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Single-cycle coherent terahertz-pulse propagation in rigid-rotor molecular media
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We theoretically analyze linear and nonlinear coherent propagation of linearly polarized, plane-wave, resonant
single-cycle terahertz pulses through spatially extended rigid-rotor molecular media. Our model incorporates
mixed state medium preparation, nonperturbative nonlinearities, saturation, coherence, memory effects, and
propagation, but ignores the effects of damping. Explicit solutions are reported in the linear propagation regime.
These solutions are the multilevel superposition of linear, single-cycle 0π pulses, and appear as temporal beats
in the time domain. For media initially in thermal equilibrium, the pulse and molecular beats are dispersive
and broaden temporally with increased propagation distance. In the simplified limit of equal rotational line
strength (an idealized situation), the emitted impulses are exact temporal copies of the input pulse. An efficient,
scalable computational method for solving the reduced multilevel Maxwell-Bloch equations for molecular media
is reported. This method is based on a standard differential method for the propagation equation together with
an operator splitting method for the Bloch equations. It invokes neither the slowly varying envelope (SVEA) or
rotating wave approximations (RWA), and incorporates a large number of possible energy eigenstates (we solve
for 7744 levels). Case studies of nonlinear single-cycle pulse propagation are then provided by means of computer
solutions. In the nonlinear regime, we observe strong molecular orientations and suppression of the pulse and
orientational revivals predicted by linear theory. For sufficiently strong pulses, coherent bleaching effects lead
to increased transmission of the driving pulse, which also bears signs of self-modulation and carrier-shock
formation.
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I. INTRODUCTION

Pulsed terahertz (THz) technology [1] is emerging as an
attractive research field with various applications in biomedical
imaging [2], spectroscopy [3,4], and molecular orientation
[5–16]. In contrast to material excitations using optical
radiation, which predominantly excites valence electrons in the
∼2-eV range, electromagnetic THz waves excite low-energy
modes such as molecular rotations [7], lattice vibrations
[17], and spin waves [18]. It is, for example, the rotational
transitions in light molecules that make THz a candidate for
nonionizing medical imaging of soft tissue, while several other
key applications, such as quantum information [19], chemical
selectivity [20], population control [21], etc., rely on an
anisotropic molecular angular distribution. Other researchers
aim at using angularly localized molecules as an intermediate
preparation step for initiating strong field ionization [22] or
high harmonic generation (HHG) [23]. Although the field of
THz-induced molecular orientation has grown rapidly over the
past decade, the first observation of THz-induced orientation
of polar molecules appears in the early experiments by Harde
et al. [24] and Harde and Grischkowsky [25]. Classically,
macroscopic molecular orientations are initiated by the torque
a polarized external field exerts through the permanent dipole
moment of the molecule. For linearly polarized, time-varying
fields, the torsional force is directed in the polar plane of the
molecules and acts to orient them along the instantaneous
field direction. After the pulse has passed, the free induction
decay (FID) polarization signal of the molecules deteriorates
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rapidly due to destructive interference between an infinite
number of excited rotational modes, analogous to the FID
of an excited inhomogeneously broadened two-level quantum
system. Quantum mechanically, a resonant pulse coherently
excites a finite number of possible angular momentum modes.
In the absence of an external field, the interference among the
variously excited transitions also leads to initial suppression of
the free-induction signal. However, due to the discreteness of
the quantum-mechanical rigid rotor, the molecules reorient at
certain rephasing periods and radiate in phase at equally spaced
time bursts. The space-time behavior of the bursts describes
the fidelity of the molecular orientation, and is of practical
interest in both the linear and nonlinear excitation regimes.

Propagation of resonant THz pulses through an extended
molecular medium has, to the best of our knowledge, not been
considered to date. Electromagnetic THz waves overlap with
the rotational transitions of light, polar molecules. Examples
of such molecules are the hydrogen halides [e.g., hydrogen
fluoride (H=F) and carbonyl sulfide (O=C=S)]. In the vapor
phase, the relaxation times of these transitions are compara-
tively long with respect to the THz pulse duration (�1 ps).
A THz pulse can therefore excite large-amplitude, long-lived
coherent molecular transients. A theoretical description must
correspondingly incorporate memory effects, saturation and
quantum coherence, rather than employing models based on
parametric wave amplification, or on pulse intensities and
rate equations. It is clear that although the backaction of
the molecular response on the propagating field is of obvious
importance to the above mentioned applications, and provide
more than enough justification for a theoretical study, a
first-principles approach is interesting also in its own right.

In this paper, we investigate the propagation of linearly
polarized single-cycle THz pulses moving through an extended
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rigid-rotor molecular medium. Our approach is semiclassical;
the THz field is imposed as a spatially and temporally varying
classical (i.e., nonquantized) field, and the molecules are
described using quantum theory. This model differs from
theoretical models employed in laser alignment studies with
regard to incorporation of the radiation reaction feature
of the molecules, and its effect on the propagated field.
Traditional semiclassical pulse propagation models based on
the simplifying slowly varying envelope and rotating wave
approximations are stretched to their limits—or even broken—
in the single-cycle regime that we study. Moreover, the
octave-wide spectra of such pulses break with the bandwidth
constraints that are necessary in the conventional approx-
imation of the Schrödinger equation to a few-level Bloch
system. For rigid-rotor molecules, the theoretical complexity
is additionally reinforced by the level degeneracy of higher
angular momentum states. It has been shown that nonresonant
pulse interaction with such molecules may be treated in a
simplified model using a delayed Raman response, but the
calculation technique is limited to times much shorter than
the rotational revival period and only capture the leading edge
of the pulse [26]. In addition, the expressions for the optical
response are then entirely classical, leaving out effects like
molecular coherence, saturation, and quantum discreteness.
An analysis beyond these limitations is technically demanding,
but feasible. In the face of these challenges we resort to
numerical computations and extend the theoretical framework
of coherent pulse propagation in several directions. Firstly, we
establish a unidirectional multilevel theoretical model for the
propagation of linearly polarized single-cycle pulses through
rigid-rotor media. We derive exact solutions in the linear,
sharp-line limit. An interesting solution is encountered when
the line intensities of each transition are equal (a theoretical
situation), in which case the rotational wave packets emit exact
temporal copies of the input pulse. Secondly, starting from a
propagation equation valid for single-cycle pulse durations,
we formulate a scalable numerical algorithm for spatiotem-
poral integration of the nonlinear equations of motion. Such
calculations are usually performed in the framework of the
finite-difference time-domain (FDTD) method reported by
Ziolkowski et al. [27], which is based on the full Maxwell
equations coupled with quantum theory under the two-level
restriction. Ziolkowskis original method has been adopted by
others [28–30] and has also been extended to homogeneously
and inhomogeneously damped multilevel media [31–34].
However, direct Maxwell methods are numerically limited to
short propagation lengths, enforced by the requirement of a
spatial step size, which must be smaller than a wavelength. It
is well known, however, that Maxwell’s wave equation may
be reduced to a unidirectional propagation equation outside
the conventional slowly varying envelope approximation (see,
e.g., [35–39]), but coupling of these equations to resonant
response models has not been considered to date. In contrast,
the novelty of our method, which pertains to the electric
field rather than the concept of a pulse envelope, lies in its
applicability to single-cycle pulse propagation over long dis-
tances for many-level media. Here, we numerically integrate
over J = 87 degenerate rotational levels, corresponding to
(J + 1)4 ≈ 60 × 106 individual density matrix elements. In
addition, the numerical methods reported are immediately

extensible to any type of finite-dimensional Bloch system, and
thus offer a pathway for investigating other types of molecular
excitations. Thirdly, we report on computer solutions for
field and molecules in the nonlinear propagation regime.
We observe that as the amplitude of the input THz pulse
increases, the molecules are strongly orientated and the
pulse revivals predicted by linear theory are considerably
suppressed. For sufficiently strong pulses, coherent bleaching
leads to increased transmission of the driving pulse, which
also shows signatures of self-modulation and carrier-shock
formation.

This paper is organized as follows. In Sec. II, we present
our theoretical model and basic definitions. This model is
linearized and further analyzed in Sec. III where we report on
exact solutions. In Sec. IV, we present a computational method
for spatiotemporal integration of the parametrically coupled
equations of motion, before presenting computer solutions for
nonlinear propagation in Sec. V. Our results are summarized
in Sec. VI, and we mention a few possible future extensions
of this work.

II. PHYSICAL MODEL

A. Maxwell’s equations

In the laboratory frame, we presume that the THz pulse is
linearly polarized along z and propagates along +x without
significant coupling in the transverse plane. The propagation
of the electric field E = E(t,x) ẑ is described by the scalar
wave equation(

∂2

∂t2
− c2 ∂2

∂x2

)
E(t,x) = 1

ε0

∂2P (t,x)

∂t2
, (1)

where P = P (t,x) ẑ is the molecular polarization. Equation (1)
is a bidirectional wave equation supporting propagation along
±x and is susceptible to numerical integration, but requires
spatial sampling finer than a wavelength. To reduce the
numerical cost inherent in Eq. (1), it is necessary to neglect
the possibility of backward wave propagation along −x.
Excitations of backward traveling waves are interesting in their
own right, and may have profound effects [40–42], but only
their absence is desired here. The following scaling argument
due to Bullough et al. [43] applies. Scale E and P by constants
Ec and Pc such that

E = E

Ec

, (2a)

P = P

Pc

(2b)

are quantities of order unity. Introduce the new co-
ordinates τ± = t ± x/c, c∂/∂x = ∂/∂τ+ − ∂/∂τ−, ∂/∂t =
∂/∂τ+ + ∂/∂τ−, which yields for Eq. (1)

2
∂2

∂τ−∂τ+
E = −ε

2

(
∂

∂τ−
+ ∂

∂τ+

)2

P, (3)

where ε = Pc/(ε0Ec) is presumed to be a small quantity.
Look for solutions with dominant forward traveling parts with

023843-2



SINGLE-CYCLE COHERENT TERAHERTZ-PULSE . . . PHYSICAL REVIEW A 92, 023843 (2015)

forward and backward traveling perturbations:

E = E0(τ−) + εE1(τ−,τ+) + ε2E2(τ−,τ+) + · · · , (4a)

P = P0(τ−) + εP1(τ−,τ+) + ε2P2(τ−,τ+) + · · · . (4b)

To first order in ε, Eq. (3) yields

2ε
∂E1

∂τ+
= −ε

2

∂P0

∂τ−
+ O(ε2), (5)

which is equivalent to

2
∂

∂τ+
(E0 + εE1) = −ε

2

(
∂

∂τ+
+ ∂

∂τ−

)
P0 + O(ε2). (6)

Reverting back to the original coordinates and fields, we find(
∂

∂t
+ c

∂

∂x

)
E = − 1

2ε0

∂P

∂t
. (7)

We switch to a traveling reference frame by introducing the
retarded time τ = t − x/c, which transforms Eq. (7) into

∂E(τ,x)

∂x
= − 1

2ε0c

∂P (τ,x)

∂τ
. (8)

Physically, Eq. (8) is valid only when the polarization is
small compared to the electric field, or equivalently when
changes to E induced by the material are negligible over a
wavelength [35]. These conditions hold for a wide class of
experiments. Strictly speaking, Eqs. (1) and (8) are not valid for
subcycle pulses because diffraction-induced transformations
then occur due to the different Rayleigh lengths of each
frequency component contained in the pulse, which will
chirp the pulse even for propagation in free space [44].
Analogous to the results obtained by invoking slowly varying
envelope approximation, Eq. (8) describes the spatiotemporal
evolution in terms of the delayed time τ , an equation which
is computationally more tractable than Eq. (1). The price to
pay for this simplification is the neglect of interaction with
self-induced backward traveling waves [40–42].

