of acceleration radiation such as the Unruh effect,
one needs to use the proper time, modify the kinetic terms,
and take care of the time-slicing scheme. Then the model
will become a generalization of the Unruh-DeWitt detector
theory [32,33]. In drawing a correspondence between the
scalar field and an electromagnetic field, we observe that the
free field Lagrangian would correspond to that of an EM
field if we choose �(x,t) to represent the vector potential
A. We have chosen a form of the bilinear coupling motivated
by the electrodynamic form of interaction (∼ e

mc
pA), bearing

in mind that the mirror’s idf can potentially represent the
electronic level structure inside an atom. We note that this
is different from the form of coupling in the original MOF
model [15] (∼λq�). A similar model for describing mirror-
field interactions has also been studied recently in [34].
Noticing that the free space permittivity in (1+1) dimensions
scales as ε0 ∼ (charge)2 × (time)2 × (mass)−1 × (length)−1,

the free field Lagrangian in [15] has been rescaled here by
a factor of ε0 for dimensional consistency. The δ(x − Z)
factor in the coupling restricts the idf-field interaction to the
center-of-mass position and the position dependence of the
scalar field in turn leads to an effective force on the mdf. We
choose the coupling λ to have the dimensions of the electronic
charge e and �(x,t) to have the dimensions of A/c. This is in
agreement with the correspondence of the MOF model with
the Barton-Calogeracos (BC) model [16], where in the limit
of adiabatic idf evolution the coupling λ can be physically
identified as the surface charge density.

II. CLASSICAL OPTOMECHANICAL PROPERTIES

In this section we will illustrate how the MOF model
can describe the classical optical and mechanical properties
exhibited by a mirror, leading to the known intensity-position
radiation pressure coupling. We begin with deriving the
coupled equations of motion for the classical amplitudes of
the mdf, idf, and field ({Z̄, ˙̄Z,q̄, ˙̄q,�̄, ˙̄�} respectively) from the
action in (1) (δS = 0):

¨̄Z + �
2Z̄ = λ ˙̄q

M
∂x�̄(Z̄,t), (2)

¨̄q + �2q̄ = − λ

m
˙̄�(Z̄,t), (3)

ε0
( ¨̄�(x,t) − c2∂2

x �̄(x,t)
) = λ ˙̄qδ(x − Z̄). (4)

It can be seen that the moving idf acts as a point source
for the field and the idf is in turn driven by �̇ at the center-of-
mass position Z̄, which in the electromagnetic correspondence
represents the electric field at the c.m. position (�̇ ∼ E). Also,
with λ representing the charge density, it can be seen from (3)
that the force on the surface charge degree of freedom goes as
∼λ ˙̄�. We have assumed here that the mirror center-of-mass
velocity is in the nonrelativistic limit, such that | dZ̄

dt
| � c. For

a relativistically moving mirror, the idf would more generally
observe a Doppler shift of the field with respect to the moving
center of mass as (3) becomes

¨̄q + �2q̄ = − λ

mc
( ˙̄Z0∂t + ˙̄Z1∂x)�̄(Z̄μ), (5)

where Z̄μ = (Z̄0(τ ),Z̄1(τ )) is the worldline of the mirror
parametrized by its proper time τ , and Ȯ ≡ dO/dτ . As the
motion of the mirror center of mass leads to the motion of
the charges sitting on the surface that interact with the field,
the surface charges experience a Doppler-shifted field which
in turn changes their optical response leading to dynamically
changing boundary conditions observed by the field.

If one prefers to think in terms of applying boundary
conditions on the field, in the MOF model it would correspond
to the steady state response of the internal degree of freedom.
Thus our model captures the full dynamical interplay as
opposed to the static condition in the conventional approach.
In fact, a simple generalization of the setup here can deal
with a relativistically moving mirror as in the dynamical
Casimir effect (DCE), whereas the conventional method of
imposing a static boundary condition on the field would
fail to address dynamical situations wherein the time scales
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of the mechanical motion are comparable those of idf-field
interaction dynamics.1

For now, we restrict our attention to a nonrelativistically
moving mirror. For the case where the system dynamics is
driven by an incident field (and not by any external agent
which accelerates the mirror as is in the setup of the Unruh
effect), this is ensured from the separation of the time scales for
the internal and center-of-mass degrees of freedom (� � �).
We will demonstrate this further in Sec. II B for the case of a
single-mode field.

Knowing the coupled system dynamics, below we first look
at how the radiation pressure force arises from our model in
the nonrelativistic limit.

A. Classical radiation pressure force

As seen from (2), the mdf is driven nonlinearly by both the
idf and the field. We now eliminate the idf from the picture to
obtain the mechanical force on the center of mass.

From integrating the field equation of motion (4) around
the mirror center-of-mass position Z̄, we see that there is
a discontinuity in the field spatial derivative. This can be
understood as the discontinuity in the magnetic field across
the mirror surface in the electromagnetic correspondence
(∂x� ∼ B) coming from the surface charge current ˙̄q. In the
nonrelativistic limit we find the surface charge current as

λ ˙̄q = −ε0c
2∂x�̄|Z̄+

Z̄− . (6)

The surface charge current being induced by the discontinuous
magnetic field across the center-of-mass position can be
interpreted as the Ampere’s law in 1+1 dimensions. We
eliminate the idf from the center-of-mass dynamics, defining
the spatial derivative of the field at the center-of-mass position
as ∂x�̄(Z̄,t) ≡ [∂x�̄(Z̄+,t) + ∂x�̄(Z̄−,t)]/2. We rewrite c.m.
dynamics as

¨̄Z + �
2Z̄ = − 1

2M
ε0c

2(∂x�̄)2
∣∣Z̄+

Z̄− . (7)

We notice that the right-hand side corresponds to the well-
known radiation pressure force (∼ B2

2μ0
) seen by a mirror in the

nonrelativistic limit [17]. This is justified based on the fact
that the electric field vanishes at the mirror position in the
co-moving reference frame and the force being proportional
to the EM field energy density then goes as ∼ B2

2μ0
. To compare

with the expression in [17], we notice that for a perfect mirror
there is no field energy density on one side of the mirror
[∂x�(Z̄+,t) = 0] and we reduce to the known result. For an
imperfect mirror there is a finite energy density of the EM field
on either side of the surface; hence the net radiation pressure
force is given by the difference in the field energy density on
either side of the surface as in (7). This agrees equation (8) of
[35] in the limit of an infinitely thin dielectric membrane. In
the MOF model the radiation pressure force can be interpreted
as the Lorentz force arising from the interaction of the induced

1This is an important point long explored and resolved in cosmo-
logical particle creation which results from the same mechanism but
with the expanding universe playing the role of an external agent as
in DCE.

surface charge current (6) with the magnetic field (∂x�). Such
an interpretation of the radiation pressure force as the Lorentz
force on induced surface charge currents has been discussed
in detail in [23].

