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Radiation pattern of two identical emitters driven by a Laguerre-Gaussian beam:
An atom nanoantenna

Vassilis E. Lembessis,1,* Andreas Lyras,1 Anwar Al Rsheed,1 Omar M. Aldossary,1,2 and Zbigniew Ficek2

1Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2The National Center for Applied Physics, KACST, P.O. Box 6086, Riyadh 11442, Saudi Arabia

(Received 29 June 2015; published 27 August 2015)

We study the directional properties of a radiation field emitted by a geometrically small system composed of two
identical two-level emitters located at short distances and driven by an optical vortex beam, a Laguerre-Gaussian
beam which possesses a structured phase and amplitude. We find that the system may operate as a nanoantenna for
controlled and tunable directional emission. Polar diagrams of the radiation intensity are presented showing that
a constant phase or amplitude difference at the positions of the emitters plays an essential role in the directivity
of the emission. We find that the radiation patterns may differ dramatically for different phases and amplitude
differences at the positions of the emitters. As a result the system may operate as a two- or one-sided nanoantenna.
In particular, a two-sided highly focused directional emission can be achieved when the emitters experience the
same amplitude and a constant phase difference of the driving field. We find the general directional property of
the emitted field that when the phase differences at the positions of the emitters equal an even multiple of π/4,
the system behaves as a two-sided antenna. When the phase difference equals an odd multiple of π/4, the system
behaves as a one-sided antenna. The case when the emitters experience the same phase but different amplitudes
of the driving field is also considered and it is found that the effect of different amplitudes is to cause the system
to behave as a unidirectional antenna radiating along the interatomic axis.
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I. INTRODUCTION

The control of emission by nanoscale-size objects such as
single atoms, quantum dots, dimers, and oriented semiconduc-
tor polymer nanostructures is fundamentally important for ap-
plications in nanoscale optical manipulation, optical sensing,
information processing, and quantum communication [1–3].
The recent advances in nanophotonics have stimulated a
series of experimental and theoretical works demonstrating
that composite nanosystems can serve as nanoantennas [4–7].
Examples include structures composed of nanodimers, high-
permittivity dielectric particles, metal particles, and atomic
chains [8–13]. It has been demonstrated that these nanosystems
may squeeze light into nanoscale volumes [14], enhance the
excitation and emission rate of individual emitters [15–17], and
tune the luminescence spectrum [18] and the polarization [19].
Particularly interesting is the ability to control and tune the
radiation pattern of a nanoantenna.

A related interesting problem is the ability of a composite
structure of nanoparticles to work as a frequency filter
which could route different frequencies of an incident beam
into different directions. This feature has been demonstrated
experimentally by Shegai et al. [20]. In the experiment, a pair
of metallic nanoparticles, gold and silver, was deposited on
glass at a very small distance. When illuminated with white
light, the system scattered the red and blue components of the
incident light into opposite directions.

Recently, we have developed a theory of directional
emission for the somewhat related problem of directional light
scattering by a system composed of two two-level atoms [21].
We have shown that the system can operate as a directional
nanonantenna provided that the atoms are not identical, with
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unequal transition dipole moments or different transition
frequencies. We have found that a difference between the
transition dipole moments or between the transition frequen-
cies of the atoms creates a phase shift between the dipole
moments of the atoms which then leads to the directional light
scattering. Thus, the crucial factor for the directionality is to
use emitters of unequal dipole moments or different transition
frequencies. In the experiment of Shegai et al. [20] the required
phase difference between the dipole moments was achieved
by using two nonidentical metallic nanoparticles of different
plasmonic frequencies. It has also been shown that a metal-
dielectric structure composed of a pair of dielectric and metal
nanoparticles can lead to a directional light scattering [22].
These studies show that a constant phase shift between dipole
moments can be achieved with nonidentical nanoparticles.

However, a constant phase shift between two oscillating
dipoles could be achieved with identical nanoparticles. It is
the purpose of this paper to demonstrate that a controlled
directional emission can also be achieved in a system com-
posed of two identical emitters. As we shall see below, it
requires a driving field which could create a constant phase
difference between the atomic dipoles or a constant difference
between the field amplitudes at the positions of the atoms.
We consider a system composed of two identical emitters
located at short distances and driven by a laser beam with
a structured phase and amplitude, an optical vortex beam
like a Laguerre-Gaussian (LG) or Bessel beam [23]. The use
of an LG or Bessel beam can ensure either equal amplitudes
and a constant phase difference or equal phases and a constant
amplitude difference at the positions of the atoms. We are
particularly interested in the directionality of the emission
that is produced by the LG beam, which is applied in the
following manner: (i) a constant phase difference is produced
at the positions of the atoms, and (ii) a constant amplitude
difference is produced at the position of the atoms. We
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demonstrate that a controlled directionality of the emission
can be achieved under these specific driving configurations.
Especially, the atoms placed at short distances may operate
as a highly directional nanoantenna. Depending on the phase
or amplitude differences at the locations of the emitters, the
system may operate as a two- or one-sided nanoantenna. A
simple physical interpretation of the sources of the two- and
one-sided emissions is given in terms of the collective states
of the system.

The paper is organized as follows. In Sec. II, we review
the basic properties of the laser field of a structured complex
amplitude, an LG beam, and provide a simple explanation of
how the beam could be applied to create a constant phase
and/or amplitude difference between two dipoles located at
different points. In Sec. III we describe the model in detail
and discuss the method we use to to determine the radiation
pattern of the system. The general expression for the radiation
intensity is presented along with a brief discussion of its
directional properties. In Sec. IV we give illustrative figures
of the directionality of the emission for two configurations
of the LG beam at the positions of the atoms, either the
same amplitudes and a constant phase difference or the same
phases and a difference between the amplitudes. We discuss
different cases and present a detailed analysis of the directional
properties of the radiation pattern. Finally, in Sec. V, we
summarize our results and conclude.