B. Optical Bloch equations

We assume that the material is described by a collection
of noninteracting molecules, and that the Born-Oppenheimer
approximation is valid. This decouples the electronic, vibra-
tional, and rotational degrees of freedom. In the absence of
interactions that excite ro-vibrational or vibronic motions, the
molecule remains in its initial electronic and vibrational state,
and only the rotational part of the molecule is affected by
the externally applied THz field. For greatest simplicity, we
disregard centrifugal distortion and model this part of the
molecule as a rigid rotor (see Fig. 1).

The interaction between the rotor molecules and the
external field E is described by the Hamiltonian

H = J2

2I
− μ · E

=
∑
jm

�ωj |jm〉〈jm| − E
∑
jm

j ′m′

μ
(z)
jm,j ′m′ |jm〉〈j ′m′|, (9)

where J is the angular momentum operator and I is the
moment of inertia of the molecule. The first term on the right-

FIG. 1. (Color online) Rigid-rotor molecular model. The angles
θ and ϕ define the polar and azimuthal angles the molecular axis,
defined as the vector from the negative to the positive charge, makes
with respect to the field polarization. The polarization of the E field
is space-fixed along z for all times.

hand side of Eq. (9) represents the free rotational Hamiltonian
H0 of the molecule; the second represents the interaction with
the external field. In the second line of Eq. (9), the Hamiltonian
is expanded in the spherical harmonic eigenstates |jm〉 that are
simultaneous eigenfunctions of J2 and Jz with eigenvalues

J2|jm〉 = �
2j (j + 1)|jm〉, (10a)

Jz|jm〉 = �m|jm〉, (10b)

where �m is the projection of the angular momentum of a
rotational eigenstate |jm〉 onto the space-fixed z axis. The
dipole moment operator is expanded in the same basis with
μ(z) as the projection of μ onto ẑ. Magnetic field couplings
are neglected and the rotor eigenfrequencies are therefore
independent of the quantum number m, and equal to

ωj = 1

�
〈jm| J2

2I
|jm〉 ≡ j (j + 1)

2

ω, (11)

where 
ω = �/(2I ) is the fundamental quantum beat fre-
quency of the molecule. In the rigid-rotor approximation, the
energy spacing between adjacent rotational levels is �(ωj+1 −
ωj ) = (j + 1)�
ω, and the linear rotational spectrum consists
of many equally spaced spectral absorption lines, as shown in
Fig. 2.

The rotational part of the density operator is defined as the
ensemble average

ρ(τ,x) =
∑

k

pk|�k〉〈�k|, (12)

where
∑

k pk = 1 is a probability normalization requirement
and the pure state |�k〉 is a superposition of jm modes. The
sum runs over possible microstates in the ensemble. The time
evolution of the molecules is described by the von Neumann
equation

i�
dρ

dτ
= [H0,ρ] − E[μ(z),ρ]. (13)

This paper investigates the coherent regime where the pulse
duration is considerably shorter than any relaxation rates.
Damping terms are therefore omitted in Eq. (13). It is
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FIG. 2. (Color online) Single-cycle pulse interaction with a rigid-
rotor molecule where adjacent energy states are connected via
electric dipole transitions. The pulse spectrum is broad enough to
simultaneously excite a large number of molecular eigenstates. Each
energy level j contains 2j + 1 degenerate rotor states.

nonetheless necessary to employ a density matrix formalism
since the molecules are prepared without initial coherence.
To solve Eq. (13), we expand the density operator ρ in
the orthonormal eigenset {|jm〉} and solve for the expan-
sion coefficients, reducing Eq. (13) to a time-dependent
finite-dimensional matrix problem. Following convention
[43,45,46], Eqs. (8) and (13) are termed the reduced Maxwell-
Bloch (RMB) equations.

From these basic definitions, the essential physical mech-
anism for field-free wave-packet revival can be understood
straightforwardly. Assume that the molecules are linearly or
nonlinearly excited by a pulse E(τ ), which is turned off at time
τ = 0. Since H = H0 is constant for τ > 0, the exact solution
to Eq. (13) for all times τ > 0 is

ρ(τ ) = exp

(
−i

H0τ

�

)
ρ(0) exp

(
i
H0τ

�

)
, (14)

or in index form

ρjm,j ′m′(τ )= exp

(
i
ω[j ′(j ′ + 1) −j (j + 1)]

2
τ

)
ρjm,j ′m′(0).

(15)

Since j,j ′ are integers, then j (j + 1) − j ′(j ′ + 1) is always
an even number, and the argument of the exponential function
is therefore always an integer multiple of i
ωτ . For longer
times, τ → τ + kTb, one then finds ρ(τ + kTb) = ρ(τ ) since

exp[2πik] = 1. Consequently, wave-packet rephasing always
occurs when the eigenvalues of H0 are harmonic multiples of
a common frequency.

The solution for ρ(τ,x) completely describes the rotational
state of the medium and the solution for E(τ,x) the propagation
of the external field. Apart from the linear interaction regime,
solutions for both variables must be obtained with numerical
calculations. Unlike simple two- or three-level media, ρ

has a large number of possible nonzero entries, and the
spatiotemporal evolution must therefore be described in terms
of experimental observables rather than referring to ρ directly.

1. Polarization

The nonzero entries of the dipole moment operator are [47]

μ
(z)
jm,j+1 m = μp

√
(1 + j )2 − m2

(2j + 3)(2j + 1)
, (16)

where μp is the permanent dipole moment of the molecule.
For linearly polarized light fields, the optical selection rules
j → j ± 1, m → m apply.

The quantum numbers j,m are convenient quantum num-
bers since the molecular motion is confined to j space, while
no coherence is established between states with different
m numbers. In the suitable coordinate system where E is
polarized along z for all times, the interaction potential μ · E
is independent of ϕ. The torque N = μ × E exerted by the
field on the molecule locks the THz-induced rotations in the
polar plane,

N = −μpE(t) sin θ ϕ̂. (17)

System rotations of the molecule around the polarization
axis are invariant leaving the molecules free to rotate in the
azimuthal plane. It may be verified that dτ 〈Jz〉 = 0 for Eq. (13)
and if 〈Jz〉 is initially zero, the azimuthal rotations average out,
and the macroscopic polarization is then always P = P ẑ.

In all of the following, we denote μ(z) → μ to condense
notation. The molecular coupling to the external field occurs
via the polarization P = N 〈μ〉 = N Tr (ρμ), where N is the
number density of the medium. Using μ = μp cos θ yields

P = Nμp〈cos θ〉. (18)

Equivalently, using the transition rules above,

P = N
J−1∑
j=0

j∑
m=−j

μjm,j+1 mρj+1 m,jm + μj+1 m,jmρjm,j+1 m

(19)

in index form.

2. Energy conservation

During propagation, energy is transferred between field and
medium. By using ∂

∂τ
N 〈H 〉 = −( ∂

∂τ
E)P , Eqs. (8) and (13)

may be combined to a common energy conservation equation:

ε0c
∂

∂x
E2(τ,x) + N ∂〈H0〉(τ,x)

∂τ
= 0, (20)

where ε0cE
2 is the instantaneous intensity of the external field

and N 〈H0〉 is the internal molecular energy. In the undamped
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limit considered here, optical transparency is mathematically
inevitable since excited rotor molecules radiate indefinitely
due to the absence of damping terms. This manifests itself
as an infinitely long coherent transient in pulse and medium,
while in reality damping always takes place for sufficiently
long times, and the pulse duration remains finite. Our solutions
are only valid for time scales considerably shorter than any
relaxation times. The concept of “total energy transmission”
is not applicable to our computer simulations because the
pulse tail is, out of computational necessity, truncated at a
finite integration time. Equation (20) may nevertheless be
applied unambiguously provided that relaxation times remain
comparatively long.

3. Position space

It is convenient to represent the molecular state in the
infinite-dimensional coordinate space. The projection of the
eigenstates |jm〉 into position space r is

〈n̂|jm〉 = Ym
j (θ,ϕ), (21)

where n̂ is a unit vector along (θ,ϕ), Ym
j (θ,ϕ) is the complex

spherical harmonic

Ym
j (θ,ϕ) = (−1)m

√
(2j + 1)

4π

(j − m)!

(j + m)!
P m

j (cos θ )eimϕ,

(22)

and P m
j (cos θ ) is an associated Legendre polynomial. The

probability density  is defined

(τ,x; θ,ϕ) = 〈n̂|ρ(τ,x)|n̂〉 =
∑

k

pk|�k(τ,x; n̂)|2, (23)

where �k(τ,x; n̂) = 〈n̂|�k(τ,x)〉. Expanding �k into spherical
harmonics yields

(τ,x; θ,ϕ) =
∑
jm

j ′m′

ρjm,j ′m′Ym
j Ym′

j ′
*
. (24)

The notation (τ,x; θ,ϕ) specifies that τ and x are external
laboratory coordinates, and (θ,ϕ) are internal coordinates for
the molecules. Thus (τ,x; θ,ϕ) describes the probability of
observing the molecules along (θ,ϕ) a propagation distance
x into the medium at time τ (see Fig. 1). Since μjm,j ′m′ = 0
for m 	= m′, we also have ρjm,j ′m′ = 0 for m 	= m′ when the
medium starts out in a completely mixed state, which we will
presume throughout this article. The ϕ dependence (but not m

dependence) can be removed from Eq. (24) and  changes to

(τ,x; θ ) =
∑

j,j ′,m

ρjm,j ′mYm
j Ym

j ′
*
. (25)

For numerical convenience, Eq. (25) is compactly written

(τ,x; θ ) = ρ(τ,x) : G(θ ), (26)

where : is the Frobenius product, and G is a matrix operator
with entries

Gjm,j ′m(θ ) = Ym
j (θ,ϕ)Ym*

j ′ (θ,ϕ). (27)

For density operators,  is analogous to the probability density
|�(n̂)|2 = |〈n̂|�〉|2 for a pure state |�〉. Conservation of

probability implies that∫ π

0
(τ,x; θ ) sin θdθ = 1

2π
. (28)

A realistic theoretical prediction for the molecular shape
must incorporate Zeeman levels even when no transitions
between the various harmonic ladder systems associated with
different quantum numbers m occur. For example, for media in
thermal equilibrium, Unsölds theorem shows that  → 1/(4π )
only when the Zeeman levels are equally populated for each j

(spherical symmetry of  indicates that the molecular axes are
distributed isotropically over the unit sphere).

4. Molecular alignment

Transient optical birefringence is measurable [48] and
proportional to the quantity

〈cos2 θ〉 =
∑
jm

ρjm,jmVjm,jm + ρjm,j±2 mVj±2 m,jm, (29)

where

Vjm,jm = 1

3

[
1 + 2

j (j + 1) − 3m2

(2j + 3)(2j − 1)

]
, (30a)

Vj−2 m,jm =
√

(j − 1)2 − m2

(2j − 1)2

j 2 − m2

(2j − 3)(2j + 1)
. (30b)

The observable 〈cos2 θ〉 may be partitioned into popula-
tion and coherences as 〈cos2 θ〉p = ∑

jm ρjm,jmVjm,jm and
〈cos2 θ〉c = ∑

jm,j ′=j±2 ρjm,j ′mVj ′m,jm [49]. For a medium
with isotropically distributed magnetic sublevels for each j ,
〈cos2 θ〉p evaluates to 1/3.