Thus we have arrived at the classical radiation pressure
force on the mirror in the nonrelativistic c.m. motion limit as
one would find from imposing fixed boundary conditions on
the field. Rather, in this case the boundary conditions resulting
from the mirror-field coupling arise self-consistently from the
dynamical interaction between the moving idf and the field,
as does the radiation pressure. We note here that while the
form of the radiation pressure force we obtain from including
the idf is identical to what we get from imposing the fixed
boundary conditions, the boundary conditions themselves
rather than being fixed are determined by the dynamics of the
idf-field interaction. This more generally includes the retarded
influence of the moving surface charges on the field in a
dynamical way. To see this more concretely, consider the idf
amplitude solution from (3),

q̄(t) = q̄h(t) +
∫ t

0
dt ′Gi(t − t ′)

[
− λ

m
˙̄�(Z̄(t ′),t ′)

]
, (8)

where we define q̄h as the homogeneous solution for the free idf
evolution and Gi(t − t ′) ≡ sin[�(t−t ′)]

�
as the Green’s function

for the idf. We use this to eliminate the idf from the field’s
equation of motion to get

ε0
(
∂2
t − c2∂2

x

)
�̄(x,t)

+ λ2

m
δ(x − Z̄(t))

∫ t

0
dt ′∂tGi(t − t ′) ˙̄�(Z̄(t ′),t ′)

= λ ˙̄qhδ(x − Z̄(t)). (9)

We see that the idf is driven by the field and influences
the field in return, as captured in the second term on
the left-hand side that represents the retarded influence
of the idf on the field, meaning that the radiation pressure
force depends on the coupled non-Markovian dynamics
of the field, center of mass, and the idf. Thus, we can identify
the term ∂tGi(t − t ′) ≡ χ (t − t ′) as the susceptibility function
for the mirror. To compare with the case where one applies
boundary conditions as opposed to including the idf dynamics
self-consistently one needs to include the coupling of the idf
with a bath so as to reach the steady state response of the
damped idf. We will further illustrate this point and the role
of the internal degree of freedom in determining the optical
properties of the mirror in the following subsection.

B. Optical properties

To study the optical properties arising from the MOF
model let us consider a single-mode field at frequency ω

and amplitude �0 driving the mirror’s idf. Assuming that the
mirror’s c.m. is at the origin in equilibrium, we make the
following plane-wave ansatz for the field:

�ω(x,t) = �

ω
�0e

−iωt {�(−x)[eikx + R(ω)e−ikx]

+�(x)T (ω)eikx} + H.c., (10)
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where we have introduced the frequency normalization factor
(�/ω) to take care of the fact that in the EM correspondence
the electric field amplitude (E ∼ ∂tA) is independent of the
frequency of the field. R(ω) and T (ω) refer to the reflection
and transmission coefficients of the point mirror, such that
T (ω) = 1 + R(ω). In considering the interaction of the idf
with only a single field mode, we include a damping (γf )
that arises from its coupling with the remaining field modes.
For current purposes, we assume that the damping is small
(γf � �) so that one can ignore the dissipation of the incident
plane wave. As in [15], we assume that in the steady state
regime the idf oscillates at the frequency of the incident field,
in which case we find

q(t) = −iωλ

m(ω2 − �2)

�

ω
�0T (ω)e−iωt + H.c. (11)

From the mirror center-of-mass dynamics (7), we can see that
in the presence of the incident drive the center of mass consists
of a time-independent and a high-frequency (2ω) radiation
pressure term, coming from the nonlinear interaction of the
incident B field and the induced surface charge current. In
the limit � � �, the high-frequency component of the mirror

amplitude denoted by Z̄2ω scales as |Z̄2ω| ∼ ε0�
2
0�

2

Mω2 , which, in
the near field–idf resonance regime (ω ≈ �), is much smaller
compared with the mirror amplitude coming from the constant

radiation pressure part Z̄0 ∼ ε0�
2
0�

2

M�2 , noting that Z̄0

Z̄2ω
∼ �2

�2 �
1. Thus we find that the mirror position evolves essentially at
its natural frequency � under the constant force.

We assume that at the classical level the center-of-mass
motion does not affect the idf-field coupling and the resulting
optical properties from the interaction. More explicitly, the
phase of the field mode that is resonant with the idf changes
by a very small amount over the length scales of one amplitude
of the mdf, that is φ ≡ (�/c)Z̄0 � 1. This restricts the field
amplitude to

|�0|2 � M�
2c

�3ε0
. (12)

This is a self-consistent validity constraint which ensures that
the optical properties of the mirror are unaffected by the
center-of-mass motion to first order, to reaffirm our plane-wave
ansatz (10). Physically speaking we assert that the mirror c.m.
motion is much smaller than the wavelengths of the field that
it interacts with. The subwavelength motion approximation
is valid for the case of trapped atoms spatially confined in a
harmonic trap (trap frequency being � in this case), interacting
with an optical field of frequency ω.

In the plane-wave ansatz, we find the surface charge current
for the idf (6) as

λ ˙̄q = −ε0c
2∂x�̄(x,t)|Z̄+

Z̄− ≈ −2ikε0c
2�0

�

ω
e−iωtR(ω) + H.c.

= −2iε0�c�0e
−iωtR(ω) + H.c. (13)

We can notice here that the induced surface charge current
is proportional to the mirror reflectivity. Thus, as expected, a
higher reflectivity leads to a larger radiation pressure force.

Now within the nonrelativistic and subwavelength c.m.
motion approximations, we consider the MOF model with
the two different forms for the coupling term—(1) q� (as

previously analyzed in [15]) and (2) q̇�—and study the optical
properties that arise from these two couplings in different
parameter regimes.

1. q� coupling

Let us first consider the q� coupling as in [15] and start
with drawing the correspondence between the interaction term
for the scalar field vis-a-vis an EM field. As motivated in
Sec. II B 1 in [15] when comparing the MOF model with the
Barton-Calogeracos (BC) model, we choose the coupling λ to
have dimensions of the charge density such that dimensionally
λ ∼ (charge) × (length)−1. Going back to the interaction term
in the original action we use this to find the dimensions of the
scalar field as � ∼ (mass) × (length)2 × (time)−2/(charge)
and rescale the free field term accordingly, we get for the
free field action

SF = ε0

2c2

∫
dt

∫
dx((∂t�)2 − c2(∂x�)2). (14)

This leads to the coupled idf-field equations of motion for a
fixed center of mass as

ε0/c
2
(
∂2
t � − c2∂2

x�
) = λqδ(x), (15)

mq̈ + m�2q = λ�(0,t). (16)

For a plane wave incident on the mirror, using the
ansatz (10) to solve for the surface charge current as in (13) in
the steady state limit we get the reflectivity for the case of q�

coupling as

R(ω) = −iλ2c

iλ2c + 2mωε0(ω2 − �2)
,

|R|2 = 1

1 + r2
pη2(1 − η2)2

, (17)

where we have defined the ratio of the field to the idf frequency
as η ≡ ω/� and rp ≡ 2m�3ε0

λ2c
≡ �/�P . We identify the quan-

tity �P ≡ λ2c
2m�2ε0

as the plasma frequency, again motivated by
the comparison with the BC model. As found in [15], the
mirror becomes perfectly reflecting for (1) infinitely strong
idf-field coupling, λ → ∞, (2) perfect resonance between the
idf and the incident field, ω = �, or (3) massless idf, m → 0.
Now observing that the reflection spectrum is completely
characterized by the two frequency ratios rp (ratio of the idf to
plasma frequency) and η (ratio of the field to idf frequency),
we consider different values for the parameter rp and look at
the reflectance as a function of the field frequency for a fixed
plasma frequency, as shown in Fig. 2.