II. AMPLITUDE AND PHASE DIFFERENCE
IN A LAGUERRE-GAUSSIAN BEAM

We proceed now to show how we can create a scheme
where two atoms (emitters), although irradiated by the same
laser beam, may experience different phases and/or amplitudes
of the beam. As mentioned above this can be achieved if the
driving field has a structured phase and amplitude, i.e., a phase
and amplitude which have a complex spatial dependence as in
the case of an optical vortex beam like an LG or a Bessel
beam [23]. We choose to work with an LG beam whose
interaction with a two-level atom results in a Rabi frequency
given by [24]

�lp = �00√
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z direction, w(z) = w0
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R , w0 is the beam waist, and
r is the position of the atom in the xy plane. The numbers
l and p are the mode indices, with l associated with the
quantized angular momentum l� carried by the beam photon
along the propagation axis and p the radial index associated
with the number of intensity rings in the transverse plane.
The factor L

|l|
p is the associated Laguerre polynomial while
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the laser beam, � the atomic excited-state decay rate, and
Is the saturation intensity for the atomic transition. Since
expression (1) is given in the cylindrical coordinates we also
have r =

√
x2 + y2 and φ = arctan(y/x).

FIG. 1. (Color online) A Laguerre-Gaussian laser beam with a
doughnut-like intensity profile interacting with two atoms. The beam
travels along the z axis but is displaced by a distance d along the
x axis. The atoms distance r12 from each other are located at positions
(0,r12/2,0) and (0,−r12/2,0), respectively.

First, we show how we can achieve different phases’
being experienced by two atoms located at different positions.
Consider the example shown in Fig. 1 in which a system of
two atoms is irradiated by an LG beam propagating along the
z direction. The shaded ringlike region shows schematically
the spatial intensity distribution of the beam in the case of
p = 0.

Assume that the interatomic axis has been displaced at a
distance d along the x axis with respect to the center of an LG
beam and the atoms are located at positions (0,r12/2,0) and
(0,−r12/2,0). The Rabi frequencies �j (j = 1,2) experienced
by the atoms can be easily determined from the general
expression, (1), and are given by
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where j = 1,2. Clearly, there is a phase difference between the
Rabi frequencies, which is due to the azimuthal phase factors
and is given by

�φ = 2l arctan (r12/2d). (3)

The phase difference depends on the distance r12 between
the atoms, the lateral displacement d, and the helicity l.
By changing one of these parameters we can change the
phase difference at will. It is easily seen that if there is no
displacement along the x axis, d = 0, and then the phase
difference is equal to �φ = lπ . Of course in a beam with a
structured amplitude any change in these parameters will also
result in a change in the magnitude of the Rabi frequencies. If
we keep the beam propagation axis symmetrical with respect
to the two atoms the field amplitudes experienced by the atoms
will be the same.
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The doughnut-like transverse intensity profile of the LG
beam has a maximum at radial distances r = w0

√|l|/2, where
w0 is the beam waist at z = 0. The size of the beam waist
can range from a few hundreds of microns down to half the
wavelength of the laser beam. To create a phase difference
equal to π the angle subtended by the two atoms has to be
equal to π/|l|. In this case the distance between the atoms is
given by r12 = w0

√
2|l| sin(π/2|l|). For very large values of

the helicity l, the distance between the atoms is approximated
by r12 = w0π/

√
2|l|. As we have shown in Ref. [21], for very

short distances between the atoms their mutual interaction
is very crucial for mode switching and routing. These can
occur when the distance between the atoms is of the order
of the wavelength of the laser radiation since in this case the
interatomic dipole-dipole interaction is significant. Thus if, for
example, we wish the distance between the atoms to be equal
to λ, then the beam waist has to be w0 = λ

√
2|l|/π . For a

value of l = 100, which is experimentally achievable [25], we
get a beam waist of around 4.5λ. Higher values of l can lead
to larger beam waists. In Ref. [25], LG beams were produced
with l = 300. The use of such a beam with a waist equal to
7.8λ will ensure that two atoms separated by a distance equal
to λ experience Rabi frequencies with a phase difference equal
to π .

We now demonstrate how one can achieve different Rabi
frequencies at the positions of the atoms. Since the mutual
distance between the atoms has to be of the order of the
wavelength for the system to work as a strongly directional
antenna we must choose proper light fields with amplitude
gradients of this order of magnitude. The first such case would
be the use of a standing wave, which could be created along
the y axis. In this case we can arrange the configuration in such
a way that one atom is at the node of the standing wave, thus
its Rabi frequency is 0, while the other one is at the antinode
of the standing wave so its Rabi frequency is the maximum
possible. This configuration may have several restrictions in
its operation since the distance between the node and the
neighboring antinode is always fixed and equal to λ/4. This
fixed distance imposes a restriction on the distance between
the atoms.

The structured beams could give us new opportunities since
they could have spatial gradients of intensity which, with the
proper choice of parameters, can be very sharp, resulting in
the desired different Rabi frequencies. The first such case is
provided by an LG beam with a radial number p different
from 0. As noted by Plick et al. [26], this number has been
often overlooked in the literature, with the attention of the
researchers concentrated on the index l, which is related to the
quantized orbital angular momentum carried by the photon. As
we know, a beam with a radial number p has p + 1 maxima
(rings) in the transverse intensity profile. The distance between
these rings depends on indices l and p and the choice of beam
waist. The distance can be analytically calculated for generic
l and p = 1,2. As our numerical analysis has shown, the
intensity rings come closer as the value of the radial number p

increases while simultaneously we keep l at the lowest possible
value, i.e., l = 1. We chose here the case where p = 20 and
l = 1. In this case the intensity pattern on the transverse plane
has 21 rings. In Fig. 2 we show the intensity versus the radial
distance from the beam axis. The axis is scaled in units of the

FIG. 2. (Color online) Intensity pattern (in arbitrary units), up to
a radial distance equal to the beam waist, in the case of a Laguerre-
Gaussian laser beam with l = 1 and p = 20. The beam is assumed
to propagate along the z axis. Inset: How the two atoms have to be
irradiated by the beam in order to experience different light intensities
and thus to ensure different Rabi frequencies.

beam waist w0. It is easily seen that the intensity maxima are
very close to each other. The first and second maxima are at a
distance equal to 0.27w0. If we choose a value for the beam
waist equal to 3.7λ, then the distance between these maxima
becomes equal to the wavelength of light λ. By placing the
two atoms at these points we ensure that the Rabi frequency of
the first atom can be three times larger than that of the second
atom. By applying an LG beam with higher values of the radial
index the intensity maxima can come even closer so we can
ensure different Rabi frequencies for atoms at a distance of the
order of the wavelength for larger values of the beam waist.