Equivalently, the orientation and alignment are described
in terms of the Legendre moments

〈Pκ (cos θ )〉 =
∑

j,j ′,m

ρjm,j ′m〈j ′m|Pκ (cos θ )|jm〉 = ρ : L,

(31)

where, of course, 〈Pκ (cos θ )〉 is additionally dependent on the
extensive variables (τ,x) via ρ. Using the Wigner 3j symbols,
the coefficients of the matrix L are analytically expressible,

Ljm,j ′m = (−1)m
√

(2j ′ + 1)(2j + 1)

×
(

j ′ k j

0 0 0

)(
j ′ k j

−m 0 m

)
. (32)

The odd-even properties of Pκ (cos θ ) imply that odd
Legendre moments measure the orientation and even moments
measure the alignment. Special values are 〈P0〉 = 1, 〈P1〉 =
〈cos θ〉, and 〈P2〉 = (3〈cos2 θ〉 − 1)/2. By the selection rules
of the Wigner 3j symbols, odd moments of 〈Pκ (cos θ )〉 contain
only coherences up to order |j ′ − j | � κ . In addition, even
moments contain populations up to the same order.

III. LINEAR SOLUTIONS

A. Linearization

Analytic solutions to Eq. (8) exist in the linear
regime when ρ is expanded to first order using standard
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quantum-mechanical time-dependent perturbation theory [48].
We denote the order of the perturbation expansion by incor-
porating a bracketed superscript on ρ (e.g., ρ[0]). The relevant
differential equations are the time evolution equations for the
population elements:

∂τρjm,jm = i
E

�
μjm,j+1mρj+1m,jm

+ i
E

�
μjm,j−1mρj−1m,jm + c.c., (33)

where c.c. indicates the complex conjugate, and the polariza-
tion coherence elements

∂τρj+1 m,jm = −i(ωj+1 − ωj )ρj+1 m,jm

+ i
μj+1 m,jmE

�
(ρjm,jm − ρj+1 m,j+1 m)

+ i
E

�
μj+1 m,j+2 mρj+2 m,jm

− i
E

�
μj−1 m,jmρj+1 m,j−1 m. (34)

The terms on the right-hand side of Eq. (34) containing the
two-photon coherences ρj+2 m,jm, ρj+1 m,j−1 m indicate the
presence of a rotational Raman coupling, which we disregard
in the linear approximation. Assuming that the populations are
not altered by the pulse, the first-order perturbative solution
for the polarization coherence ρj+1 m,jm is

ρ
[1]
j+1 m,jm = i

μj+1 m,jm

(
ρ

[0]
jm,jm − ρ

[0]
j+1 m,j+1 m

)
�

×
∫ τ

−∞
E(τ ′)ei(ωj+1−ωj )(τ ′−τ )dτ ′, (35)

where ρ[0] = ρ(τ = −∞,x) is the completely mixed initial
state ρ

[0]
jm,j ′m′ = 0 for all jm 	= j ′m′. We may evaluate the

validity of Eq. (35) in the following way. Inserting Eq. (35)
into the right-hand side of Eq. (33) followed by integration
with respect to time gives the first-order solution

ρ
[1]
jm,jm = ρ

[0]
jm,jm − |μjm,j+1 m|2(ρ[0]

jm,jm − ρ
[0]
j+1 m,j+1 m

)
�2

×
∫ τ

−∞
dτ ′

∫ τ ′

−∞
dτ ′′E(τ ′)E(τ ′′)ei(ωj+1−ωj )(τ ′−τ ′′)

+ · · · . (36)

The dots indicate the presence of additional terms that
are of the same order. The largest possible contribution
from the integrals is estimated by the triangle inequal-
ity | ∫ τ

−∞ E(τ ′) exp[i(ωj+1 − ωj )τ ′]dτ ′| �
∫ τ

−∞ dτ ′|E(τ ′)|. A
boxcar pulse |E(τ )| = E0 for 0 � τ � T may be used to
approximate the magnitude of a single-cycle pulse with
duration T . Substitution into the above integral expression
yields, for τ � T/2,

ρ
[1]
jm,jm − ρ

[0]
jm,jm �

(
ρ

[0]
jm,jm − ρ

[0]
j+1 m,j+1 m

)
× |μjm,j+1 m|2E2

0T
2

2�2
+ · · · . (37)

The linear approximation is valid if the right-hand side of
Eq. (37) is negligibly small with respect to ρ

[0]
jm,jm, which

essentially is a small area [50] approximation. Equation (37)
then shows that the linear approximation is applicable if

ρ
[0]
jm,jm − ρ

[0]
j+1 m,j+1 m

ρ
[0]
jm,jm

|μjm,j+1 m|2E2
0T

2

2�2
� 1, (38)

in which case Eq. (35) may used to calculate the polarization
coherences and the spatiotemporal evolution of the pulse.
Note that the quantity μjm,j+1 mE0T/� is essentially the
conventional pulse area associated with a j → j + 1 transition
for linearly polarized fields; the presence of the population
terms indicates that the initial population is distributed into
several molecular orbitals. This leads to a natural definition of
a normalized pulse area for the j → j + 1 transition:

�m
j ≡ ρ

[0]
jm,jm − ρ

[0]
j+1 m,j+1 m

ρ
[0]
jm,jm

|μjm,j+1 m|2E2
0T

2

2�2
, (39)

in which case the linear approximation is valid if �m
j � 1 for

all jm.
To help clarify some of the approximations invoked in

deriving analytical solutions, we also consider in the next
two subsections the effects of homogeneous damping by
introducing phenomenological terms −γρj+1 m,jm into the
right-hand side of Eq. (34), where γ is the decoherence rate.
In the frequency domain, Eq. (35) becomes

ρ
[1]
j+1 m,jm(ω) = μj+1 m,jm

(
ρ

[0]
jm,jm − ρ

[0]
j+1 m,j+1 m

)
�(ω − (ωj+1 − ωj ) − iγ )

E(ω,x),

(40)

which describes a quantum-mechanical Lorentz resonance.

B. Exact linear solution: relation to the 0π pulse

The linearized equations of motion are solved by transform-
ing Eq. (8) to the frequency domain,

∂xE(ω) = − iω

2ε0c
P (ω). (41)

The expression for the polarization is obtained by inserting
Eq. (40) into Eq. (19), and inserting the resulting expression
for P (ω) into Eq. (41) yields an evolution equation for E in
the frequency domain, with the exact solution

E(ω,x) = exp

⎛
⎝J−1∑

j=0

−ωβjx

ωj+1 − ωj

[A−
j (ω) − A+

j (ω)]

⎞
⎠E(ω,0),

(42)

where

A±
j (ω) = 1

iω ± i(ωj+1 − ωj ) + γ
. (43)

Equation (42) shows that E obeys a frequency domain Beer’s
law where each frequency component decays exponentially
with distance. Using Eqs. (11) and (16), we have summed over
the Zeeman levels. When these are populated isotropically for
each j , the coefficients βj are

βj = Nμ2
p(j + 1)2
ω

(
ρ

[0]
j,j − ρ

[0]
j+1,j+1

)
6ε0�c

, (44)
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where ρ
[0]
j,j is the initial population of level j for any m. To

return to the time domain, the exponential is expanded in its
Taylor series and cross terms A±

j A∓
j ′ are neglected since A±(ω)

is sharply peaked around ∓(ωj+1 − ωj ) in the sharp-line limit
γ � ωj+1 − ωj . By the same argument,

ω

iω ± i(ωj+1 − ωj ) + γ
≈ ∓(ωj+1 − ωj )

iω ± i(ωj+1 − ωj ) + γ
. (45)

Transforming back to the time-domain yields

E(τ,x)=E(τ,0) +
J−1∑
j=0

∫ ∞

−∞

∞∑
n=1

(−βjx)n

n!
[A+

jn(τ ′) + A−
jn(τ ′)]

×E(τ − τ ′,0)dτ ′, (46)

where A±
jn(ω) ≡ [A±

j (ω)]n. In the time domain,

A±
jn(τ ) = τn−1

(n − 1)!
e−γ τ∓i(ωj+1−ωj )τ u(τ ), (47)

where u(τ ) is the unit step function. The first term E(τ,0)
in Eq. (46) represents free translation of the pulse in the
absence of a medium and the convolution integral represents
the reshaping of the pulse due to the molecular response.
Inserting Eq. (47) into Eq. (46) yields

E(τ,x) = E(τ,0) + 2
J−1∑
j=0

∫ ∞

0

∞∑
n=1

(−βjτ
′x)n

n!(n − 1)!

1

τ ′

× e−γ τ ′
cos[(ωj+1 − ωj )τ ′]E(τ − τ ′,0)dτ ′. (48)

The sum over n evaluates to [51]
∞∑

n=1

(−βjτ
′x)n

n!(n − 1)!

1

τ ′ = −
√

βjx

τ ′ J1(2
√

βjτ ′x), (49)

where J1(x) is a Bessel function of the first kind. The final
solution for E(τ,x) in the linear limit is

E(τ,x) = E(τ,0) − 2
J−1∑
j=0

∫ ∞

0

√
βjx

τ ′ J1(2
√

βjτ ′x)e−γ τ ′

× cos[(ωj+1 − ωj )τ ′]E(τ − τ ′,0)dτ ′, (50)

which describes the propagation of a pulse with arbitrary tem-
poral duration moving through a homogeneously broadened
rigid-rotor medium.

To relate the physical significance of Eq. (50) to known
results, one may for simplicity consider only a single resonance
j = 0 → j = 1. Applying Eq. (45) in Eq. (42) then yields

E(ω,x) = exp

(
− β0x

iω − i
ω + γ
− β0x

iω + i
ω + γ

)
E(ω,0).

(51)

Furthermore, writing the electric field as a complex field plus
its conjugate yields E(ω,x) = E+(ω,x) + E−(ω,x), where
E+(ω,x) = 0 for ω < 0 and E−(ω,x) = 0 for ω > 0. Then,
since 1/(iω + i
ω + γ ) ≈ 0 for ω > 0 in the sharp line limit,
the solution for E+(ω,x) is

E+(ω,x) = exp

(
− β0x

iω − i
ω + γ

)
E+(ω,0). (52)

Equation (52) describes a 0π pulse in the frequency domain, a
solution first derived by Crisp [50] [Eq. (21) in Crisp’s paper].
Thus each j term in Eq. (50) represents a linear 0π pulse in the
sharp line limit. The quantitative agreement between the two
results is surprising, since the approximations that went into
deriving Eqs. (50) and (52) are not the same as those of Crisp
[50]. In particular, neither the rotating wave or slowly varying
envelope approximations were made. The reason for the
agreement is Eq. (45), which presumes that the resonances are
narrow and spaced far apart. This emulates the mathematical
behavior of the slowly varying envelope approximation and
yields quantitative agreement between the two models. Note
that for quasimonochromatic pulses propagating in two-level
media the pulse area is traditionally defined as the area under
the pulse envelope, but may also be defined as the Fourier
coefficient on the resonance frequency. As envelopes are not
used here we adhere to the latter definition; the 0π -pulse
analogy appears due to the removal of the various molecular
resonance frequencies from the initial pulse spectrum.

Arlt et al. [52] have derived analogous expressions to
Eq. (50) under the slowly varying envelope and rotating
wave approximations in the context of Rydberg wave packets.
Equation (50) is a generalization of the results derived by
Crisp [50] and Arlt et al. [52]; it represents a superposition of
multiple single-cycle 0π pulses where each pulse is associated
with an absorption line.

C. Impulse solution

Equation (50) is a general solution to the linearized sharp-
line model. In the special case when βj = β, the Bessel
functions in Eq. (50) are always in phase and the integrand
resonates when 
ωτ ′ = kπ where k is an integer. Pulse
revivals may then be observed for τ ∼ kπ/
ω. Under this
simplification, the time-domain propagation dynamics can be
described explictly in terms of pulse revivals without the need
for evaluating the convolution integral in Eq. (50).