To invoke the correspondence with the BC model [16]
we need to assume that the idf evolves adiabatically in the
limit {m → 0,� → ∞} such that the quantity m�2 ≡ κ that
physically corresponds to the mass density of the surface
charges stays finite. In this limit since rp � 1 (� → ∞), we
see a resonant behavior in the reflection spectrum around the
idf frequency �. In the regime where rp � 1, the reflection
spectrum shows a high-frequency cutoff behavior similar to
the case of bulk metals with Drude-Lorentz response. As
shown in Fig. 2, given the plasma frequency for silver (�P =
1.37 × 1016 Hz), we compare the known optical response
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FIG. 2. (Color online) Reflection properties from the two different forms of coupling (q� and q̇�). (a) Reflectance as a function the incident
field wavelength (in meters) for different idf to plasma frequency ratios (rp = �/�P ); the plasma frequency is fixed at �P = 1.37 × 1016 Hz
(for silver) from q� coupling, choosing rp ≈ 0.3 mimics the cutoff behavior for silver. (b) Reflectance and transmittance spectrum from q̇�

coupling to simulate the optical response for a photonic crystal as from the experimental results in [36]. Each resonance corresponds to a
separate effective idf with resonance frequencies � = {3.01 × 1015 Hz,2.51 × 1015 Hz,2.43 × 1015 Hz} and corresponding plasma frequencies
�P = {0.5 × 1014 Hz,0.2 × 1014 Hz,0.1 × 1014 Hz}.

with our model and find that an idf-to-plasma frequency ratio
rp ≈ 0.3 mimics the cutoff behavior reasonably well. Knowing
that the charge carrier density for silver is ns = 5.8 × 1028m−3

and using the BC correspondence to find λ = nse, we can
deduce all three idf parameter values.

2. q̇� coupling

As in the previous subsection we find the reflection
coefficient for the q̇� coupling as

R(ω) = −iλ2ω

iλ2ω + 2mε0c(ω2 − �2)
,

|R(ω)|2 = ω2/�2

ω2/�2 + ( 2mε0c�

λ2

)2
(ω2/�2 − 1)2

= η2

η2 + r2
p(η2 − 1)2

, (18)

where again we have defined the ratio of the field to idf
frequency as η ≡ ω/� and the ratio of idf to plasma frequency
as rp ≡ �/�P = �/( λ2

2mε0c
), redefining the plasma frequency

as �P = λ2

2mε0c
. We see that mirror becomes perfectly reflecting

for the same conditions as in the case of q� coupling
{λ → ∞,ω = �,m → 0}. Unlike the q� coupling, we do not
see a perfect reflection at ω = 0 which was an artifact of the
monopole coupling between the idf and the field.

The optical response exhibits a resonant behavior around
the idf frequency �, since the reflectivity is maximum for
η = 1. For this reason it is natural to consider optomechanical
elements with built-in resonances such as photonic crystals or
atoms as an application. We find that one can mimic the optical
response of a photonic crystal structure (see Fig. 2) by choosing
the resonant frequency of the idf as the resonant mode of the
photonic crystal; for multiple resonances we choose multiple
internal degrees of freedom such that �i = ωres

i at each
resonance peak. The sharpness of the resonance is determined

by the quantity ri
p, since the parameter ri

p determines the
coupling strength of the field to a particular resonance mode
of the structure. Thus one can determine the two parameters
that characterize the optical response in our model, namely
rp and �. To completely determine all the parameters of
the internal degree of freedom {m,�,λ} we need to draw
an additional physical correspondence between the internal
degree of freedom and the physical setup as we did for the
previous case of q� coupling by identifying the coupling
constant λ as the charge density. For the case of a photonic
crystals, it has also been shown that the large gradients
of reflectivity near the photonic band gaps can modify the
optomechanical damping by irreversibly converting the energy
from the thermal fluctuations of the motion to that of the optical
field or vice versa via Doppler effect [3].

As we had noticed previously, the mirror reflectivity
characterized by the idf parameters determines the strength
of the induced surface charge current (13) which in turn
factors into determining the radiation pressure coupling. In the
following section we will show that the same applies to the case
of coupling between the quantum fluctuations of the mirror
and the field. We now turn to look at the coupled quantum
dynamics of the three subsystems in the MOF model.

III. QUANTUM DYNAMICS OF THE COUPLED
MIRROR-OSCILLATOR-FIELD SYSTEM

Let us perturb the original action (1) about the classical
solutions as {Z̄ + Z̃,q̄ + q̃,�̄ + �̃}, with Õ being the de-
viations about the classical solutions Ō. Assuming that the
center-of-mass motion about Z̄ is small and restricted to the
subwavelength regimes (kZ̃ � 1) for the field modes below a
certain high-frequency cutoff, we expand the action up to third
order in the fluctuations about the classical solutions ignoring
terms that are second order or higher in kZ̃. We go up to
third order to specifically include the term that couples the
perturbations of all three subsystems (labeled as MOF below)
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to arrive at the nonlinear intensity-position (∼N̂ x̂) coupling.
In the subsequent dynamics we shall only consider bilinear
interaction terms to preserve Gaussianity of the individual
subsystems. As we will see, truncating the action up to second
order corresponds to the linearized approximation in the limit
of strong mean-field amplitude, also called a background field
expansion in field theory.

We write the perturbed action as

S3 =
∫

dt

(
1

2
M ˙̃Z2 − 1

2
M�

2Z̃2

)
︸ ︷︷ ︸

mdf (M)

+
(

1

2
m ˙̃q2 − 1

2
m�2q̃2

)
︸ ︷︷ ︸

idf (O)

+
∫

dx

⎡
⎢⎢⎣ε0

2
[(∂t �̃)2 − c2(∂x�̃)2]︸ ︷︷ ︸

Field (F)

+λδ(x − Z̄)

×
⎛
⎝ ˙̃q�̃︸︷︷︸

OF

+ ˙̄q(∂x�̃)Z̃︸ ︷︷ ︸
MF

+ ˙̃q(∂x�̄)Z̃︸ ︷︷ ︸
OM

+ ˙̃q(∂x�̃)Z̃︸ ︷︷ ︸
MOF

⎞
⎠
⎤
⎥⎥⎦.

(19)

One can observe several points from the above expression.
First, we find that there is an effective coupling between the
fluctuations of the mirror center of mass and the field via the
internal degree of freedom as denoted by the terms MF and
MOF. To the lowest order, the mirror-field coupling strength is
proportional to the classical surface current ˙̄q, implying that the
fluctuations of the field are the most sensitive to the fluctuations
of the mirror center of mass if the surface current is at its
largest. In the single field mode case this is proportional to the
reflection coefficient of the mirror as seen in (13), meaning that
a highly reflecting mirror leads to large effective MF coupling
strength. Second, there is also an effective coupling between
the idf and the mdf fluctuations denoted by the terms OM and
MOF, which to the lowest order is proportional to the spatial
derivative of the field (or the “magnetic field” B) at the center-
of-mass position. The coupling strengths of the interaction
terms between the idf and the mirror (OM), and the field and
the mirror (MF) are determined by the classical solutions of
the field and idf amplitudes as found in the previous sections.