The second case is obtained when we superimpose two
similar LG laser beams, propagating along the z direction with
opposite helicities, l and −l. In this case we get a beam which
has a petal-like transverse intensity pattern with a number of
2l petals. The intensity pattern of this configuration, known
in the literature as an optical Ferris wheel [27], is illustrated
in Fig. 3. The inset in Fig. 3 shows the intensity pattern in
the first quadrant of the xy plane with such a configuration
for l = 15. It is shown that the intensity goes through 0 as we
move azimuthally from one point of maximum intensity to the
next point of maximum intensity. The angle which separates
these two points is given, in a generic Ferris scheme, as �φ =
180◦/|l|. To get two Rabi frequencies with a ratio, for example,
equal to 10, i.e., �1/�2 = 10, we can place one atom at a
point of maximum intensity and the other atom at a point at an
azimuthal angle θ = 84.3◦/|l|. The length of the arc subtended
by this angle, which is also the interatomic distance, is r12 =
(w0/2)

√|l|/2 sin(84.3◦/2|l|). If we use l = 15, then this angle
is about θ = 5.6◦ and the length of the corresponding arc is
r12 = 0.067w0. This length determines the distance between
the two atoms. If we wish the distance to be equal to half the
wavelength we have to choose a beam waist equal to 7.46λ.
By using LG beams of a higher helicity we can ensure larger
values of the beam waist. For example, for l = 100 the beam
waist has to be equal to 19.23λ.
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FIG. 3. (Color online) The two atoms located on the xy plane are
separated from each other by r12 and are irradiated with an optical
Ferris wheel beam propagating along the z direction with helicity
equal to l = 15. Atoms are at points where they experience different
intensities of the field. Inset: Intensity pattern at the first quadrant of
the xy plane.

The Ferris wheel configuration has yet another interesting
property. As has been shown [27], if we change the frequency
of one of the two beams comprising the Ferris wheel, then
the intensity pattern rotates in space at an angular frequency
ωF = (ω1 − ω2)/2|l|. When the pattern rotates the atoms will
be periodically in regions of different intensities, thus their
Rabi frequencies will vary in time, and this will result in a
case where the intensity pattern emitted by the two atoms will
rotate in space.

We should point out that the regime of very small beam
waists, which we used in our numerical analysis, is associated
with tightly focused light beams carrying orbital angular
momentum. The use of such beams may introduce effects
associated with the nonparaxial regime [28], which we do not
take into account in this paper.

III. GENERAL FORMALISM

We consider a system composed of two identical emitters
located at fixed positions, at a distance r12 from each other,
irradiated by a coherent laser beam and interacting with the
electromagnetic field. Each emitter may be simply a single
atom, for example, or a quantum dot, or a larger object such
as a dimer. If atoms are involved, this system can be realized
in practice by optical methods, i.e., by considering that the
atoms are placed at neighboring optical lattice sites or in
microscopic optical traps [29]. Alternatively, we can consider
two ions trapped by electromagnetic fields [30]. The latter
method has played an important role in the demonstration of
interference effects in the light emitted by two ions [31]. Small
fluctuations of the atom positions around the trap minima may
obscure the effects of mode switching and light routing but
we do not consider them in this work. If we wish to avoid
the effects of spatial fluctuations, we can consider our atoms
as generic two-level emitters (for example, specially tailored
nanoparticles) embedded in a material [20]. We focus on a
single dipole transition between two nondegenerate energy

levels of each emitter, the excited |ei〉 and ground |gi〉 levels,
and refer to it simply as a two-level system. Thus, the
emitters, according to the above description, can be modeled
as dipoles. Our main concern here is how the two emitters
located close to each other and collectively interacting with
the electromagnetic field can operate as a highly directional
nanoantenna. We focus on the directional properties of the
radiation field emitted by the system.

A. Intensity of the radiation field

The quantity of central interest is the intensity of the
radiation field emitted by two atoms and detected in the
far-field zone of the system. The intensity can be written
in terms of the positive- and negative-frequency parts of the
electric field as

I ( �R,t) = R2

2πk0
〈 �E(−)( �R,t) · �E(+)( �R,t)〉, (4)

where k0 = ω0/c, �R is a vector pointing in the direction of
the detection of the field, and R is the distance between the
radiating system and the detector. Here, we have introduced
the factor (R2/2πk0) so that I ( �R,t) d�dt is the probability of
detecting a photon at time t inside the solid angle element d�

around the direction �R in the time interval dt .
The electric field radiated by the atoms can be expressed

in terms of the atomic dipole moments. The negative- and
positive-frequency parts of the field in the far-field zone of the
radiating atoms can be written as the sum of dipole fields,

�E(−)( �R,t) = −k2
0

2∑
i=1

[ �Ri × ( �Ri × �μi)]

R3
i

S+
i eikR̂·�ri ,

(5)

�E(+)( �R,t) = −k2
0

2∑
i=1

[ �Ri × ( �Ri × �μi)]

R3
i

S−
i e−ikR̂·�ri ,

where �μi is the transition dipole moment, S+
i and S−

i are
the usual raising and lowering operators of atom i, �Ri is the
position vector of atom i, and R̂ is the unit vector in the
direction of observation (R̂ = �R/R).