First, observe that insertion of Eq. (40) in Eq. (41) and
subsequent application of Eq. (45) yields

∂xE = −
J−1∑
j=0

βj

∫ τ

−∞
E(τ ′,x)e−γ (τ−τ ′)

× (ei(ωj+1−ωj )(τ−τ ′) + e−i(ωj+1−ωj )(τ−τ ′))dτ ′, (53)

in the time domain. To proceed further, we assume that
βj = β = constant, but remark that this equality does not hold
in general. Under more realistic conditions, the populations are
distributed according to a Maxwell-Boltzmann distribution,
and the line intensities are then, evidently, not equal. The
assumption βj = β is a crude approximation in the present
context valid only closest to the interface x = 0 where the
Bessel functions in Eq. (50) are small and have the same
signs. However, by invoking this assumption, we obtain a
compact, analytic solution that is convenient for understanding
and illustrating the linear time-domain molecular response
of the system, and its effect on the propagated pulse. This
solution is included in the present report because Eq. (53)
is generic for sharp-line, harmonic, multilevel systems for
arbitrary pulse durations, and an analysis is relevant also in
other physical contexts, most notably in multimode fiber Bragg
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TABLE I. The x dependence of the driving pulse g0 and the first
five impulses.

g0(x) 1

g1(x) −(αx)

g2(x) −(αx) + 1
2 (αx)2

g3(x) −(αx) + (αx)2 − 1
6 (αx)3

g4(x) −(αx) + 3
2 (αx)2 − 1

2 (αx)3 + 1
24 (αx)4

g5(x) −(αx) + 2(αx)2 − (αx)3 + 1
6 (αx)4 − 1

120 (αx)5

grating transmission. Under the approximation βj  β, the
model has only one length scale, substantially simplifying the
analytic description of the spatial evolution. Equation (53) is
written

∂xE = −β

∫ τ

−∞
E(τ ′,x)

J∑
j=−J

e(j
ω−γ )(τ−τ ′)dτ ′. (54)

The j = 0 term included in Eq. (54) does not contribute to the
integral unless E has a large dc component. When the spectrum
of E lies within the rotational manifold, the limit J → ∞ may
be taken since the rapidly oscillating exponentials of the added
terms average out under the time integration in Eq. (54). The
sum is evaluated with Poisson resummation,

∞∑
j=−∞

ej
ω(τ−τ ′) = Tb

∞∑
k=−∞

δ(τ − τ ′ − kTb), (55)

where Tb = 2π/
ω is the quantum beat period of the system.
Equation (54) evaluates to

∂xE(τ,x) = −α

2
E(τ,x) − α

∞∑
k=1

e−γ kTbE(τ − kTb,x), (56)

where α = βTb is the reciprocal characteristic length scale.
Equation (56) is solved exactly with the ansatz

E(τ,x) =
∞∑

k=0

gk(x)e−αx/2−γ kTbE(τ − kTb,0), (57)

where E(τ − kTb,0) is the input pulse shifted an amount kTb

in time. Substituting Eq. (57) into Eq. (56) yields a recursive
equation for the unknown algebraic factors gk(x):

∂xgk(x) = −α

k−1∑
l=0

gl(x). (58)

The boundary condition on x = 0 yields g0 = 1; remaining
terms are found by recursive integration. The first few factors
gk are summarized in Table I.

Equation (57) shows that the pulse evolves into a series
of impulses following the driving pulse (k = 0), which
decays exponentially with propagation distance. The result is
interpreted as follows. As the pulse enters into the material, it
excites a coherent superposition of molecular eigenstates in the
material (i.e., a rotational wave packet), which oscillates freely
in the absence of the pulse. Due to the harmonic spacing of
the energy levels and equal line intensities, the rotational wave
packet rephases at times τ = kTb and emits radiation. Under
idealized conditions, dispersive broadening cancels and the

emitted radiation is a temporal copy of the input pulse, delayed
a time kTb and homogeneously dampened by a factor e−γ kTb .
The inequality γ Tb � 1 is satisfied for a wide class of media
(e.g., the hydrogen halides) and the pulse train described by
Eq. (57) may be very long. According to Eq. (42), the pulse
spectrum resembles an inverse frequency comb. In optically
thin materials αx � 1, the impulses have the same amplitude
and are π radians out of phase with the driving field, and have
been termed commensurate THz echoes [24,25] in the context
of terahertz excitation.

IV. NUMERICAL METHOD

We now turn our attention to the numerical algorithm
used to solve the RMB equations. This algorithm implements
standard differential methods and is thus of little mathematical
interest, but the application of these techniques to the multi-
level RMB equations is a signification extension of existing
pulse propagation algorithms [27–34,53], and is therefore
discussed in detail here. Our computational method for the
optical Bloch equations is quite general and follows that due to
Bidégaray et al. [31] and Marskar and Österberg [34] where
matrix methods were used to solve for multilevel media. These
techniques are readily adapted to other kinds of multilevel
systems, including homogeneously and inhomogeneously
broadened media [34]. The propagation equation is solved
with the implicit trapezoidal rule.

Note that the total number of rotational states in a rigid-rotor
molecule truncated at j = J is (J + 1)2, and the dimension
of the density operator is therefore (J + 1)4. Thus truncation
at J = 87 gives a total of 7744 rotational eigenstates, and the
system is represented by roughly 60 million parametrically
coupled partial differential equations that must be solved for in
(1 + 1) dimensions. This problem is of substantial complexity
in a pulse propagation context. Presently, reported computer
solutions of coherent single-cycle pulse propagation have only
been presented for a few levels [30,34,43,54,55].

A. Subspace formulation

Recall that for linearly polarized fields the interaction term
μ · E is nonzero only for transitions j → j ± 1, m → m.
Arranging the state vector |�〉 in order of largest negative
m to largest positive m, and from smallest to largest j , the z

component of the dipole moment operator is

μ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m=−J︷︸︸︷
(0)

m=−J+1︷ ︸︸ ︷(
0 μJ−1 m, Jm

μJm,J−1 m 0

)
. . .

m=J︷︸︸︷
(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
m=J⊕

m=−J

μ(m), (59)
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where μ(m) is a (J − |m| + 1) × (J − |m| + 1) dimensional
Hermitian matrix. Empty entries in Eq. (59) are filled with
zeros. Equation (59) defines a block diagonal matrix with
entries μ(m), where

⊕
is the direct matrix sum. For initial states

without coherence between different m levels, the density
operator and the free Hamiltonian share the same sparsity
and also decompose as block diagonal matrices,

H0 =
m=J⊕

m=−J

H
(m)
0 , (60a)

ρ =
m=J⊕

m=−J

ρ(m). (60b)

Multiplication between block diagonal matrices yields(⊕
m

O
(m)
1

)(⊕
m

O
(m)
2

)
=

⊕
m

O
(m)
1 O

(m)
2 , (61)

where O
(m)
1 O

(m)
2 is a normal matrix product. This property

allows the von Neumann equation to be solved in terms of
each block m,

i�ρ(m) = [
H

(m)
0 − Eμ(m),ρ(m)

]
. (62)

Equation (62) is an exact decomposition of Eq. (13) for
linearly polarized fields in the coherent regime. The physical
interpretation of the decomposition into partial contributions
is straightforward. Since the molecules are initially distributed
over all azimuthal rotational modes (m modes) but no coher-
ence can be established between these, we may decompose
the density operator into each subspace m and solve only
for the θ -motion of each mode, leaving the ϕ rotations as
frozen variables incorporated into the initial conditions of
ρ. This process reduces the (J + 1)2 × (J + 1)2-dimensional
density operator into 2J + 1 partial density operators ρ(m) with
dimensions (J − |m| + 1) × (J − |m| + 1), each of which
describe the θ motion of the molecule for a given azimuthal
rotational mode. The largest partial density operator is ρ(0),
which has dimension (J + 1) × (J + 1), which for large J

is substantially smaller than the full operator. The initial
population in the |J m = ±J 〉 states is not coupled to other
states, and ρ(−J ) and ρ(J ) are constant matrices of dimension
1 × 1.

The number of nonzero entries in the decomposed density
operator is comparatively large. For example, for J = 87,
there are 459,448 nonzero elements in ρ. Thus, even sparse
numerical storage of ρ is both time consuming and resource
exhaustive, necessitating calculation of relevant observables
during run time. These are calculated on each subspace m,

Tr(O1O2) = Tr

(
m=J⊕

m=−J

O
(m)
1 O

(m)
2

)
=

m=J∑
m=−J

Tr
(
O

(m)
1 O

(m)
2

)
.

(63)

Equation (63) allows calculations in terms of partial operators
instead of full ones, avoiding the need for large matrix

multiplications. In the same way, Eq. (26) becomes

(τ,x; θ ) =
J∑

m=−J

ρ(m)(τ,x) : G(m)(θ ), (64)

where G(m)(θ ) is a (J − |m| + 1) × (J − |m| + 1)-dimens-
ional matrix with entries

G
(m)
k,k′(θ ) = Ym

|m|+k−1(θ,ϕ)Ym*

|m|+k′−1(θ,ϕ), (65)

where k,k′ ∈ [1,J − |m| + 1]. An analogous expression is
found for L(m) describing the Legendre moments.

B. Discretization

The RMB equations are solved numerically by using an
implicit trapezoidal method for Eq. (8) and an operator splitting
method for Eq. (62). To avoid accumulation of numerical
round-off errors, E and μ are first normalized by characteristic
values Ec and μp such that they are of order one. We
introduce the characteristic time scale τc as the reciprocal Rabi
frequency τc = �/(Ecμp), and a characteristic length scale
lc = 2cτcε0Ec/(Nμp). With this specification, Eqs. (8) and
(62) become

∂�

∂ξ
= i Tr (ν[H0,ρ]), (66a)

dρ(m)

dη
= −i

[
H(m)

0 ,ρ(m)
] + i�[ν(m),ρ(m)]. (66b)

All quantities in Eq. (66) are dimensionless and of order
one with E/Ec → �, τ/τc → η, x/lc → ξ , H0τc/� → H0,
μ/μp → ν. The density operator ρ is already dimensionless
and of order unity and is unaffected. The right-hand side of
Eq. (66a) is obtained from

d

dτ
Tr(μρ) = −i

�
Tr(μ[H0 − μE,ρ]) = −i

�
Tr(μ[H0,ρ]),

(67)

where Tr (μ[μ,ρ]) = 0 by the cyclic permutation invariance
of the trace operation.

1. Propagation equation

An implicit trapezoidal (i.e., the second-order Adams-
Moulton) method is used for solving Eq. (66a):

�n+1
i+1 = �n+1

i + i�ξ

2
Tr

(
ν
[
H0,ρ

n+1
i+1 + ρn+1

i

])
. (68)

Following Eq. (63), the trace of the term containing the full
density operator on the right-hand side of Eq. (68) is written
as a reduction over the subspaces,

Tr(ν[H0,ρ]) =
m=J∑

m=−J

Tr
(
ν(m)

[
H(m)

0 ,ρ(m)
])

. (69)

2. Bloch equations

The evolution of ρ is spatially local and co-located spatial
and temporal grids for ρ and � are used. An important property
of the numerical solution to the coupled system is that the
time evolution of ρ is unitary. To ensure this, a second-order
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approximate form of the exact solution to Eq. (66b) over
increment �η is used. The approximate solution to Eq. (66b)
in the interaction picture is

ρ
(m)
I (�η) = UI (�η)ρ(m)

I (0)U †
I (�η), (70)

where

U
(m)
I (�η) = exp

[
i

∫ �η

0
H(m)

I (η)dη

]
, (71)

and ρ
(m)
I and H(m)

I are the corresponding density and Hamil-
tonian operators in the interaction picture of subspace m. The
free and interaction propagators in this subspace are denoted
by U

(m)
0 and U

(m)
I , respectively. In arriving at Eq. (70) we

have expanded the time-ordered interaction propagator in its
Magnus series and truncated this series at the first term under
the assumption that the time step �η is sufficiently small.