We get the following equations of motion for the coupled
mirror and field dynamics:

¨̃Z + �
2Z̃= λ

M
[ ˙̄q∂x�̃(Z̄,t)+ ˙̃q{∂x�̄(Z̄,t)+∂x�̃(Z̄,t)}], (20)

ε0
(
∂2
t �̃−c2∂2

x �̃
)=λ ˙̃qδ(x − Z̄) − λ( ˙̄q + ˙̃q)∂x[δ(x − Z̄)]Z̃.

(21)

It can be seen here that unlike the classical equations of
motion, the field fluctuations are not only driven by the idf but
also by the fluctuations of the center-of-mass position. From
integrating (21) around the classical center of mass position
Z̄, we get the surface current fluctuation as

λ ˙̃q = −ε0c
2∂x�̃

∣∣Z̄+
Z̄−

, (22)

just as the classical version interpreted as Ampere’s law in 1+1
D in (6). Using this and the classical surface current to elimi-
nate the idf from the center-of-mass dynamics (20), we get

¨̃Z + �
2Z̃ = −ε0c

2

M

[
(∂x�̄)(∂x�̃)|Z̄+

Z̄−
+ 1

2
(∂x�̃)2|Z̄+

Z̄−

]
. (23)

We can see that the first term on the right side corresponds to
the radiation pressure coupling in the linearized approximation
which is valid for large photon numbers in the presence of
a classically driven field. The second term goes beyond this
approximation, which corresponds to the N̂ x̂ type of coupling,
required for treating situations with small photon numbers.
Considering that �̃ represents the quantum fluctuations of the
field, we can understand the radiation pressure force at the
quantum level as arising from the asymmetry in the field fluc-
tuations on either side of the mirror. Say, if there were a cavity
present on one side and free space on the other, the radiation
force from the cavity side would be stronger in comparison be-
cause of the small quantization volume leading to asymmetry
in the density of field modes as in the case of Casimir force [37].
Such an interpretation of Casimir force as a radiation pressure
force from the vacuum field has been discussed by Milonni
et al. in [38] for the case of two perfectly conducting
plates.

We now restrict ourselves to second-order perturbations in
the original action, to keep all the interaction terms bilinear
such that starting out with Gaussian initial states for the
three subsystems, Gaussianity of the individual subsystems
is preserved. We derive the conjugate momenta from the
second-order action as

p̃ = m ˙̃q + λ�̃(Z̄,t) + λ∂x�̄(Z̄,t)Z̃, (24)

P̃ = M ˙̃Z, (25)

�̃(x,t) = ε0
˙̃�(x,t). (26)

It can be seen that the fluctuations in the idf are influenced
by both the mdf and the field and hence mediate the effective
interactions between the two. Identifying the dynamical
variables {Z̃,q̃,�̃} as the quantum fluctuations of the mdf, idf,
and the field respectively about their mean-field amplitudes,
we arrive at the second-order Hamiltonian

H̃2 ≡ P̃ 2

2M
+ 1

2
M

(
�

2 + λ2

mM
[∂x�̄(Z̄,t)]2

)
Z̃2

︸ ︷︷ ︸
mdf(M)

+ p̃2

2m
+ 1

2
m�2q̃2︸ ︷︷ ︸

idf(O)

+
∫

dx

[
�̃2

2ε0
+ 1

2
ε0c

2(∂x�̃)2

]
+ λ2

2m
�̃(Z̄,t)2

︸ ︷︷ ︸
Field (F)

− λ

m
p̃�̃(Z̄,t)︸ ︷︷ ︸

OF

− λ

m
∂x�̄(Z̄,t)p̃Z̃︸ ︷︷ ︸

OM

+ λ2

m
∂x�̄(Z̄,t)�̃(Z̄,t)Z̃ − λ ˙̄q∂x�̃(Z̄,t)Z̃︸ ︷︷ ︸

MF

. (27)
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We notice that the mdf now observes a renormalized oscillation
frequency and the scalar field sees a frequency shift coming
from the term quadratic in � which is analogous to the
diamagnetic term ∼ e2

2mc2 A
2 of the minimal coupling Hamil-

tonian. The bilinear interaction terms represent the coupling
between the idf and the field (OF), mirror and the idf (OM),
and mirror and the field (MF), respectively. Physically, the
terms that are second order in λ arise from the field-field,
mirror-mirror, and field-mirror couplings mediated via the
quantum fluctuations of the idf. The terms that are first
order in λ in the couplings between the idf-mdf (OM) and
mdf-field (MF) fluctuations come from the classically driven
solutions for the field and the idf, respectively. Specifically,
we note that the MF interaction contains two terms, the first
one of which represents the effective mirror-field interaction
mediated via the quantum fluctuations of the idf, while the
second one represents that from the classical surface charge
currents. Since the conventional approach does not include
the fluctuations of this extra quantum degree of freedom, it
misses out on the fluctuation-mediated part of the effective
mirror-field coupling. As we shall see later, this term becomes
dominant in the strong-coupling regime where (�P � �).

We also note that in the absence of a classical drive, the only
interaction is between the idf and the field (OF) up to second
order. To be able to see an effective mirror-field interaction
one needs to include third-order terms in the fluctuations as
illustrated before.

In the following section we study the above Hamiltonian for
the case of a driven single field mode and find the subsequent
entanglement dynamics for the mirror c.m. and the field,
coarse-graining over the internal degrees of freedom.

IV. MIRROR-FIELD ENTANGLEMENT
IN THE MOF MODEL

Entanglement between a field and a mechanical oscil-
lator has been widely studied in cavity optomechanical

setups in several contexts [7–13], with the essential mirror-field
coupling mechanism being the radiation pressure wherein the
field exerts a force on the mirror center of mass by means
of photon-momentum transfer and observes a phase shift
proportional to the mirror displacement in turn. We now look at
the entanglement generation from a microscopic perspective
as described by the MOF model, considering only a single
mode of the scalar field in our model as in the usual cavity
optomechanical setups to deduce some key physical features
of the mirror-field entanglement that arise from the inclusion
of the idf.

We first simplify the Hamiltonian (27) for the case of a
single field mode that is being externally driven to look at
the dynamics of the coupled MOF system and then coarse-
grain the idf to find the sought after mirror-field entanglement.
Consider the scalar field in a region of length L (assuming L
approaches infinity); the field fluctuations can then be written
as the sum of all discrete modes of the cavity of length L

as �̃(x,t) =∑n

√
�

2ωnε0L
(ãne

iknx + ã
†
ne

−iknx), with ã
†
n and ãn

representing the creation and annihilation operators for the
nth field mode. We pick a single field mode at frequency ω

interacting with the point mirror at the origin (Z̄ = 0) assuming
that the center-of-mass motion is in the subwavelength regime
as before,

�̃ω(x,t) =
√

�

2ωε0L
(ãωeikx + ã†

ωe−ikx). (28)

The above expression represents the fluctuations of the
free field without any imposed boundary conditions unlike
the standard treatment where the quantum fluctuations follow
the mode functions of the classical field (see [47] for example).
In the steady state, the strength of the field fluctuations would
be determined by the boundary conditions as they emerge from
the idf-field interaction self-consistently.