When Eq. (5) is substituted into Eq. (4), the intensity
of the radiation field measured in the direction �R at time t

becomes [32,33]

I ( �R,t) = u(R̂)
2∑

i,j=1

〈S+
i (t)S−

j (t)〉ekR̂·�rij , (6)

where u(R̂) = (3�/8π ) sin2 ϑ , with ϑ the angle between the
direction of observation �R and the direction of the atomic
dipole moments, and � the spontaneous emission (damping)
rate of the atomic transition. It is seen that the intensity of the
radiation field is determined by the correlation functions of the
atomic dipole operators. The intensity can be written in terms
of four contributions involving the correlation functions and
geometrical factors,

I ( �R,t) = u(R̂){〈S+
1 (t)S−

1 (t)〉 + 〈S+
2 (t)S−

2 (t)〉 + [〈S+
1 (t)S−

2 (t)〉
+ 〈S+

2 (t)S−
1 (t)〉]cos(kr12 cos θ ) + i[〈S+

1 (t)S−
2 (t)〉

− 〈S+
2 (t)S−

1 (t)〉]sin(kr12 cos θ )}, (7)
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where θ is the angle between �r12 and the direction of obser-
vation R̂. The variation of the intensity with the observation
angle θ is called the radiation pattern. Certain general features
of the radiation pattern follow from Eq. (7). The first term
expresses the intensity of the emitted radiation created by
spontaneous emission from atom 1. The second term expresses
the intensity of the radiation spontaneously emitted by atom 2.
These two terms are always positive and independent of
θ . The contribution of these two terms obviously leads to
a spherical shape of the radiation pattern. The third and
fourth terms result from the interference between the radiation
fields emitted by different atoms. If nonzero, these terms can
lead to a nonspherical shape of the radiation pattern and
the emitted radiation can exhibit a strong enhancement or
reduction in a direction θ at which cos(kr12 cos θ ) = ±1 and/or
sin(kr12 cos θ ) = ±1.

Let us look at some features of the cos(kr12 cos θ ) and
sin(kr12 cos θ ) factors in I ( �R,t) which define directions of
maximum and minimum emission. First, since the cosine and
sine functions are shifted in phase by π/2, we see that the
directions in which these two terms can enhance or reduce the
intensity do not overlap. In particular, for atoms separated by a
distance r12 = λ/2, the factor cos(kr12 cos θ ) = 1 for θ = π/2
and 3π/2, while sin(kr12 cos θ ) = 1 for θ = π/3 and 5π/3.
Moreover, the number of directions in which the intensity
can be enhanced or reduced increases with increasing r12.
For instance, when r12 = λ, the factor cos(kr12 cos θ ) = 1 for
θ = 0, π/2, π , and 3π/2, whereas sin(kr12 cos θ ) = 1 for θ =
0.42π and 1.58π . Thus, if the goal is for the system to work as
a highly directional nanoantenna emitting light in only a few
directions, then the emitters should be kept at distances shorter
than the resonant wavelength, r12 � λ.

There is an another important difference in the directional
properties of the two factors. It is easy see that if there is
a direction θ in which cos(kr12 cos θ ) is maximal (=1), it
is also maximal in the opposite direction, θ + 180◦. This
means that the factor cos(kr12 cos θ ) has the property of
concentrating the radiation along two opposite axial modes.
We refer to this feature as an axial concentration of the
radiation or a two-sided emission. The directional property
of sin(kr12 cos θ ) is different. If there is a direction θ in which
sin(kr12 cos θ ) is maximal, it is also maximal in the direction
θ ′ = 360◦ − θ . Thus, the factor sin(kr12 cos θ ) has the property
of concentrating the emission on one side of the system in two
axial modes propagating in directions differing by 2θ . We refer
to this feature as a spatial concentration of the radiation or a
one-sided emission. The differences in the ways in which the
factors cos(kr12 cos θ ) and sin(kr12 cos θ ) affect the radiation
pattern are illustrated graphically in Sec. IV.

It is convenient, in particular, for physical interpretation, to
write the intensity in terms of the density matrix elements of
the density operator of the two-atom system represented in the
basis of the superposition (collective) states [34–36],

|g〉 = |g1〉|g2〉, |e〉 = |e1〉|e2〉,
|s〉 = 1√

2
(|e1〉|g2〉 + |g1〉|e2〉), (8)

|a〉 = 1√
2

(|e1〉|g2〉 − |g1〉|e2〉),

where |s〉 and |a〉 are, respectively, the symmetric and
antisymmetric combinations of the product of bare atomic
states. Here, |ei〉 and |gi〉 represent the excited and ground
states of atom i. It is easily shown that, in terms of the density
matrix elements, the correlation functions appearing in Eq. (7)
are

〈S+
1 (t)S−

1 (t)〉+ 〈S+
2 (t)S−

2 (t)〉 = ρss(t) + ρaa(t) + 2ρee(t),

〈S+
1 (t)S−

2 (t)〉+〈S+
2 (t)S−

1 (t)〉 = ρss(t) − ρaa(t), (9)

i[〈S+
1 (t)S−

2 (t)〉 − 〈S+
2 (t)S−

1 (t)〉] = 2Im[ρas(t)].

We see from Eq. (9) that the interference term proportional
to cos(kr12 cos θ ) will contribute to the intensity only when
ρss(t) �= ρaa(t), i.e., when the symmetric and antisymmetric
states are unequally populated. Consequently, a reduction
in the population of one of the two states relative to the
population of the other state will be accompanied by an
axial two-sided emission. On the other hand, the interference
term proportional to sin(kr12 cos θ ) will contribute to the
intensity only when Im[ρas(t)] �= 0. Thus, a nonzero coherence
between the symmetric and the antisymmetric states will be
accompanied by a one-sided emission.

B. Master equation

Suppose that the emitters are located at positions �r1 =
(0,−r12/2,0) and �r2 = (0,r12/2,0) along the y axis and are
illuminated with a monochromatic laser beam of angular
frequency ωL, a propagation wave vector �kL, and a variable
intensity profile with spatially varying amplitude �EL(x,y,z)
and phase φL(x,y,z), as shown in Fig. 4. In a real experiment
this might be an LG laser beam. The laser excites transitions
between the two energy states |ei〉 and |gi〉 (i = 1,2), separated
by a frequency ω0. The population of the excited states of the
emitters decays to the ground states at a rate �.