The interaction Hamiltonian H(m)
I (η) = �(η)U (m)

0

†
ν(m)U

(m)
0 is

approximated H(m)
I (η) ≈ �(η)ν(m) to the same order. The

integral in Eq. (70) is approximated as
∫ �η

0 H(m)
I (η)dη ≈

ν(m)(�n+1 + �n)�η/2. By approximating the interaction ma-
trix exponentials UI ≡ exp(2iC) ≈ (1 − iC)−1(1 + iC) and
by using a Strang splitting U0UI ≈ U

1/2
0 UIU

1/2
0 , the final

discretized form of Eq. (70) used in this paper is

ρ
(m) n+1
i+1 = Fm(N−1

m )
†
NmFmρ

(m) n
i+1 F†

mN
†
mN

−1
m F†

m. (72)

The linear (Fm) and nonlinear (Nm) propagators in Eq. (72)
are defined as

Fm = exp

(
− iH(m)

0 �η

2

)
, (73)

Nm = 1 + iν(m)

(
�n+1

i+1 + �n
i+1

)�η

4
. (74)

In Eq. (72), we have used (1 − iC)−1 = [(1 + iC)−1]
†

since
C ≡ ν(m)(�n+1

i+1 + �n
i+1)�η/4 is Hermitian. Unitarity of U

(m)
I

follows by U
(m)
I U

(m)
I

† = 1. The free propagators Fm are
constant and are calculated exactly since H(m)

0 is diagonal.
The inverse matrices N−1

m must be found using numerical
calculations. In this paper, they are calculated by using an LU
factorization N−1

m = (LmUm)−1 = U−1
m L−1

m . We point out that
Crank-Nicholson-type discretizations of Eq. (62), which are
frequently used for two-level materials [27] have positiveness
issues [31] and are not appropriate when more than two levels
are involved. In contrast, Eq. (72) is valid for arbitrary Bloch
dimensions and is absolutely stable for any value of �η.

The unknown quantities �n+1
i+1 and ρ

(m) n+1
i+1 entering into

the right-hand sides of both Eqs. (68) and (72) prevent direct
inversion of the discretized equations of motion. To overcome
this, Eqs. (68) and (72) are solved by using an iterative
predictor-corrector method. The predicted values for �n+1

i+1

and ρ
(m) n+1
i+1 are supplied by approximating �n+1

i+1 ≈ �n
i+1 and

ρ
(m) n+1
i+1 ≈ ρ

(m) n+1
i in the right-hand sides of Eqs. (68) and (73).

These values are then replaced into the right-hand sides of the
same equations to gain new values for the unknowns �n+1

i+1 and

ρ
(m) n+1
i+1 , and the process is iterated until a convergence criteria

is met.

TABLE II. Parameters used for computer simulations.

Variable Symbol Value

Number density N 1018 cm−3

Quantum beat period Tb 5 ps
Permanent dipole moment μp 5 × 10−29 Cm
Energy levels J + 1 88
Rotational eigenstates (J + 1)2 7744
Density matrix dimension (J + 1)2 × (J + 1)2 7744 × 7744
Propagation length L 10 cm

3. Parallelization and performance

The most expensive parts of the numerical evaluation of
Eqs. (68) and (72) are the matrix inversion and multiplications
required for updating Eq. (72). These parts are optimized by
performing the matrix product Gm = Fmρ

(m) n
i+1 F†

m element-
wise since Fm is diagonal. These calculations are moved
outside the correction loop since Gm only needs to be
calculated once per (i,n). In the same way,NmGmN

†
m = Gm +

ia[ν(m),Gm] + a2ν(m)Gmν(m) with a ≡ (�n+1
i+1 + �n

i+1)�η/4
allows the matrix multiplications to be moved outside the
correction loop, leaving a scalar update of the individual
elements based on the predicted value of �n+1

i+1 . Optimized
sparse matrix routines are used for performing the matrix
multiplications since Fm and ν̂(m) are sparse (diagonal and
tridiagonal) matrices. If necessary, which would only be the
case for very large values of J , the remaining part of the
algorithm (i.e., finding and multipying with N−1

m ) can be
parallelized by using standard parallel linear algebra libraries.

Our experience is that serial codes that solve for the full
density operator are feasible for J � 10 if sparse matrix
multiplications are used, and that parallel codes are otherwise
required. Our code is parallelized by distributing the 2J + 1
subspaces [56] over an equal number of processes by using the
message passing interface (MPI). The run time is determined
by the serial execution time of the largest subspace, which
is of dimension (J + 1). Using J = 87 on a 500 × 1000
grid, giving a total of 7744 eigenstates, our code executes
in less than a few hours on a SGI Altix ICE X cluster
with two 8-core Intel Sandy Bridge (2.6 GHz) processors on
each node. We have also developed codes that solve for the
full (J + 1)2 × (J + 1)2-dimensional density operator using
distributed matrix inversion and multiplication methods, but
these codes perform significantly slower than the subspace
method above. However, such codes solve for the full density
operator and are useful for elliptically polarized fields where
subspace decomposition is not possible.

C. Comparison with analytic solutions

To mutually verify the reliability of our analytic results and
numerical method, we now compare the analytic solutions with
the results of computer simulations. Our choice of parameters
is summarized in Table II; the numbers do not represent a
particular medium.

The unidirectional and linear approximations are well
satisfied for our chosen parameters: we find, for example,
P/(ε0E0) ∼ 10−2 [see Fig. 4(b)], and this is the case for all
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of our computer simulations. The “infinite-ladder” approxi-
mation used in Eq. (55) is satisfied since the highest-lying
molecular transition ωJ − ωJ−1 ∼ 1014 rad/s lies well outside
of the input pulse spectrum.

1. Choice of input pulse

Since the zero-frequency wave component radiated by a
finite-size source propagates evanescently, a basic propagation
requirement prior to reaching the medium is that the zero-
frequency (dc) Fourier coefficient of the input pulse is zero
[44,57]. While this is not obvious from the plane-wave
equation (1), a simple and clear argument for this requirement
may be provided by considering the three-dimensional wave
equation (

∇2 − 12

c

∂2

∂t2

)
E(t,r) = 0, (75)

which has a solution E = E0e
ik·r−iωt with kx =

√
ω2 − k2

⊥,
where k⊥ is the transverse wave number. The propagation
constant of the dc Fourier coefficient is then kx = ik⊥, which
represents a nonoscillating, nonpropagating field. In particular,
such fields may only be established over the length of the
medium by placing an appropriate electric charge distribution
a finite distance away from it. This implies that if the pulse
source consists of an aperture with transverse width R, for
which k⊥ ∼ 1/R, dc fields are localized to the vicinity x ∼ R.
For distances x � R, which represents the most common
experiments, the dc field vanishes and thus we require that∫ ∞
−∞ E(τ,0)dτ = 0. For this reason we reject the use of, e.g.,

Gaussian pulses where the dc Fourier coefficient depends
strongly on the carrier-envelope phase in the single-cycle
regime [35]. Instead, we apply a Poisson input pulse [58],

E(τ,0) = 1

2
E0e

iφ

(
1 − iωcτ

s

)−(s+1)

+ c.c. (76)

The parameters s, ωc, and φ describe the pulse duration,
location of the spectral peak, and the spectral phase, re-
spectively. The pulse described by Eq. (76) has a vanishing
zero-frequency component, and is symmetric with respect
to τ = 0 for φ = 0 and antisymmetric for φ = π/2. For
s close to unity, Eq. (76) describes a single-cycle pulse;
for large s, the limiting form of Eq. (76) is a Gaussian
pulse with carrier frequency ωc, carrier-envelope phase φ,
and duration T = √

2s/ωc. Pulse chirping may be taken into
account by treating ωc as a complex parameter [58]. In this
section, we take E0 = 5 × 106 V/m, φ = π/2, s = 3, and
ωc = 3π × 1012 rad/s. This choice of parameters represents
an asymmetric single-cycle pulse consisting of two main
“carrier lobes” where the leading oscillation is parallel with
the z axis (z · E > 0), and the trailing oscillation is antiparallel
(z · E < 0). Taking the Fourier transform of Eq. (76) gives

E(ω,0) = 2πE0e
iφ

(
s

ωc

)s+1
ωse−sω/ωc

�(s + 1)
u(ω)

+ 2πE0e
−iφ

(
s

ωc

)s+1 (−ω)sesω/ωc

�(s + 1)
u(−ω), (77)

FIG. 3. (Color online) (a) Input pulse E(τ,0) in units of E0.
(b) Normalized input spectrum E(ω,0). The vertical bars near the
baseline indicate the spectral position of the first few absorption lines,
which extend up to approximately 17.5 THz.

where � is the Gamma factorial function and u(ω) the unit
step function in the frequency domain. With the parameters
above, Eq. (76) describes a spectrum that peaks at 1.5 THz
and extends up to approximately 5 THz. For comparison, with
J = 87 the transition frequency of the highest-lying transition
is roughly 17.5 THz. The input pulse in the time and frequency
domains is shown in Fig. 3.

2. Impulse solution

First, we consider linear interactions under the condition
of equal line strengths. With the above choice of parameters,
we fix the initial rotational state distribution such that the
first 63 rotational absorption lines have the same intensity,
which yields an optical thickness αL ≈ 9. Figure 4(a) shows
the spatial evolution of the input pulse for the first three
quantum beat periods. According to Eq. (57), the driving
pulse is followed by a sequence of impulses propagating at the
vacuum light velocity spaced exactly one quantum beat period
apart, features that are captured in our computer simulation.
Figure 4(b) shows the near single-cycle pulse close to the
interface at x � 0, and also the molecular orientation 〈cos θ〉
at the same position; the expected rotational wave packet
revivals are readily observed as recurring orientations at every
τ = kTb. The angular distribution achieved at these intensities
is only slightly perturbed from the isotropic distribution since
〈cos θ〉 ∼ 10−3, indicating very weak molecular orientation.
Furthermore, we briefly mention that the results in Fig. 4(b)
may be compared favorably with the computer simulations by
Fleischer et al. [7] [see Figs. 2(b) and 3(a)].

To examine the pulse evolution in greater detail, we
compare in Fig. 5 the computer solution with the analytic
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FIG. 4. (Color online) Numerical solution using the Poisson
input pulse (76) under the “equal line strength” simplification.
(a) Spatiotemporal evolution of E(τ,x). (b) Temporal evolution of the
electric field (solid line) in units of E0 and the molecular orientation
〈cos θ〉 (dashed line, plotted against the right vertical axis) at the
entrance interface.

FIG. 5. (Color online) Numerical solution under the “equal line
strength” simplification. (a) Comparison between the computer
solution (solid line) and the analytic solution (57) (dashed line) after
a propagation distance αx = 3. (b) Computer solution showing the
temporal evolution of the orientation at αx = 3.

solution (57) after the pulse has propagated an optical distance
αx = 3. The solid line in Fig. 5(a) shows the computer
solution for the electric field, with revivals occurring at each
rephasing period τ = kTb. The amplitudes of the impulses
in the computer solution are in excellent agreement with
the predictions of the analytic impulse solution and leave
no doubt about the reliability of our computer simulations.
Correspondingly, Fig. 5(b) shows the temporal evolution of
the orientation 〈cos θ〉 for the same computer simulation. We
find that the peak orientation is smaller than at the entrance
interface, which is due to absorption of the various resonance
frequencies over the first few Beer lengths. In effect, after a few
Beer’s lengths into the medium, the initial resonant frequency
content is cut out of the pulse spectrum, and the molecules
are excited nonresonantly and therefore less orientated than at
the entrance interface. A propagation-induced phase reversal
of the orientation is also observed. The phase difference of the
first orientational revival at αx = 0 and αx = 3 is precisely π .