For a single field mode, we rewrite the free Hamiltonian
part in (27) as

H̃free ≡ P̃ 2

2M
+ 1

2
M�

′2Z̃2︸ ︷︷ ︸
H̃M

+ ��

(
b̃†b̃ + 1

2

)
︸ ︷︷ ︸

H̃O

+ �

(
ω + λ2

2mωε0L

)(
ã†

ωãω + 1

2

)
+ λ2

4mωε0L

[
(ãω)2 + (ã†

ω)2
]

︸ ︷︷ ︸
H̃F

, (29)

where we have redefined the dynamical variables associated
with the idf in terms of the creation annihilation operators

{b̃†,b̃} as q̃ =
√

�

2m�
(b̃ + b̃†) and p̃ = −i

√
�m�

2 (b̃ − b̃†). The

renormalized mechanical frequency is defined as �
′2 ≡ �

2 +
λ2

mM
[∂x�̄(Z̄,t)]2. As mentioned in the previous section, the cor-

rection term ( λ2

mM
[∂x�̄(Z̄,t)]2) contains two contributions—a

time-dependent part oscillating at a frequency ∼ 2ω and a
time-independent part. In the rotating wave approximation
(RWA) the time-dependent term can be neglected. However,
if the field mode was resonant with the mdf, one would
see parametric amplification of the mirror center-of-mass
motion due to this time-dependent part [39]. For the free
field part we notice that the interaction leads to an energy
correction ω → ω + λ2/(2mωε0L) that is second order in λ;

this corresponds to the shift coming from the diamagnetic
contribution for the EM case (∼ e2

2mc2 A
2) as indicated in the

previous section. This diamagnetic term also leads to the fast
oscillating terms for the free field (∼2ω), which correspond to
the photon-pair production and annihilation as in the case of
the dynamical Casimir effect [39–42].

Moving to the interaction picture with respect to H̃0 =
H̃O + H̃F to eliminate the fast dynamics of the system and
invoking RWA, we write the interaction Hamiltonian in a
simplified form as

H̃int ≡ �(αOF b†ae−it + α∗
OF ba†eit )

+ �(αOM beit + α∗
OM b†e−it )(c̃ + c̃†)

+ �(αMF a + α∗
MF a†)(c̃ + c̃†). (30)
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FIG. 3. (Color online) (a) Reflectance as a function of the dimensionless parameter �P /� (ratio of the plasma frequency to the idf’s natural
frequency) and the idf-field detuning /�. It can be seen that for weaker coupling corresponding to �P /� � 1, the reflection spectrum has a
sharper resonance. The effective bilinear coupling strengths for both (b) idf-field (αOF ) and (c) idf-mdf (αOM ) increase with increasing plasma
frequency as ∼√

�P . (d) The effective mdf-field coupling coefficient (αMF ) in the weak-coupling limit is largely determined by the reflection
coefficient, while for strong coupling the fluctuation-mediated part becomes relevant, as can be seen from (33).

Here we have defined the operators in the interaction picture as
{a,a†} ≡ {ãωeiωt ,ã†

ωe−iωt } and {b,b†} ≡ {b̃ei�t ,b̃†e−i�t } and
the detuning  ≡ ω − � represents the detuning between
the field and the idf. The operators {c̃,c̃†} correspond to the
creation and annihilation operators for the phononic excita-
tions of the mdf, with Z̃ =

√
�

2M�′ (c̃ + c̃†) ≡
√

�

M�′ Z and

P̃ = −i
√

�M�
′

2 (c̃ − c̃†) ≡
√

�M�
′ P . The operators Z and P

are the dimensionless position and momentum fluctuations for
the mirror center of mass. In moving to the interaction picture
we have ignored the second-order correction terms (∼λ2/m)
in the free field Hamiltonian H̃F .

The coefficients αij s represent the effective bilinear cou-
pling strengths between the single excitations of the three
subsystems with

αOF ≡ − iλ

2

√
�

mωε0L
, (31)

αOM ≡ ��0λ

2c

√
�

mM�′ , (32)

αMF ≡ ��0

2c

√
1

M�′ωε0L

(
− iλ2

m
+ 2ε0cωR∗(ω)

)

= �A0

L

√
�

2M�′

(
− iλ2

2mcωε0
+ R∗(ω)

)
, (33)

where we have defined the dimensionless field amplitude

A0 ≡ �0/
√

�

2ωε0L
. It can then be seen from (33) that for a

perfectly reflecting mirror [R∗(ω) → −1] the second term in
the effective coupling strength αMF between the mdf and the
field is the same as what one finds from the standard boundary
condition approach (see Appendix B).

We note that all the effective coupling strengths contain
the idf mass and charge parameters in the combination
∼λ2/m which corresponds to the plasma frequency �P [≡
λ2/(2mε0c)], meaning that one can deduce all the effective
single excitation couplings (αij s) from the two parameters that
also completely characterize the reflection spectrum, � and
�P , as defined in Sec. II B. Thus given the reflection spectrum
of a mirror, one can find the parameters �P and �, knowing
which one arrives at the various effective coupling strengths.
Figure 3 shows the dependence of the reflection coefficient
and these effective couplings on the dimensionless plasma
frequency (�P /�) and detuning (/�).

It can also be observed from (31)–(33) that the coupling
strengths increase as the original idf-field coupling λ increases
and decrease as the idf mass m increases, meaning that a
“lighter” idf leads to stronger effective coupling strengths.
Also, a heavier mirror c.m. couples more weakly to the idf and
the field. The effective idf-field coupling αOF is independent
of the driving field amplitude �0 as expected, since as one
sets the drive amplitude to zero it can be seen that there is no
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mirror-field and idf-mirror interaction in second order except
the idf-field coupling from the direct interaction. To be able to
see any coupling and hence entanglement between the mirror
and the field in that case one needs to include the higher order
terms as was discussed before.

We also note here that in the weak-coupling regime where
�P � 1, the mirror reflectivity and the effective mirror-field
coupling strength αMF as a function of the idf-field detuning
peak sharply at resonance ( = 0), as seen from Fig. 3(a) and
Fig. 3(d). The field amplitude and detuning with respect to the
idf change the coupling strengths appreciably. While in the
standard treatment of mirror-field interactions via boundary
conditions it is common to study the effect of the field intensity
on the mirror-field coupling, we highlight that including the
presence of idf lets us see the effect of the field-idf detuning on
the mirror-field interaction, allowing us to probe the effective
coupling strength as a function of the reflection properties of
the mirror.

As noted before, the two terms in the effective mirror-field
coupling αMF denote the interaction mediated via the quantum
fluctuations of the idf and its classical amplitude, respectively.
The strong-coupling limit, where one would expect to see
non-Markovian dynamics, is also where the contribution from
the idf fluctuations becomes substantial, as seen from the first
term in (33).