FIG. 4. (Color online) Schematic of the system composed of two
emitters represented by transition dipole moments �μ1 and �μ2 and
irradiated with a laser beam propagating in the direction perpendicular

to the interatomic axis, �kL ⊥ �r12. The laser has a cylindrically
symmetric (doughnut-shaped) intensity profile. With this variable
intensity profile, the two emitters can be excited with arbitrary
amplitudes and phases.
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The emitters radiate by the process of spontaneous emission
and the intensity of the emitted field is detected at a point A

distance �R in the yz plane. To explore the role of the structured
beam profile in the controlled mode switching and directional
emission, we choose the direction of propagation of the laser
beam perpendicular to the interatomic axis, �kL ⊥ �r12, i.e., the
laser beam propagates along the z direction and has a structured
amplitude in the xy plane. If the driving field is in the form of a
plane wave of a constant amplitude, then the atoms experience
the same amplitude and phase of the field. However, when the
laser field is taken to have a variable intensity profile, then
the atoms can experience different amplitudes and phases of
the field; as a result, the radiative properties of the atoms may
change.

Our purpose is to calculate the angular distribution of the
radiation intensity, the radiation pattern of the field emitted by
the driven atoms. Thus, according to Eq. (7), we need to obtain
the atomic correlation functions or the matrix elements of the
reduced (atomic) density operator, which satisfies the master
equation [32,33]

∂ρ

∂t
= − i

�
[H0 + HL,ρ] +

(
∂

∂t
ρ

)
S

+
(

∂

∂t
ρ

)
A

, (10)

where

H0 = ��L(Ass + Aaa + 2Aee) + ��12(Ass − Aaa), (11)

and

HL = �

2
√

2
{�1(Aes + Asg + Aag − Aea)

+�2(Aes + Asg − Aag + Aea) + H.c.} (12)

is the interaction Hamiltonian of the atoms with the driving
laser field. Here, Anm = |n〉〈m| is the projection operator
between the collective states, �L = ω0 − ωL is the detuning
of the laser field frequency ωL from the atomic transition
frequency ω0, and the quantities �1 and �2 are the Rabi
frequencies of the laser field at the positions of atoms
1 and 2, respectively. The quantity �12 depends on the
distance between the atoms and gives the effect of the atomic
interaction, the dipole-dipole interaction, on the shift of the
energy levels of the system

�12 = 3

4
�

{
−[1 − (μ̄ · r̄12)2]

cos(k0r12)

k0r12

+ [1 − 3(μ̄ · r̄12)2]

[
sin(k0r12)

(k0r12)2
+ cos(k0r12)

(k0r12)3

]}
, (13)

where k0 = ω0/c, and μ̄ and r̄12 are unit vectors in the direction
of the atomic dipole moment �μ and the interatomic axis �r12,
respectively.

The dissipative part of the master equation, (10), consists
of two terms corresponding to the two decay (fluorescent
emission) channels [32,34]: the symmetric channel |e〉 →
|s〉 → |g〉, with an enhanced decay rate �s = � + �12,(

∂

∂t
ρ

)
S

= −1

2
�s{(Aee + Ass)ρ

+ ρ(Aee + Ass) + AseρAsg + AgsρAes

− 2(AseρAes + AgsρAsg)}, (14)

and the antisymmetric channel |e〉 → |a〉 → |g〉, with a
reduced decay rate �a = � − �12,(

∂

∂t
ρ

)
A

= −1

2
�a{(Aee + Aaa)ρ + ρ(Aee + Aaa) + AaeρAag

+AgaρAea − 2(AaeρAea + AgaρAag)}. (15)

Here, �12 gives the effect of the atomic interaction on the
damping rate of the system:

�12 = 3

2
�

{
[1 − (μ̄ · r̄12)2]

sin(k0r12)

k0r12

+ [1 − 3(μ̄ · r̄12)2]

[
cos(k0r12)

(k0r12)2
− sin(k0r12)

(k0r12)3

]}
. (16)

Since the Rabi frequencies �1 = |�1| exp(iφ1) and �2 =
|�2| exp(iφ2) can be different, i.e., can have different magni-
tudes and phases, we write the interaction Hamiltonian, (12),
in the form

HL = i�[�α(Aes + Asg) + �β(Aea + Aag) − H.c.], (17)

where

�α = (�d sin φd − i�0 cos φd )/
√

2,
(18)

�β = (�0 sin φd − i�d cos φd )/
√

2,

in which

�0 = 1
2 (|�1| + |�2|), �d = 1

2 (|�1| − |�2|), (19)

and φd = (φ1 − φ2)/2 is the phase difference between the
Rabi frequencies of the atoms. Clearly, the transitions of
the symmetric channel are driven at the Rabi frequency �α ,
while the transitions of the antisymmetric channel are driven
at the Rabi frequency �β . In general, both channels can be
simultaneously driven by the laser.