In the coherent regime, the polarization and the electric field
are occasionally antiparallel. Examination of Fig. 4(b) shows
that at the trailing edge of the input pulse, 〈cos θ〉 < 0 and
E > 0. To emphasize this, consider the polarization P [recall
Eq. (56)] after the resummation:

P (τ,x) = αε0c

∫ τ

−∞
E(τ ′,x) + 2

∞∑
k=1

E(τ ′ − kTb,x)dτ ′,

(78)

which shows that the polarization does not in general follow
the instantaneous electric field, as is expected this close
to resonance. From Eq. (78), we observe also that the
orientational revivals have (i) twice the amplitude of the initial
field-induced orientation and (ii) are temporally separated only
for pulse durations shorter than Tb. Both features are clearly
present in Fig. 4(b). These features have been observed also by
other through computer simulations (see, e.g., Fleischer et al.
[7]), but have, to the best of our knowledge, not been explained.
At the interface x = 0 for times τ < Tb/2, the molecules are
oriented quasistatically by the pulse:

P (τ,0) = αε0c

∫ τ

−∞
E(τ ′,0)dτ ′. (79)

Close to the leading edge of the driving pulse in Fig. 4(b) where
the field is positive, 〈cos θ〉 is also positive and the polarization
is parallel with the electric field. The rotors remain parallel
until the electric field switches polarity, and the molecules
become oriented opposite to the external field. In comparison
to molecular alignment using static electric fields, this result
is counterintuitive and warrants an explanation. It suffices
to consider a classical dielectric response P (ω) = χ (ω)E(ω)
where χ (ω) = χ*(−ω). For an isolated quantum Lorentz
resonance,

χ (ω) = χ0

(
1

ω0 − ω
+ 1

ω0 + ω

)
, (80)

P (τ ) evaluates to P (τ ) = χ0
∫ τ

−∞ sin[ω0(τ − τ ′)]E(τ ′)dτ ′
and the medium responds only at the resonance frequency
ω0. When E(ω) overlaps with ω0 and has a spectral bandwidth
exceeding the absorption linewidth by orders of magnitude, the
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FIG. 6. (Color online) Computer solution for the molecular prob-
ability density at the entrance interface under the “equal line strength”
simplification. (a) The values for the color-coded data indicate the
displacement from the isotropic distribution. (b) Cross section of
the probability density through the polar plane for times τ = −Tb/2
(solid) and τ = Tb (dashed). The distance from the origin indicates
the value of  in multiples of 1/(4π ).

pulse may reverse polarity faster than the medium can follow.
This manifests itself as antiparallel electric and polarization
field vectors, opening up the possibility of a radiation reaction
that transfers energy back to the pulse. This effect has been
known for a long time, and is the primary mechanism for
the optical transparency of the linear 0π pulse in the zero
damping limit, first predicted by Crisp [50] and later observed
by Varoquaux [59] and Rothenberg [60]. In essence, Eq. (57)
is the multilevel superposition of linear 0π pulses when the
absorption coefficients associated with each rotor transition
are equal. The quantum beats at time delays that are integer
multiples of Tb are manifestations of coherent beating between
these pulses.

Figures 6(a) and 6(b) show the probability density in the
linear interaction regime close to the entrance interface. At
the isochronic line τ = −Tb/2, the probability density is
constant  = 1/(4π ) and the molecular axes are distributed
isotropically over the unit sphere. Moving towards τ ∼ 0
the rotor molecules are quasistatically lining up with the
leading lobe of the external THz pulse, manifesting as a slight
increase in the probability density on the northern hemisphere.
After the pulse has passed, the molecules dephase in the
absence of the external field and the orientation diminishes.

When τ → Tb the first wave-packet revival is observed as
an increased probability density at the northern hemisphere
θ = 0 and a decreased density at θ = π . This process repeats
itself for longer times resulting in the re-emergence of an
oriented molecular ensembles at times kTb. Note that at half
integer revival times τ = (k + 1/2)Tb then 〈cos θ〉 = 0 but
〈cos2 θ〉c 	= 0. For the simulation data in Fig. 6, we find
〈cos θ〉 ≈ 0 and 〈cos2 θ〉c ∼ 10−4 at τ = Tb/2. The molecules
are therefore weakly aligned, but not oriented, at half-quantum
beat periods.

Although the molecules reorient at each integer quantum
beat period the rotor molecules are only slightly perturbed.
Figure 6(b) shows a detailed cross section of  through the
molecular polar plane for two different times τ = −Tb/2
(solid line) and τ = Tb (dashed line). The lines are plotted for
the entire polar cross section with the understanding that the
probability density is symmetric with respect to θ → 2π − θ .
The radial distance from the origin to the two curves indicates
the value of  in each case. By integrating figures like
Fig. 6(b), we have verified that probability is conserved in
our simulations to a precision better than 10−5.

3. Initial thermal equilibrium

Next, we consider media in thermal equilibrium where the
initial state of the medium prior to the action of the pulse is

ρ(τ → −∞,x) = 1

Z
exp

(
− H0

kBT

)
, (81)

where Z = Tr(exp[−H0/(kBT )]) is the partition function.
With this choice of parameters, the most populated rotational
level is j = 5 where ρ5 m, m ≈ 0.01. The line intensities associ-
ated with each j → j + 1 transition are evidently different in
the thermal and idealized cases. We now consider propagation
of the same input pulse as used above, but now through a
medium in thermal equilibrium at T = 300 K. Analogous
to Fig. 4(a), Fig. 7 shows the spatiotemporal evolution of
E(τ,x) over the first two quantum beat periods for the entire
length of the medium. Close to the entrance interface, wave
packet revivals are observed at each time τ = kTb as expected
from the linear analysis. However, as the driving pulse and
impulses propagate further into the material, the roles of the
Bessel factors in Eq. (50) become noticeable and the pulse
revivals begin to disperse. Evidently, close to the interface, the
Bessel functions in Eq. (50) may be expanded in a power
series and the integrand resonates at τ ′ = 2π/(
ω) since
all βjx are comparatively small with respect to the first
abscissa of the Bessel function such that J1(2

√
βjτ ′x) > 0.

Following Eq. (46), dispersion is therefore negligible for
optically thin media βjx � 1. After a sufficient propagation
length where the Bessel factors with the largest βj change from
positive to negative, the phases of the polarization components
associated with the strongest absorption lines are reversed
relative to the weaker lines. Thus, when the driving pulse has
penetrated a sufficient distance into the material, the various
rigid-rotor transitions are, due to different level degeneracies
and populations, excited with different amplitudes and phases.
As the first impulse is emitted close to the interface, it
effectively enters into a medium predominantly prepared by
excitation of the strongest resonance lines. This impulse, which
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FIG. 7. (Color online) Computer solution for single-cycle pulse
THz excitation of a molecular ensemble in initial thermal equilibrium.
The color-coded data in (a) and (b) show the electric field E(τ,x)/E0

and the molecular orientation 〈cos θ〉, respectively.

is approximately a copy of the initial pulse, reinforces this
response for the later impulses, leading to additional dephasing
among the various polarization components. In the spectral
domain, an equivalent description is that spectral holes are only
found at the strongest absorption lines during propagation,
and the pulse develops a more complicated temporal structure.
Note that molecular dephasing of rotational wave packets due
to centrifugal distortion of the molecule for higher rotational
modes has been discussed by Harde et al. [24]. Here, we show
that for an extended medium, dephasing also occurs as a result
of dispersive propagation.

Figure 7(b) shows the value of 〈cos θ〉 for the entire sim-
ulation region and demonstrates the corresponding dispersion
of the induced molecular orientation. Like the pulse, recurring
periods of orientation are found at times τ = kTb close to
the entrance interface. As above, the propagation-induced
dispersion of the rotational wave packet becomes noticeable
for longer propagation lengths, and manifests as temporal
broadening of the orientational revivals.

V. NONLINEAR PROPAGATION

Having discussed the linear pulse propagation regime, we
now turn our attention to nonlinear propagation. Below, we
consider three cases E0 = 108, 109, and 5 × 109 V/m. In each
case, the medium is initially prepared as a thermal ensemble
following Eq. (81) with T = 300 K as above.

TABLE III. Normalized pulse areas for the j =5 → j =6 (m=0)
transition using different pulse amplitudes. The medium is initially
in thermal equilibrium at 300 K.

Nonlinear Regime E0 Pulse area �m
j

Weak 108 V/m ≈0.6
Intermediate 109 V/m ≈60
Strong 5 × 109 V/m ≈1500

The violation of the linear approximation may be estimated
by evaluating the pulse area �m

j [Eq. (39)] for the above choice
of parameters. Recall that the most populated level is initially
j = 5, and that ρjm,jm − ρj+1 m,j+1 m ≈ 0.0018 for the j =
5 → j = 6 transition. The pulse duration may be taken as
roughly T ≈ 130 fs, which is the distance between the two
zero-crossings of the main lobes; the transition dipole moment
is roughly μjm,j+1 m ≈ 0.5μp for m = 0. Table III summarizes
the numerical evaluation of �m

j for the three pulse amplitudes
mentioned above. We divide, loosely speaking, the interaction
regime into three regimes corresponding to the cases �m

j ∼ 1,
�m

j > 1, and �m
j � 1, respectively.

Finally, we briefly mention that practical limitations prevent
us from propagating pulses with even higher amplitudes since
(i) the time scale τc < 1 fs implies a very fine temporal
resolution and (ii) population is then excited to j = J ,
which invalidates the finite numerical truncation of accessible
rigid-rotor states. Note, nonetheless, that the chosen dipole
moment μp is comparatively large, and that the numerical
results are therefore applicable for even higher field strengths
in molecules with smaller dipole moments.

A. Weakly nonlinear regime �m
j ∼ 1

First, we investigate the propagation of a pulse with
amplitude E0 = 108 V/m, which yields �0

5 ≈ 0.6. The corre-
sponding pulse intensity is I0 = ε0c|E0|2/2 = 1.32 GW/cm2.
Figure 8 shows the j -level population distribution

wj (τ,x) =
j∑

m=−j

ρjm,jm(τ,x) (82)

FIG. 8. (Color online) �m
j ∼ 1: rotational j -level population dis-

tribution wj = ∑j

m=−j ρjm,jm close to the entrance interface. The
driving pulse amplitude is E0 = 108 V/m and is plotted on the j = 0
plane in arbitrary units.
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FIG. 9. (Color online) �m
j ∼ 1: computer solution showing the

first few Legendre moments 〈Pκ (cos θ )〉 close to the entrance
interface.

close to the entrace interface for the interval τ ∈
[−Tb/5,Tb/5]. The time window contains the entire input
pulse, which is shown with an arbitrary scale on the j = 0
plane. On the τ = −Tb/4 plane, the height of the bars shows
the initial Maxwell-Boltzmann distribution prior to the pulse
interaction. We find that as the pulse enters into the medium, a
significant amount of population is moved to higher rotational
states, evidenced by a shift in the peak of wj from j = 5 at
τ = −Tb/5 to j = 10 at τ = Tb/5 in Fig. 8.