Now we use the interaction Hamiltonian (30) to write the
equations of motion in terms of the coupling constants αij s as

d Z
dt

= �
′ P, (34)

d P
dt

= −�
′ Z − 2(ReαOMq − ImαOM p)

− 2(ReαMF � − ImαMF �) − � P + ξ̃ , (35)

dq
dt

= p − |αOF |� − 2ImαOM Z, (36)

d p
dt

= − q − |αOF |� − 2ReαOM Z, (37)

d�

dt
=|αOF |q − 2ImαMF Z, (38)

d�

dt
=|αOF | p − 2ReαMF Z, (39)

wherein we have redefined the slow-moving dimension-
less idf and the field quadratures as q ≡ beit+b†e−it√

2
, p ≡

−i beit−b†e−it√
2

, � ≡ a+a†√
2

, and � ≡ −i a−a†√
2

. Also, to account
for the fluctuation-dissipation mechanism for the mirror center
of mass resulting from its coupling to the thermal bath, we
have introduced the mechanical damping � and noise ξ̃ for the
mirror. In the high-temperature limit, the correlation function
of the noise is given as 〈ξ̃ (t)ξ̃ (t ′)〉 = 4�kBT

��
δ(t − t ′), with T as

the temperature of the thermal bath.
Now let us consider that the idf is coupled to the continuum

of field modes with a coupling of the form q̇�i , where �i

represents the ith field mode, leading to a damping coefficient
γf . Also, to mimic the scattering of surface charges by
lattice ions of the mirror, we introduce a dissipative bath of
internal degrees of freedom such that each bath oscillator is
coupled to the idf with a coupling of the form q · qi , where

FIG. 4. (Color online) Evolution of mirror-field entanglement as
measured by the logarithmic negativity EMF (see Appendix A
for definition) as obtained from the boundary condition approach
(Appendix B) and the coupled MOF dynamics. We find that for an
isolated idf the time scale for entanglement is largely determined by
the effective idf-field coupling (αOF ). The two approaches concur
in the weak-coupling limit for a strongly damped idf. The parameter
values, in natural units where c = 1, � = 1, and e = √

4πα, used here
are m = 0.001, � = 100, M = 10, � = 0.1, �P = 5, A0 = 10−4,
and T = 1000. The effective idf-field coupling strength, |αOF |/� ≈
16, determines the time scale for entanglement dynamics for the case
of an undamped idf.

qi represents the position variable for the ith bath oscillator,
giving an effective damping coefficient of γi for the idf.
Using separation of time scales, we find the steady state idf

amplitudes as qst = − γi Ĉ1+Ĉ2

2+γiγf
and pst = γf Ĉ2−Ĉ1

2+γiγf
, where

the operators Ĉis stand for Ĉ1 ≡ |αOF |� + 2ImαOM Z + ξ̂f

and Ĉ2 ≡ |αOF |� + 2ReαOM Z + ξ̂i . Now for the case of near
perfect reflection since the detuning  is small, for the steady
state amplitudes to vanish, we must have γi,f � .

At this point one can make a crucial observation that if
we assume weak coupling such that �p � �, the fluctuation
mediated part of the effective mirror-field coupling is negligi-

ble or αMF ≈ �A0
L

√
�

2M�′ R
∗(ω). Additionally, if we consider

the field detuning to be small enough such that  � �p, the
reflection coefficient R∗(ω) ≈ 1, leading to a nearly perfectly
reflecting mirror. In this parameter regime, it can be seen
that the mirror-field dynamics from (34)–(39) found from the
MOF model reduces to that from the conventional boundary
condition approach (see Appendix B for further details),
provided that the idf contribution is negligibly small. It can then
be seen that the dynamics obtained from the two approaches
agree perfectly with each other for γi,f �  as shown in Fig. 4.

Now going back to the case of an isolated idf, we can
identify the radiation pressure force from (35) as

F̃rad ≡−2(ReαOM q−ImαOM p)−2(ReαMF � − ImαMF �).

(40)

We can see that the linearized radiation pressure force depends
on both the fluctuations of the idf and the field variables and
is generally dependent on the idf parameters. Hence as long
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as the idf fluctuations are nonvanishing, the radiation pressure
shot noise is determined by the shot noise of both the field
and the idf, meaning that in order to go below the standard
quantum limit for the radiation pressure force one needs to

take into consideration the squeezing of the idf quadratures in
addition to those of the field [43,44].

From (34)–(39) we write the solutions to the equations of
motion for the idf and the field variables as

q(t) = qh(t) +
∫ t

0
dt ′Go(t − t ′)[−|αOF |�(t ′) − αOM Z(t ′) + 2|αOF |ImαMF Z(t ′)], (41)

p(t) = ph(t) +
∫ t

0
dt ′Go(t − t ′)[|αOF |�(t ′) + 2|αOF |ReαMF Z(t ′) − αOM P(t ′)], (42)

�(t) = �h(t) +
∫ t

0
dt ′Gf (t − t ′)[|αOF | p(t ′) − 2ImαMF P(t ′)], (43)

�(t) = �h(t) +
∫ t

0
dt ′Gf (t − t ′)[−|αOF |q(t ′) − |αOF |αOM Z(t ′) − 2ReαMF P(t ′)]. (44)

Here we have defined the idf and the field Green’s functions as GO(t) ≡ sin(
√

|αOF |2+2t)√
|αOF |2+2

and Gf (t) ≡ sin(|αOF |t)
|αOF | and the

homogeneous solutions as {qh, ph,�h,�h}. It can be seen that the frequency of oscillations for the slow-moving idf variables

is �idf ≡
√

|α2
OF | + 2 and that for the slow-moving field variables is �f ≡ |αOF |. In the steady state limit, we can use these

solutions to rewrite the equation of motion for the late-time mirror c.m. dynamics as

M
(
∂2
t + �

′2)Z(t) + �
d Z(t)

dt
+
∫ t

0
dt ′Go(t − t ′)

(−α2
OM + 2αOF ImαMF αOM

)
Z(t ′)

=
∫ t

0
dt ′Go(t − t ′)[2αOM|αOF |�(t ′)] +

∫ t

0
dt ′Gf (t − t ′)[2ReαMF |αOF | p(t ′) + 2ImαMF |αOF |q(t ′)] + ξ̃ . (45)

On the left side one can identify the two terms in the integral as
the retarded influence of mirror-idf-idf-mirror interaction and
the mirror-idf-field-mirror interaction, respectively. The first
term on the right side denotes the mirror being driven by the
idf-influenced field and the second term stands for the mirror
being driven by the field-influenced idf. We can see that in the
absence of any detuning the c.m. motion is only driven by the
thermal noise term.

One can find the normal modes of the system from (34)–
(39) and their time evolution to obtain the 6×6-dimensional
covariance matrix of the coupled MOF system numerically.
We define the MOF covariance matrix VMOF as

VMOF =

⎛
⎜⎝VMM VMF VOM

VT
MF VFF VOF

VT
OM VT

OF VOO

⎞
⎟⎠, (46)

where the on-diagonal submatrix Vkk stands for the covariance
matrix of the kth reduced subsystem, defined as (Vkk)ij ≡
1
2 〈{X(k)

i ,X
(k)
j }〉, with X

(k)
i and X

(k)
j representing the i and j

quadratures corresponding to the position and momentum
variables of the kth reduced subsystem, more explicitly
X (k) ≡ {x̃(k),p̃(k)}. Here, {O1,O2} denotes the anticommutator
between the operators O1 and O2. The off-diagonal submatrix
Vkl consists of the correlations between the kth and the lth
subsystems, such that (Vkl)ij ≡ 1

2 〈{X(k)
i ,X

(l)
j }〉, where the i

and j quadrature components belong to different subsystems.
We then choose to look at the part of the covariance matrix

that represents the mirror and field reduced covariance matrices

and correlations, that is,

VMF =
(

VM VMF

VT
MF VF

)
, (47)

and find the logarithmic negativity EMF
N as obtained based on

the positive partial transpose (PPT) criteria for determining
separability (see Appendix A for details). It can be shown
that calculating the MF entanglement from the sub covariance
matrix VMF is equivalent to coarse-graining over the internal
degree of freedom and then finding the MF entanglement.