C. Equations of motion for the density matrix elements

In the basis of the collective states the master equation
leads to a set of 15 coupled differential equations for the
density matrix elements. Among them we can distinguish
eight equations for the density matrix elements determining
transitions between the symmetric states,

ρ̇ss = −�s(ρss − ρee) + [�α(ρgs − ρse) + c.c.],

ρ̇ee = −2�ρee + [�αρse − �βρae + c.c.],

ρ̇sg = −(
1
2�s + i�12

)
ρsg − 1

2�sρes + �α(ρgg − ρss)

−�∗
αρeg − �βρsa,

ρ̇se = −[
1
2 (2�s + �a) + i�12

]
ρse + �∗

α(ρss − ρee)

+�αρge − �∗
βρsa,

(20)
ρ̇eg = −�ρeg + �α(ρsg − ρes) − �β(ρag + ρea),

ρ̇gs = −(
1
2�s − i�12

)
ρgs − 1

2�sρse + �∗
α(ρgg − ρss)

−�αρge − �∗
βρas,

ρ̇es = −[
1
2 (2�s + �a) − i�12

]
ρes + �α(ρss − ρee)

+�∗
αρeg − �βρas,

ρ̇ge = −�ρge + �∗
α(ρgs − ρse) − �∗

β(ρga + ρae),
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and seven equations determining transitions between antisym-
metric states,

ρ̇aa = −�a(ρaa − ρee) + [�β(ρga + ρae) + c.c.],

ρ̇ae = −[
1
2 (�s + 2�a) − i�12

]
ρae − �∗

β(ρaa − ρee)

+�βρge + �∗
αρas,

ρ̇ag = −(
1
2�a − i�12

)
ρag − 1

2�aρea + �β(ρgg − ρaa)

+�∗
βρeg − �αρas,

ρ̇as = −(� − 2i�12)ρas − �αρae + �∗
αρag

+�βρgs + �∗
βρes, (21)

ρ̇ea = −[
1
2 (�s + 2�a) + i�12

]
ρea − �β(ρaa − ρee)

+�∗
βρeg + �αρsa,

ρ̇ga = −(
1
2�a + i�12

)
ρga − 1

2�aρae + �∗
β(ρgg − ρaa)

+�βρge − �∗
αρsa,

ρ̇sa = −(� + 2i�12)ρsa − �∗
αρea + �αρga

+�∗
βρsg + �βρse.

The remaining equation of motion for ρgg is found from the
closure relation ρgg = 1 − ρss − ρee − ρaa . We see from the
equations that the transitions between the symmetric states
are driven at the Rabi frequency �α and are coupled to the
antisymmetric states with a strength proportional to �β . On
the other hand, transitions between the antisymmetric modes
are driven at the Rabi frequency �β and are also coupled
by �β to the transitions between the symmetric states. Thus,
in the case of �β = 0, the dynamics of the symmetric and
antisymmetric states are independent of each other.

For numerical analysis, it is convenient to write the set of
differential equations in matrix form. When ρgg is eliminated
from the equations, we arrive at an inhomogeneous equation,

d

dt
�Y = −M �Y + �P , (22)

where �Y is a column vector composed of the density matrix
elements

�Y = col(ρss,ρee,ρsg,ρse,ρeg,ρgs,ρes,ρge,

ρaa,ρae,ρag,ρas,ρea,ρga,ρsa), (23)

�P is a column vector with nonzero elements

P3 = �α, P6 = �∗
α, P11 = �β, P14 = �∗

β, (24)

and M is the 15×15 matrix of the complex coefficients. It is
convenient to express the matrix M in block form as

M =
(

S B

D A

)
, (25)

in which the block S is an 8×8 matrix of the coefficients of the
eight equations involving the density matrix elements, (20),
block A is a 7×7 matrix of the coefficients of the seven
equations involving the density matrix elements, (21).

The off-diagonal blocks B and D are 9×6 and 6×9 matrices
whose nonzero elements are

B21 = B37 = B53 = B55 = B74 = �β,
(26)

B25 = B47 = B64 = B82 = B86 = �∗
β,

and

D12 = −�a,

D28 = D46 = D68 = D74 = −�β,
(27)

D31 = D32 = D52 = �β,

D22 = −D35 = D55 = −D61 = −D62 = D73 = −�∗
β.

Clearly, the nonzero elements of the off-diagonal blocks are
only those involving �β and its complex conjugate. Note that
�β is different from 0 only when the atoms experience different
amplitudes and/or phases of the driving laser field.

IV. RADIATION PATTERN

We now proceed to give illustrative examples of the
directionality of the emission by a system of two identical
two-level emitters driven by an LG beam. For this purpose,
we numerically solve the set of optical Bloch equations,
Eq. (22), to obtain the steady-state (t → ∞) values of the
density matrix elements. The solutions are then applied
to determine the steady-state radiation intensity. Written in
spherical coordinates the radiation pattern of a two-atom
system, Eq. (7), is independent of the azimuthal angle φ.
Consequently, the radiation pattern is displayed graphically in
a polar form for a variety of different sizes of the system, i.e.,
different distances between the atoms. It can be regarded as the
radiation pattern viewed from the top of the two-atom antenna.
The following interatomic distances are chosen for specific
consideration, r12 = λ/4, λ/2, 3λ/4, and λ. The choice of
short distances (r12 � λ) has been dictated by the fact that
the directional character of the emitted field results from the
interference between the electric fields emitted by the different
atoms, which, on the other hand, is pronounced for small
r12. Moreover, at distances r12 � λ the system emits light
only in a few discrete directions, which justifies regarding
the systems as a highly directional antenna. Radiation patterns
are illustrated for two particularly interesting configurations
of the driving field at the position of the atoms, i.e., when the
driving field creates a phase difference only (φd �= 0,�d = 0)
and an amplitude difference only (�d �= 0,φd = 0).

Considering the phase difference first, we plot in Fig. 5
the angular distribution of the radiation intensity for the
atomic separation r12 = λ/4 and phase differences φd = 0 and
φd = ±π/4. The case of φd = 0 corresponds to the dipole
moments of the atoms driven with the same phase. The
angular distribution of the emitted radiation is asymmetric,
with enhanced emission in the direction perpendicular to the
interatomic axis. Thus, for φd = 0, the system tends to radiate
in the direction perpendicular to the interatomic axis. In other
words, the system behaves as a two-sided antenna radiating
along the direction perpendicular to the interatomic axis. Note
that the pattern is symmetric around both the horizontal (0,π )
and the vertical (π/2,3π/2) axis. The pattern varies with the
phase difference φd with which the atoms are driven. We see
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FIG. 5. (Color online) Polar diagram of the radiation intensity as
a function of the observation direction θ for the atomic separation
r12 = λ/4 with �L = 0, �1 = �2 = 0.2�, and different values of
the phase difference φd : φd = 0 (dashed-dotted black line), φd = π/4
[solid (red) line], and φd = −π/4 [dashed (blue) line]. The positions
of atoms with the transition dipole moments polarized perpendicular
to the plane of the paper (μ̄ ⊥ r̄12) are shown by filled (brown) circles.