To examine the excitation of the molecules in greater
detail and estimate the order of the excited rotational wave
packet, Fig. 9 shows the evolution of the first few Legendre
moments 〈Pκ (cos θ )〉 over the first quantum beat period. Note
that 〈Pκ (cos θ )〉 are experimental observables, measurable by,
e.g., photoelectron imaging [61], and offers good quantitative
descriptions of the excited wavepacket. The maximum value of
the first two moments in Fig. 9 are respectively 〈P1(cos θ )〉 ≈
0.4 and 〈P2(cos θ )〉 ≈ 0.15, showing that the molecules are
both orientated and aligned during the pulse interaction.
The peak values of the higher moments are more modest,
equal to |〈P3(cos θ )〉| � 0.05 and |〈P4(cos θ )〉| � 0.025, re-
spectively. Moments of higher order are even smaller, with
〈P5(cos θ )〉max ∼ 0.01 and 〈P6(cos θ )〉max ∼ 0.006. Recalling
that the Legendre moments of order κ contain coherences
up to order |j ′ − j | � κ , we find that the excitation of the
molecules at x � 0 occurs as a multiphoton process up to
approximately fourth order. Note that the molecules are not
oriented at half-integer beat periods since 〈P1(cos θ )〉 ≈ 0 for
τ = (k + 1/2)Tb.

To demonstrate the evolution of the molecular state in
greater detail during the interaction with the pulse at the
entrance interface, the panels in Fig. 10 show the probability
density  for various times τ/Tb. The temporal evolution of
 is observed by reading the panels from left to right, top
to bottom. The panel τ/Tb = −0.05 shows that the weak
leading edge of the pulse pushes  slightly down into the
southern hemisphere, manifested by the appearance of a small

shift in the center of mass of  towards the south pole. The
panel immediately to the right shows the probability density at
τ = 0 and demonstrates that the rotor molecules are oriented
with preferred direction θ < π/2 due to the first carrier lobe.
The sudden change in orientation from slightly towards −z to
strongly along +z is due to the double leading lobe structure
on the input pulse. The first, weakly negative carrier lobe
will tend to weakly orient the molecules along θ = π , while
the first main carrier lobe, which is much stronger, acts to
orient the rotor molecules along θ = 0. When the field phase
reverses at τ = 0 and the subsequent large negative carrier
lobe enters into the medium, the orientation is reversed and
at τ/Tb = 0.05Tb the molecular axes point primarily into the
southern hemisphere. The subsequent panels show the near
field-free dephasing and rephasing of the molecules. From
τ/Tb = 0.05 to 0.5, the rotor molecules gradually move away
from being oriented to being aligned. At the quarter revival
period τ/Tb = 0.25, the orientation 〈cos θ〉 is approximately
zero. At τ/Tb = 0.5 then 〈cos θ〉 ≈ 0 but 〈cos2 θ〉 ∼ 0.1 (see
Fig. 9), showing that at half-integer quantum revival periods
the molecules are aligned, but not oriented. The up-down
symmetry of the molecules is therefore preserved at half-
revival times, but not at integer revival times. Moving on from
τ/Tb = 0.50 and towards τ/Tb = 1 the molecules gradually
reorient in the absence of the pulse. We observe this for
τ/Tb = 0.95 where ρ(τ,x ≈ 0; θ ) peaks at θ = π , indicating
that the majority of the rotor molecules are oriented along
−z. A short time later, at τ/Tb = 1, the ensemble is oriented
along +z as expected. The panel with τ = Tb in Fig. 10 may
be contrasted with Fig. 6(b), which showed a corresponding
plot in the linear interaction regime. Note that the orientation
at τ/Tb = −0.05 is weak compared to the orientation at
τ/Tb = 0.95, while the orientations at τ/Tb = 0 and 1 are
quantitatively comparable. The reason is that the temporal
evolution up to τ/Tb = −0.05 occurs in the linear regime,
while the large degree of orientation along −z at τ/Tb = 0.95
is due to nonlinear interactions with the entire pulse.

Next, the spatiotemporal evolution of the THz field and the
alignment 〈cos2 θ〉 (measured as 〈P2 cos θ〉) are presented in
Fig. 11. Overall, we find that the pulse interacts nonlinearly
only over the first few millimeters of the sample, and then
falls back into the linear propagation regime. While not
shown explicitly, we observe comparatively strong molecular
orientations in this spatial region of the material where
〈cos θ〉max ≈ 0.3, whereas 〈cos θ〉max ∼ 10−2 was found in the
linear regime. Figure 11(b) shows the corresponding evolution
for the molecular alignment. We recall that 〈P2(cos θ )〉 = 0
for molecules with isotropically distributed Zeeman levels
and that 〈P2(cos θ )〉 contains the Raman coherences ρjm,j±2 m

and population terms. We have also found that the popula-
tion distribution is asymmetric in the Zeeman levels since
〈cos2 θ〉p,max ∼ 0.38, whereas a value of 1/3 would be obtained
for an isotropic population distribution. Such a result is
expected because the transition dipole moments of the m = 0
ladder are larger than the m 	= 0 ladders, resulting in uneven
excitations for different m levels. The rapid oscillations seen
at half and integer revival times are due to the excitation of
rotational Raman coherences, indicating the presence of two-
photon resonant transitions of the type j → j + 1 → j + 2,
as indicated earlier. From the data in Fig. 11(b) we note,

023843-15
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FIG. 10. (Color online) �m
j ∼ 1: snapshots of the probability density at the entrance interface for various times τ for nonlinear excitation

with a single-cycle THz pulse. The concentric circles indicate the value of  in units of 1/(4π ) (see the top left panel).

importantly, that 〈P2(cos θ )〉 ∼ 0 for x > 1 cm, showing that
the pulse falls back into the linear interaction regime after only
a short propagation distance.

B. Intermediate nonlinear regime �m
j > 1

Next, we consider the propagation of a pulse with am-
plitude E0 = 109 V/m, which yields �0

5 ≈ 60. The temporal
resolution for this simulation is �τ ≈ 0.1 fs, about six times
higher than the critical sampling period �τcrit = π/ωJ ≈
0.6 fs required by the Nyquist-Shannon sampling theorem.

The excitation of the molecular interface with a single-cycle
pulse of this magnitude results in an complex excitation
of the medium. The data in Fig. 12(a) show the rotational
state distribution wj at the entrance interface during the
interaction with the driving pulse. We observe that as the
driving pulse excites the medium, the leading carrier lobe
drives the population up to roughly j ∼ 30. At the tail of this
carrier lobe (before the zero crossing), part of the population
is coherently returned to lower rotational orbitals, shown by
the reappearance of population in lower j levels before τ = 0.
This effect will be discussed in greater detail below, but let us
briefly mention that the process is due to coherent saturation

of the various rigid-rotor orbitals accessible by the pulse. In
essence, the driving pulse is not sufficiently strong to drive
population further up the rotational ladder and, as a result,
energy is nonlinearly transferred from the medium and back to
the pulse. Note that as the medium is essentially “pre-excited”
by the time the second carrier lobe enters into the medium,
population is transferred even higher up the rotational ladder,
up to roughly j = 36 as shown in Fig. 12(a). After the driving
pulse has passed, the population is distributed over roughly
27 rotational j levels, with j = 10 being most populated. The
panels (b) and (c) in the same figure show the corresponding
probability density for two time windows, one large enough
to contain the first few quantum beat periods [(c)], and one
that shows the temporal evolution around the driving pulse in
greater detail (b). The solid line in each panel indicates the
value of 〈cos θ〉, and is plotted versus the right vertical axis.
Figure 12(b) shows that the maximum probability density at
θ = 0 near the leading edge of the input pulse at τ � 0 is
as high as 0.9, indicating that the molecules are strongly
oriented along +z by the leading positive lobe of the input
pulse. At the same isochronic line  is approximately zero
for θ � π/2 and all the molecules are therefore found in the
northern hemisphere. Note that the polarization is saturated
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FIG. 11. (Color online) �m
j ∼ 1: propagation with peak pulse

amplitude E0 = 108 V/m. (a) Spatiotemporal evolution of the electric
field in units of E0. (b) Second Legendre moment 〈P2(cos θ )〉.

whenever 〈cos θ〉 = 1, whereas we observe 〈cos θ〉max ≈ 0.9
in our computer simulations. When the trailing carrier lobe
penetrates into the material, the orientation of the molecules
is reverted so that they are pointing along θ = π with
approximately zero probability of observing them along θ = 0.
After the pulse has passed, the subsequent dephasing of
the rotor molecules shows that the probability density is
higher at the poles θ = 0 and π than at the equator θ = π/2
showing that the molecules are aligned. Note that in the almost
field-free dephasing of the molecules we also find that the
molecules are weakly oriented since 〈cos θ〉 does not vanish
at τ = Tb/2 [see Fig. 12(c)]. Recalling that the expression
for  contains all coherences ρjm,j ′m, the rapid temporal
oscillations and the accumulation of probability on the poles
for τ � 0 shows that the molecules are excited into a coherent
superposition of higher-order angular momentum states. The
higher-order coherences oscillate rapidly in the abscence of
an external field and they are responsible for the complicated
temporal structure of  observed in Figs. 12(b) and 12(c). The
most likely explanation for the incomplete dephasing of the
orientation 〈cos θ〉 observed in Fig. 12(c) at times between
the pulse revivals times is that the molecules are excited into
a wave packet with a dominant level (in this case j = 10),
which prevents complete destructive interference in between
wave packet revivals. We remark that by running computer
simulations with even higher temporal and spatial resolutions
(for much shorter propagation lengths and integration times),
we have verified that the incomplete dephasing of 〈cos θ〉

(a)

(b)

(c)

FIG. 12. (Color online) �m
j > 1: excitation with an input pulse

with peak amplitude E0 = 109 V/m. (a) Rotational state population
wj for x � 0 during the action of the driving pulse. (b) and (c)
Probability density  for x � 0. (b) shows an inset of (c) for τ/Tb ∈
[−0.25,0.25].

observed in Fig. 12(c) at half-integer quantum beat periods
is not due to numerical errors.

Next, we examine the spatiotemporal evolution of the pulse
and medium. Figures 13(a) and 13(b) show the field E(τ,z)
and the orientation 〈cos θ〉 using the input pulse above. We
find that the driving pulse propagates a substantially longer
distance into the medium than in both the linear (�jm � 1)
and weakly nonlinear (�jm ∼ 1) regimes before it begins to
disperse, approximately 4 cm before it falls back into the linear
propagation regime. We also find that the orientation 〈cos θ〉 is
maintained to a considerable degree; orientations as high as 0.9
are observed several centimeters into the medium. Note that
although orientional revivals occur near the entrance interface
[recall Fig. 12(c)], molecular rephasing is not observed further
into the medium. We believe that the mechanism that leads
to suppression of the orientational revivals further into the
medium is the development of a comparatively long pulse tail
over the first few millimeters of propagation in conjunction
with saturation of the molecular orbitals. To show this, the
reshaping of the electric field is presented in greater detail
in the panels in Fig. 14. For comparison, the dashed line in
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ROBERT MARSKAR AND ULF L. ÖSTERBERG PHYSICAL REVIEW A 92, 023843 (2015)

FIG. 13. (Color online) �m
j > 1: propagation of a single-cycle

THz pulse with amplitude E0 = 109 V/m. (a) The instantaneous
electric field value E(τ,x) in units of E0. Dark and bright areas
show regions with E(τ,x) < 0 and E(τ,x) > 0, respectively. (b) The
orientation 〈cos θ〉(τ,x).

each panel shows the propagation of the same pulse in the
linear interaction regime. We observe in Fig. 14(a) that a small
pulse revival at τ = Tb has developed after a short propagation
distance. Note that the relative amplitude of the revival is
small in comparison with the predictions of the linear theory,
which is understandably due to the fact that the orientation
is close to saturation [〈cos θ〉 ∼ 0.9 in Fig. 13(b)]. Thus the
relative amplitude of the pulse revivals are expected to be
weaker when the amplitude of the driving pulse is increased
further. Moreover, the development of a transient tail on the
driving pulse after a few millimeters of propagation leads
to further deterioration of the pulse revivals. The rationale
behind this is that further into the medium the molecules
are no longer excited by a single “kick,” but interact with a
pulse tail all the way up to τ = Tb and therefore do not dephase
and rephase freely. As a result, molecular revivals occur only
closest to the interface. Moreover, Figs. 13 and 14 show that
the driving pulse is conserved to a considerable degree over
the first few centimeters of propagation. We believe that the
preservation is due to coherent saturation (i.e., bleaching), but
the effect will be discussed in greater depth in the next section.
Note that for both linear and nonlinear excitation, Fig. 14(e)
predicts that only a high-frequency precursor remains of
the driving pulse after propagating through the entire length
of the medium. These fields are most likely composed of
the nonresonant, high-frequency content of the input pulse
spectrum.