As was discussed before, at the idf-field resonance ( → 0)
the reflection coefficient and hence the effective mirror-field
coupling strength go to their maximum values [see Fig. 3(a)
and Fig. 3(d)]. As a result, we observe in Fig. 5 that there is a
peak in the mirror-field entanglement near idf-field resonance.
As was emphasized before, this effect is not considered in
the standard treatment of optomechanical interactions since
the internal degree is coarse-grained over a priori to arrive
at the boundary conditions for the field. This effect is more
pronounced in the weak-coupling regime where the reflection
coefficient has a sharper peak at resonance as seen from
Fig. 3(a) and Fig. 3(d). It can also be observed that for
/� = −1 or equivalently � = ω + �, the entanglement is
sustained for longer times. Physically, this pertains to the
process wherein a field photon and a mirror phonon combine
to give a single idf excitation (or vice versa), corresponding to
the two-mode squeezing Hamiltonian which then entangles the
field and the mirror modes as a result of the interaction. Such
an observation had also been made in [12] for the case of a
cavity driven with a red detuned drive in the sideband resolved
regime where it was shown that the steady state entanglement
goes to a maximum when the cavity-drive detuning was equal
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FIG. 5. (Color online) Mirror-field entanglement given by the
logarithmic negativity for an undamped idf as a function of the
dimensionless idf-field detuning (/�) and dimensionless time (�t).
We observe that the entanglement peaks for a resonant idf-field
interaction at (/� = 0) and for /� = −1 (� = ω + �); the
entanglement is sustained for longer times. The oscillation time
scales are determined by the effective idf-field coupling (|αOF |).
The parameters values, in units where c = 1, � = 1, and e = √

4πα,
used here are m = 0.001, � = 100, M = 10, � = 0.1, �P = 0.05,
A0 = 10−4, and T = 1000.

to the mechanical oscillation frequency. Drawing an analogy
between the two cases, we find that cavity resonance for the
usual cavity optomechanical setups is similar to the idf in the
MOF model in that they both mediate the interaction between
the mechanical motion of the mirror and the external field.

To make some numerical estimates for a realistic setup, we
consider the case of a single atom in a cavity [45]. We remark
that our model is readily generalizable to 3+1 D by simply
replacing ε0 → ε0A, where A refers to some characteristic
cross-sectional area [46]. In the setup of Maunz et al. [45] this
would correspond to the cross-sectional area of the beam with
A ≈ 7 × 10−10 m2, assuming that one can ignore scattering
of the field by the atom in the transverse directions and
diffraction effects for the purposes of a rough estimate. We
use (1) for the idf parameters, �P = e2

2meε0cA ≈ 7.5 × 103 Hz,
the internal resonance frequency � ≈ 2πc/(780 nm) for the
5 2S1/2F = 3 ↔ 5 2P3/2F = 4 transition and cavity modified
damping rate γf ≈ 10 MHz from the coupling of the idf to
the field continuum; (2) for the mechanical degree of freedom
M corresponds to the atomic mass of 85Rb, � ≈ 100 kHz and
� ≈ 10 s−1; and (3) for the field, ω = � + a , where a ≈
100 MHz, P = 0.01 pW, for cavity length L ≈ 100 μm and
Q ≈ 5 × 105, the cavity damping rate �F ∼ c

QL
≈ 2.5 MHz.

We find the effective coupling strength between the idf and
the field as αOF ∼ 1 GHz, the effective idf-mdf coupling as
αOM ∼ 1 MHz and the effective mdf-field coupling to be
αMF ∼ 10 MHz. For a temperature Tm ≈ 1 mK of the me-
chanical environment, and with Ti = Tf = 100 K the steady
state logarithmic negativity between the center of mass and
the field is EMF ∼ 10−2. For further details of the calculation
we refer the reader to [46].

While the parameter values chosen here may pertain to a
narrow parameter regime corresponding to weak coupling and
isolation from environment, we have illustrated that there is
a significant effect of the idf parameters on the mirror-field

entanglement. We discuss our results further and conclude in
the following section.

V. DISCUSSION

The foremost theme in our analysis is to highlight the
significance of the internal degrees of freedom of a mirror
that play the role of the essential intermediary when it comes
to studying the interaction between a quantum field and the
mirror’s mechanical motion. We illustrate how a microscopic
model of quantum optomechanics, such as the MOF model
proposed by Galley, Behunin, and Hu [15], is a physically
more complete and intuitive description for optomechanical
interactions, in that not only can it agreeably reproduce the
known optomechanical properties both in the classical and
quantum regimes; it also elucidates new physical aspects
which are not accounted for in the general description of
optomechanical interactions via radiation pressure coupling.
Specifically looking at the quantum entanglement between the
mirror’s mechanical motion and the field, we find that there
is a significant and even a critical role played by the internal
degree of freedom in certain parameter regimes as it can act as
a means to coherently transfer correlations between the field
and the mechanical degree of freedom.

The MOF model allows us to go beyond the usual disjoint
treatment of mirror-field interactions wherein one imposes
boundary conditions on the field and treats the mechanical
effects of the field arising from the radiation pressure force
separately to attain a self-consistent depiction where we see
both the radiation pressure (Sec. II A) and the boundary
conditions (Sec. II B) emerge from a physically motivated
microscopic interaction. The new key aspects that arise from
this self-consistent treatment of the mirror-field interaction can
be summarized as follows:

(1) Coherent transfer of excitations. We show that the con-
ventional boundary condition approach arises as the limiting
case of the MOF model where the quantum fluctuations of the
idf are lost to the bath. As illustrated in Fig. 4, isolating the
idf from the environment can provide an additional channel
for coherent transfer of mirror-field correlations. Since the idf-
field dynamics is at a much faster time scale as compared to the
center-of-mass motion, for an undamped idf we observe much
faster time scales for the entanglement dynamics determined
by the effective idf-field coupling (αOF ) rather than those from
the conventional radiation pressure coupling (∼�).

(2) Fully dynamical description. For relativistically mov-
ing mirrors, as in the case of dynamical Casimir effect [42],
applying boundary conditions is an inadequate description of
the dynamics since in the time scales over which internal
degrees and the field reach a steady state thereby leading to an
effective boundary condition, the mirror center of mass moves
appreciably enough to affect their interaction. In cases where
the time scales of the mechanical motion and the field-internal
degree of freedom interaction are close to each other, including
the internal degree of freedom becomes relevant as the only
means to capture the coupled dynamical interplay of the three
subsystems.

(3) Field frequency shift. In the MOF description, we
observe an additional shift to the field frequency from its
second-order interaction with the idf as seen from (27)
and (29), a feature that is not accounted for in the boundary
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condition treatment. Such a diamagnetic term contribution can
be significant in the strong-coupling regimes, even leading
to change in the radiation pressure force from attractive to
repulsive as has been studied in [47].

(4) Radiation pressure shot noise. We also observe that for
an undamped idf the radiation pressure force is determined not
only by the quantum fluctuations of the field but also those of
the idf as suggested by (40). While in the steady state limit
the strength of these fluctuations is largely determined by the
boundary conditions, in the early time limit the idf being an
independent quantum degree of freedom its quantum fluctua-
tions would influence the radiation pressure shot noise as well.