that for the phase differences φd = ±π/4 the system tends to
radiate along the interatomic axis, with a striking asymmetry
about the vertical axis. Depending on whether φd = π/4 or
φd = −π/4, the emitted radiation is spatially concentrated
in the left half (cos θ < 0) or in the right half (cos θ > 0)
of the pattern. Thus, the direction of the emission reverses
when φd reverses sign from π/4 to −π/4. Clearly, a phase
difference between the atomic dipole moments dictates the
direction of the emission. For φd = ±π/4 the system behaves
as a one-sided antenna. Another interesting observation is that
the radiation patterns for φd = ±π/4 resemble very much the
radiation pattern of a Yagi-Uda antenna [37]. A similar pattern
is also produced by a patch antenna [38].

The switching of the behavior of the system from a
two-sided to a one-sided antenna can be understood by
invoking the effect of the angular factors cos(kr12 cos θ ) and
sin(kr12 cos θ ) that determine the radiation pattern, Eq. (7).
As discussed in Sec. III A, the factor cos(kr12 cos θ ) has the
property of concentrating the radiation along two opposite
axial modes, whereas the factor sin(kr12 cos θ ) has the property
of concentrating the emission along single axial modes.
According to Eqs. (7) and (9), the factor cos(kr12 cos θ ) con-
tributes to the radiation pattern only when the symmetric and
antisymmetric states of the system are unequally populated,
ρss − ρaa �= 0. The factor sin(kr12 cos θ ) contributes to the
radiation pattern only when there is a nonzero coherence
between these states, Im[ρas(t)] �= 0. It is easy to find that for
the parameter values in Fig. 5, ρss − ρaa �= 0 for both φd = 0
and φd = ±π/4, whereas Im[ρas(t)] = 0 for φd = 0, but
Im[ρas(t)] �= 0 for φd = ±π/4 such that Im[ρas(t)]|φd=π/4 =
−Im[ρas(t)]|φd=−π/4. Thus, the switching of the behavior of
the system from a two-sided to a one-sided antenna is achieved

FIG. 6. (Color online) Polar diagram of the radiation intensity as
a function of the observation direction θ for the atomic separation
r12 = λ/4 with �L = 0, �1 = �2 = 0.2�, and different phase
differences φd : φd = 0 (dashed-dotted black line) and φd = π/2
[solid (red) line].

by the creation of nonzero coherence between symmetric and
antisymmetric states.

In Fig. 6 we compare the angular distribution for φd = 0
with that for φd = π/2 for the same atomic separation as in
Fig. 5. The phase difference φd = π/2 corresponds to the
dipole moments of the atoms driven with opposite phases, φ1 =
π,φ2 = 0. As discussed in the previous section, the case of
φd = 0 corresponds to the situation where the laser field drives
only the symmetric modes of the system, while in the case of
φd = π/2 the laser effectively drives only the antisymmetric
modes. We see that the phase difference φd = π/2 has the
effect of forcing the atoms to radiate along the interatomic axis.
Unlike the radiation patterns for the phase differences φd =
±π/4, this radiation pattern exhibits highly pronounced lobes
along the interatomic axis, with 0’,s (nodes) in the emission
occurring in the perpendicular directions, θ = π/2 and θ =
3π/2. The opening angle of the lobes is about 120◦, which is
much smaller than that for φd = ±π/4. Behavior of this kind
can be interpreted as being a consequence of the trapping of
photons along the interatomic axis: a photon emitted by atom 1
is absorbed by atom 2 and then, when emitted by atom 2, is
reabsorbed by atom 1.

We would like to stress here that although the emission
for φd = π/2 is more focused along the interatomic axis
than that for φd = π/4, it is symmetrically distributed around
the vertical axis. For this reason, the directionality of the
emission for φd = π/4, which is strongly asymmetric around
the vertical axis, can still be regarded as more pronounced than
that for φd = π/2.

The directionality of the emission by the two-atom system
can be improved by increasing the separation between the
atoms. This is illustrated in Fig. 7, which shows the radiation
pattern for the atomic separation r12 = λ/2 and various
values of φd . An improvement of the directionality shows
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FIG. 7. (Color online) Polar diagram of the radiation intensity as
a function of the observation direction θ for the atomic separation
r12 = λ/2 with �L = 0, �1 = �2 = 0.2�, and different phase
differences φd : φd = 0 (solid black line), φd = π/4 [dashed-dotted
(red) line], and φd = π/2 [dashed (blue) line].

up clearly in the presence of 0’s in the emission for several
phase differences φd . The radiation patterns are composed of
two well-distinguished lobes whose directions and symmetry
depend on φd . A change of φd from 0 to π/2 rotates the
direction of the lobes by π/2: from the perpendicular to the
parallel to the interatomic axis. For phases 0 and π/2 the lobes
are the same size but for any phase between these two values
they are different sizes. Moreover, the opening angles of the
lobes and their magnitudes also vary with φd .

At a larger distance between the atoms a variation of the
phase difference φd not only may lead to a change in the
direction of the lobes but also may reduce the number of lobes.
This is illustrated in Fig. 8, which shows the radiation pattern
for r12 = 3λ/4 and two values of φd . It is shown that the
number of lobes depends on φd and is reduced from four to
three when φd is varied from 0 to π/4. Moreover, we see that
upon changing the phase φd from 0 to π/4, the behavior of the
system changes from that of a two-sided antenna to that of a
one-sided antenna.