FIG. 14. (Color online) �m
j > 1: comparison of linear and non-

linear solutions. The solid and dashed lines show the temporal pulse
profiles of initial pulses with amplitudes E0 = 109 and 5 × 106 V/m,
respectively.

C. Strongly nonlinear regime � j m � 1

Finally, we consider the propagation of a pulse with
amplitude E0 = 5 × 109 V/m, which places this pulse in the
strongly nonlinear regime �0

5 ≈ 1600. Note that such pulses
are presently only available from linear accelerators where
field amplitudes as high as 4.4 GV/m have been reported [62].

Figure 15 shows the temporal evolution of the population
distribution wj on the interface x � 0. We observe that as
the pulse enters into the material, the molecules are excited
to higher orbitals, up to j ∼ 72. Furthermore, we observe
also that under both the leading and trailing carrier lobes the
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0

FIG. 15. (Color online) �m
j � 1: population distribution (color

coded) for excitation with an initial single-cycle pulse with normal-
ized area �0

5 ≈ 1600. The solid line shows the pulse in units of E0.

molecules are also coherently returned to lower orbitals during
interaction with the pulse. Note that coherent energy return was
observed also in the linear interaction regime, but then due to a
rapid sign reversal of the electric field. Here, the return process
occurs under a single carrier lobe and is therefore of a distinctly
different physical origin. To the best of our knowledge, these
types of excitation and de-excitation patterns have not been
observed earlier, and thus represent a new nonlinear optical
effect. While a thorough discussion of this effect is outside the
scope of this report, we believe that these types of oscillations
are related to Rabi oscillations, which normally take place
when a long pulse coherently saturates a single atomic line
transition. These types of oscillations impress themselves quite
remarkably on the propagated field. Here, recalling Eq. (20)
for convenience,

ε0c
∂2E2(τ,x)

∂x
= −N ∂〈H0〉

∂τ
, (83)

which shows that when 〈H0〉 decreases one expects corre-
sponding amplification of E, and vice versa.

Figure 16 shows the spatiotemporal evolution of the electric
field and the molecular orientation. We find that the pulse
maintains its single-cycle structure to a considerable degree
for propagation through the entire length of the medium.
Some features deserve particular mention. Firstly, we observe
that the two main carrier lobes are temporally compressed for
increasing propagation distances. Secondly, we find that the
pulse develops self-oscillations superimposed on top of the
two carrier lobes, which is, for example, seen on the trailing
carrier lobe around x = 1 cm in Fig. 16(a). Thirdly, we observe
the formation of a comparatively strong and oscillating pulse
tail which has no clear spatiotemporal structure. The pulse tail
reaches amplitudes as high as 0.4E0 and therefore interacts
strongly with the medium. Fourthly, we find that the leading
edge (i.e., before the leading carrier lobe) is sufficiently strong
to preorient the molecules prior to the arrival of the first carrier
lobe, and this part of the pulse is therefore absorbed according
to Eq. (20).

To examine the above mentioned features in greater details,
Fig. 17 shows the temporal evolution of E(τ,x) and 〈H0〉
sampled at various positions in the medium. We find that as the
pulse enters into the medium, the internal energy 〈H0〉 of the
medium is saturated, evidenced by the appearance of several

FIG. 16. (Color online) �m
j � 1: spatiotemporal evolution of

E(τ,x) and 〈cos θ〉.

temporal peaks in 〈H0〉 [see, e.g., Fig. 17(a)]. The leading
bump in 〈H0〉 observed in Fig. 17(a) around τ ∼ −0.1Tb is
due to coherent energy return occurring when E switches
from negative to positive on the leading edge of the pulse,
consistent with the linear analysis. The larger, more rapid,
oscillations seen under the first carrier lobe are due to the
nonlinear effect mentioned above. As the pulse propagates
deeper into the material, its leading edge is always absorbed
since the molecules are prepared as absorbers. However, if the
leading edge is sufficiently strong to saturate the molecular
orbitals that are accessible by the pulse, the next slice of
pulse that enters into this region will be amplified rather than
absorbed, a process that leads to self-steepening of the pulse.
Then, if this “next slice of pulse” is sufficiently strong to
repeatedly saturate the medium, this process may repeat itself
several times under each carrier lobe such that a number of
self-oscillations impress themselves on top of each of the two
carrier lobes [see, e.g., Fig. 17(b)]. Further propagation tends to
enhance this reshaping process: as the pulse propagates deeper
into the medium, its spectrum broadens due to self-steepening,
opening up the possibility of excitations into even higher
orbitals. Saturation of higher orbitals leads to an increase in the
peak values of 〈H0〉 that are reached during interaction with the
pulse. This reinforces the propagation-induced self-steepening
process and leads to a weak optical shock near the leading pulse
edge. This feature is particularly prominent in Figs. 17(c) and
17(d), where the leading edge is both steepened and amplified.
We remark that the shock formation process can not proceed
indefinitely because residual energy is always present in the
excited molecules after the pulse has passed. Thus the spectral
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FIG. 17. (Color online) �m
j � 1: propagation with E0 = 5×

109 V/m. The panels show the electric field profiles (solid line, plotted
against the left vertical axis) and the internal molecular energy 〈H0〉
(dashed line, plotted against the right vertical axis) in units of �ωJ

for various propagation lengths x. For comparison, the dotted line in
(b)–(e) shows the input pulse.

broadening of the pulse comes at the cost of lost energy.
Qualitatively speaking, one eventually reaches a break-even
point where the reshaped pulse E(τ,x) does not contain a
sufficient amount of energy to lead to further developments of a
leading edge shock. In Fig. 17, which shows the internal energy
〈H0〉 at the exit interface x = 10 cm, the achieved peak values
of 〈H0〉 are smaller than at x = 3 cm, for example. However,
from experience gained through computer simulations, we

anticipate that even more pronounced optical carrier shocks
will form when considering input pulses with even higher
amplitude.

Transparency of the driving pulse is not observed here since
the final energy state is 〈H0〉(τ,x) > 〈H0〉(τ → −∞,x) for all
positions x. However, observe that the driving pulse energy
is conserved to a considerable extent when compared to the
linear regime where dispersion led to temporal broadening of
the driving pulse as well as the pulse revivals. The energy of
the field shown in the bottom panel in Fig. 17 represents ap-
proximately 80% of the input pulse energy. Here, the “energy”
of the driving pulse is defined as the fluence delivered in the
time window [−Tb/2,Tb/2]. This is in stark contrast to the
linear regime where less than 2% of the energy of the driving
pulse was preserved in the same time window after exiting the
medium. As might be expected, the preservation of the fluence
is due to saturation effects. Scaling Eq. (20) by E2

0 leads to

∂

∂x
E2(τ,x) = − 1

ε0cE
2
0

∂U

∂τ
, (84)

where E = E/E0 is a quantity of order unity. In the linear
regime U ∝ E2

0 [see Eq. (37)], hence, the effective absorption
length scale is constant in the linear regime. When U is
saturated, further increasing E will result in coherent energy
return rather than increased absorption. The pulse behavior
in Fig. 17 is therefore the result of coherent bleaching of the
medium.

VI. CONCLUSIONS

In summary, we introduce and analyze a unidirectional
many-level Maxwell-Bloch model describing the evolution
of single-cycle THz pulses propagating through a spa-
tially extended collection of quantum-mechanical rigid-rotor
molecules. Analytical time-domain solutions are derived in the
linear propagation regime, showing that the pulse evolves into
a series of dispersive pulse revivals that broaden temporally
with increased propagation distance. Analogous dispersion
occurs for the molecular orientation. In the special case
of equal line strengths, the evolution has only one length
scale and the pulse evolves into a pulse train, where each
impulse is an exact temporal copy of the input pulse decaying
algebraically with propagation distance. Furthermore, the
linearized solutions are shown to represent the superposition
of linear 0π pulses in the sharp-line limit.

We report on an efficient, scalable numerical algorithm
for spatiotemporal integration of the reduced Maxwell-Bloch
equations. The method is applicable to propagation of single-
cycle pulses in many-level media over long distances. With the
exception of subspace decomposition, which is used to reduce
the numerical cost for rigid-rotor molecules, the algorithm
[Eqs. (68) and (72)] is immediately extendable to other types
of atomic or molecular Bloch systems. Thus a significant result
of this paper is the extension of existing pulse propagation
algorithms to the single-cycle many-level regime.

Computer solutions for a few case studies of nonlinear
propagation are presented. In the nonlinear regime, we find that
the rotor molecules are strongly oriented by the input pulse and
orientations as high as 0.9 are observed. Compared with the
linear propagation regime, the spatiotemporal evolution in the
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nonlinear regime shows that the driving pulse is preserved to
a considerable extent during propagation and penetrates deep
into the medium. Correspondingly, the pulse revivals are of
considerably lower relative amplitude in the nonlinear versus
the linear regime. In the far-field, high-frequency precursor
fields are observed when the medium is initially in thermal
equilibrium. For sufficiently strong pulses, coherent bleaching
of the medium leads to self-steepening and carrier-shock
formation, as well as improved transmission of the driving
pulse. Although our motivation for undertaking this study
derives from an interest in the underlying physics, the results
are also of practical interest. For example, our results relate
closely to investigations of molecular orientation of spatially
extended media. The ability of nonlinear THz pulses to
penetrate further into materials is also of some relevance in
transmission and reflection imaging of tissue.

We also mention that some of the results presented in
this paper that addresses the molecular state at x = 0 have
been predicted by others. For example, the data in Fig. 4
have been predicted by Fleischer et al. [7], and some of
the data in Fig. 10 have been predicted by Henriksen [5].
While our data offer a generally favorable comparison with
earlier publications, few results pertaining to propagation
of THz pulses in spatially extended, resonant media have
been published to date. The numerical calculations presented
here predict the existence of new nonlinear optical effects,

but the numerical results are by no means exhaustive. More
thorough theoretical and experimental efforts are called for
in order to fully understand the nonlinear dynamics of the
types of systems that we consider here. Among these, the most
immediate investigations should account for the influence of
different ambient temperatures (affecting the initial distribu-
tion of the population), different pulse shapes (for example,
through the carrier-envelope phase), and investigations of
dual-pulse excitations. In addition, our model is open to
theoretical extensions. These include the incorporation of
centrifugal distortion and the inclusion of decoherence. Note
that incorporation of decoherence couples the various ladder
systems through the possibility of m-changing molecular
collisions, allowing for population transfer between them.
However, collision processes are incoherent and therefore do
not affect the subspace decomposition.
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