As a result of including an extra quantum degree of
freedom one would naturally expect there to be a difference
in the quantum correlations of the field and the mirror’s
mechanical motion. We show that in the parameter regimes
where the idf is isolated from the environment and for strong
coupling, the role of the idf is more pronounced. This can be
seen from the effective mirror-field interaction strength that
is determined strongly by the idf-field resonance condition,
with the effective bilinear c.m.-field coupling going to a
maximum at resonance as in (33). The dependence of the
optomechanical interaction on the idf-field resonance leading
to an enhanced mirror-field entanglement is something that
cannot be captured in the boundary condition treatment of
optomechanical interactions. This is seen in the plot for MF
entanglement as a function of detuning  in Fig. 5.

Also, the time scales for all dynamics, including that of
the mirror-field entanglement, is largely determined by the
effective idf-field coupling αOF and the idf-field detuning  as
seen from (44). One can make the same observation from Fig. 4
that for an idf isolated from the environment, the entanglement
dynamics are at a much faster time scale (αOF ) as compared
to the boundary condition approach (�).

Analogous to the case of optomechanical entanglement in a
cavity setup, we find that if the field is red-detuned with respect
to the cavity frequency such that one facilitates the two-mode
squeezing interaction between the field and the mechanical
mode, the entanglement is sustained for longer times as can be
seen from Fig. 5.

From studying the mirror-field entanglement as a function
of the various parameters of the model pertaining to the
idf and otherwise, we find that the presence of the idf can
influence the entanglement dynamics to a significant extent.
Not only does a microscopic model such as the MOF model
reproduce the known optomechanical properties and provide
a more self-consistent approach of studying optomechanical
interactions; more importantly it leads to qualitatively different
physics, specifically in the quantum regime. We conclude
that the internal degree of freedom being the quintessential
mediator of quantum correlations between the mirror center
of mass and the field, the MOF model gives a physically more
complete treatment of the mirror-field entanglement.
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APPENDIX A: LOGARITHMIC NEGATIVITY

After t = 0 the interaction is turned on and the three subsys-
tems (mdf, idf, and the field) begin to interact with each other
as the reduced density matrices for each one become a mixed
state. The linearity of the interaction terms guarantees that
the quantum state of the three harmonic oscillators that starts
Gaussian remains Gaussian. Thus the dynamics of quantum
entanglement can be studied by examining the behavior of the
quantity � [48] and the logarithmic negativity EMF [49]:

� ≡ det

[
VMF

PT + i�

2
M
]
, (A1)

EMF ≡ max{0,− log2 2c−}. (A2)

Here M is the symplectic matrix 1 ⊗ (−i)σy , and VMF is the
partial transpose of the covariance matrix

VMF =
(

VM VMF

VT
MF VF

)
(A3)

as defined in (47). (c+,c−) is the symplectic spectrum of
VMF

PT + (i�/2)M, given by

c± ≡
[

Z ±
√

Z2 − 4 detVMF

2

]1/2

(A4)

with
Z = det VMM + det VFF − 2 det VMF . (A5)

For the quantum oscillators in the Gaussian state, EMF > 0,
� < 0, and c− < �/2, if and only if the quantum state of the
two subsystems is entangled [50]. EMF is an entanglement
monotone [51] whose value can indicate the degree of
entanglement.

APPENDIX B: COMPARISON OF THE MOF MODEL
WITH BOUNDARY CONDITIONS

Let us start with the standard optomechanical treatment
where we treat the mirror-field interaction via the radiation
pressure. In 1+1 D, the Hamiltonian of a scalar field (that
corresponds to the vector potential of the optical field)
interacting with a pointlike mirror is given by

H̃BC = ��

2
(P2 + Z2) +

∫ L

0
dx

(
�̃2

2ε0
+ ε0

2
c2(∂x�̃)2

)

− ε0c
2(∂x�̄∂x�̃)

∣∣Z̄+
Z̄−

ZZPM Z (B1)

This can be seen from equation (8) of [35] in the limit of an
infinitely thin dielectric membrane.
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Again, assuming that a single field mode is being driven at a frequency ω, we have

H̃BC = ��

2
(P2 + Z2) + �ωa†a − �

(
ω

L
ZZPMA0

)
(aeiφ0 + a†e−iφ0 )Z. (B2)

The prefactor βMF ≡ ω
L
ZZPMA0e

iφ0 in the interaction term is the standard optomechanical coupling as in [12] with ZZPM ≡
√

�

M�

as the zero-point motion length for the center-of-mass motion and A0 as the dimensionless field amplitude. Moving to a rotating
frame with respect to the free field Hamiltonian (HF ≡ �ωa†a) leads us to the following equations of motion for the dimensionless
field and mirror variables:

d Z
dt

= �P, (B3)

d P
dt

= −�Z +
√

2ReβMF � −
√

2ImβMF �, (B4)

d�

dt
=

√
2ImβMF Z, (B5)

d�

dt
=

√
2ReβMF Z. (B6)

It can be seen that in the weak-coupling limit (λ2 � 2mωε0c), redefining the field amplitude in terms of the dimensionless

amplitude A0 as �0 =
√

�

2ωε0L
A0, the effective mirror-field coupling coefficient in (33) reduces to αMF ≈ −βMF /

√
2. Solving

for the entanglement in the two cases, including a damping coefficient for the internal degree of freedom and setting the idf
detuning to be large, we see a perfect overlap of the log negativity from either approach in Fig. 4.

[1] J. P. Gordon and A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[2] J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707

(1985).
[3] K. Karrai, I. Favero, and C. Metzger, Phys. Rev. Lett. 100,

240801 (2008).
[4] K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S.

Stobbe, P. Lodahland, and E. S. Polzik, Nat. Phys. 8, 168 (2012).
[5] A. Xuereb, K. Usami, A. Naesby, E. S. Polzik, and K. Hammerer,

New J. Phys. 14, 085024 (2012).
[6] A. Armour, Nat. Phys. 8, 110 (2012).
[7] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[8] S. Bose, K. Jacobs, and P. L. Knight, Phys. Rev. A 56, 4175

(1997).
[9] S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Rev. A 55, 3042

(1997).
[10] S. Bose, K. Jacobs, and P. L. Knight, Phys. Rev. A 59, 3204

(1999).
[11] M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J.

Eisert, and M. Aspelmeyer, Phys. Rev. Lett. 99, 250401 (2007).
[12] D. Vitali, S. Gigan, A. Ferreira, H. R. Bohm, P. Tombesi, A.

Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys.
Rev. Lett. 98, 030405 (2007).

[13] H. Miao, S. Danilishin, and Y. Chen, Phys. Rev. A 81, 052307
(2010).

[14] W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, Phys.
Rev. Lett. 91, 130401 (2003).

[15] C. R. Galley, R. O. Behunin, and B. L. Hu, Phys. Rev. A 87,
043832 (2013).

[16] G. Barton and A. Calogeracos, Ann. Phys. 238, 227 (1995);
A. Calogeracos and G. Barton, ibid. 238, 268 (1995).

[17] C. K. Law, Phys. Rev. A 51, 2537 (1995).

[18] R. Golestanian and M. Kardar, Phys. Rev. Lett. 78, 3421 (1997);
,Phys. Rev. A 58, 1713 (1998).
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