However, the reduction in the number of lobes seen for
r12 = 3λ/4 might not be seen for other distances between
the emitters. For example, at distance r12 = λ, the variation
of the phase φd from 0 to π/2 changes the direction of the
lobes and their shape, but the number remains the same. This
is illustrated in Fig. 9 for various values of φd from 0 to
π/2. The figure shows that for φd = 0 and π/2 the radiation
pattern exhibits pronounced lobes in directions symmetrically
located about the horizontal and vertical axis. The pattern
becomes asymmetric for values of φd different from 0 and
π/2. Consequently, for φd = 0,π/2, the system behaves as
a strongly directional two-sided antenna with emission into
narrow lobes. A change in phase from those of 0 or π/2 causes
the system to behave as a one-sided antenna.

FIG. 8. (Color online) Polar diagram of the radiation intensity as
a function of the observation direction θ for the atomic separation
r12 = 3λ/4 with �L = 0, �1 = �2 = 0.2�, and different phase
differences φd : φd = 0 (dashed black line), φd = π/4 [solid (red)
line].

The results presented in Figs. 5–9 show clearly that in
all cases considered it turns out that the system behaves as
a two-sided directional antenna when the phase difference
φd equals an even multiple of π/4. When φd equals an odd
multiple of π/4, the system behaves as a one-sided antenna. It
is particularly simple to interpret this behavior by referring
to the expression for the radiation intensity, Eq. (7). The
intensity contains two interference terms, one proportional
to cos(kr12 cos θ ) and the other proportional to sin(kr12 cos θ ).
Radiation at an angle θ from atom 2 has a distance r12 cos θ

farther to travel to the observation point than that from atom 1.
Its electric field is therefore retarded by an extra amount
kr12 cos θ . The fields of the atoms interfere constructively if
the phase φ2 at which atom 2 is driven relative to phase φ1

at which atom 1 is driven, φ1 − φ2 = 2φd , can compensate
for the additional retardation. Thus, constructive interference
occurs at angles θ such that

kr12 cos θ = 2φd. (28)

For the phase difference φd = 0 or π/2, the interference
term cos(kr12 cos θ ) = ±1, whereas sin(kr12 cos θ ) = 0. In
this case, the variation of the radiation intensity with θ is
solely determined by the cosine term. Thus, a two-sided
emission takes place simply because cos θ > 0 gives the
same cos(kr12 cos θ ) as cos θ < 0. However, for the phase dif-
ference φd = π/4, the interference term cos(kr12 cos θ ) = 0,
whereas sin(kr12 cos θ ) = 1. Hence, the symmetry of the
emission direction is broken simply because cos θ >

0 gives sin(kr12 cos θ ) positive, whereas cos θ < 0 gives
sin(kr12 cos θ ) negative. The radiation intensity then has
different magnitudes in the cos θ > 0 and cos θ < 0 parts
of the pattern. In physical terms one-sided emission reflects
constructive and destructive interference effects on the two
sides of the pattern.
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FIG. 9. (Color online) Polar diagram of the radiation intensity as
a function of the observation direction θ for the atomic separation
r12 = λ with �L = 0, �1 = �2 = 0.2�, and different phase differ-
ences φd . Top: The dashed black line represents φd = 0; the solid (red)
line, φd = π/2. Bottom: The dashed black line represents φd = π/8;
the solid (red) line, φd = π/4.

The above analysis of the radiation pattern has focused on
examples where the emitters experience the same amplitudes
but different phases of the driving field. Interesting behavior
can be uncovered in the radiation pattern by considering a
situation where the atoms experience different amplitudes of
the driving field, �d �= 0. We illustrate this with an example
in which the driving of the system is configured such that only
one of the two atoms is driven by the laser field. Referring to
the collective modes of the system discussion in Sec. III C, this
corresponds to the situation where symmetric and antisymmet-
ric modes are driven by the same Rabi frequency, �α = �β .
In Fig. 10 we show the radiation pattern for r12 = λ/4 and
φd = 0. The radiation pattern is composed of a single lob,

FIG. 10. (Color online) Polar diagram of the radiation intensity
as a function of the observation direction θ for the atomic separation
r12 = λ/4 with �L = 0 and φ1 = φ2 = 0 and for different Rabi
frequencies experienced by the atoms: �1 = 0.4�,�2 = 0 (dashed
black line) and �1 = 0,�2 = 0.4� [solid (red) line].

showing that the radiation tends to be mainly on one side of the
system. Thus, the undriven atom steers the system to radiate to
one side of the pattern, i.e., it shows a tendency to behave as a
one-sided antenna. The direction of the lobe reverses when �d

reverses its sign. Again, this one-sided emission behavior can
be understood by referring to the effect of the angular factor
sin(kr12 cos θ ) appearing in the expression for the radiation
pattern. The contribution of this factor is determined by
Im[ρas(t)]. It is easily shown that Im[ρas(t)] �= 0 for �d �= 0
such that Im[ρas(t)]|�d>0 = −Im[ρas(t)]|�d<0.

V. SUMMARY

We have studied the directional properties of the radiation
field emitted by a system of two identical two-level emitters
located at short distances and driven by a laser beam with
a structured phase and amplitude. We have shown that the
system can operate as a nanoantenna for controlled directional
emission. We have calculated the radiation intensity of the field
emitted by the system and have shown that a constant phase or
amplitude difference at the positions of the emitters plays an
essential role in the directivity of the emission. Polar diagrams
have been presented showing the radiation patterns under
various conditions of excitation and for various separations
between the emitters. We have demonstrated that, depending
on the phase or amplitude difference at the positions of the
emitters, the system can operate as a two- or as a one-sided
directional nanoantenna. A two-sided directional emission is
achieved with a symmetric driving where the emitters expe-
rience the same amplitude and a constant phase difference of
the driving field. We have found a general directional property,
namely, that when the phase difference at the positions of the
emitters equals an even multiple of π/4, the system behaves as
a two-sided antenna. On the contrary, when the phase differ-
ence equals an odd multiple of π/4, the system behaves as a
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one-sided antenna. We have also considered the case where the
emitters experience the same phase but different amplitudes of
the driving field and have found that the effect of different am-
plitudes is to cause the system to behave as a one-sided antenna
radiating in one direction centered along the interatomic axis.
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