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PT -symmetric invisible defects and confluent Darboux-Crum transformations
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We show that confluent Darboux-Crum transformations with emergent Jordan states are an effective tool for the
design of optical systems governed by the Helmholtz equation under the paraxial approximation. The construction
of generic, asymptotically real and periodic, PT -symmetric systems with local complex periodicity defects is
discussed in detail. We show how the decay rate of the defect is related with the energy of the bound state trapped
by the defect. In particular, the bound states in the continuum are confined by the periodicity defects with power
law decay. We show that these defects possess complete invisibility; the wave functions of the system coincide
asymptotically with the wave functions of the undistorted setting. The general results are illustrated with explicit
examples of reflectionless models and systems with one spectral gap. We show that the spectral properties of the
studied models are reflected by Lax-Novikov-type integrals of motion and associated supersymmetric structures
of bosonized and exotic nature.
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I. INTRODUCTION

Propagation of light beams can mimic evolution of matter
waves in quantum systems. This follows from the formal
coincidence of the Helmholtz equation for monochromatic
light, propagating in magnetization free medium, and the
stationary Schrödinger equation in quantum mechanics [1].
In this manner, behavior of quantum systems can be simulated
by optical systems, and, vice versa, concepts common in optics
can find their way to quantum settings.

Nowadays, there can be constructed optical materials where
intensity of light is subject to a controlled gain and loss [2–4].
Unusual optical properties of these systems are reflected by
refractive index that acquires complex values. The perfect
match between gain and loss prevents the light from being
exponentially dimmed or brightened and it is reflected by
invariance of the refractive index with respect to combined
transformations of space inversion (P ) and time reversal (T ).
The light passing through such a material can exhibit some
remarkable properties. Among them, let us mention power
oscillations or nonreciprocity of beam propagation that are
caused by nonorthogonality of Bloch states [5–9], violation
of Friedel’s law of Bragg scattering [10], unidirectional
invisibility [11–14] or invisibility of defects in the periodic
structure of optical crystals [15,16].

The peculiar features of the PT -symmetric optical systems
can be captured by the Helmholtz (Schrödinger) equation with
a non-Hermitian Hamiltonian. Such Hamiltonian operators
have been studied extensively in quantum mechanics for last
two decades; see [17–19] for review. It was understood that
reality of their spectra occurs due to existence of an antilinear
integral of motion that was identified with the PT operator
in most cases. The lack of Hermiticity of the energy operator
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challenges probability interpretation for a quantum system;
the scalar product has to be redefined [20–22] and its explicit
form is usually exceedingly difficult to find.

As the solutions of the Helmholtz equation correspond to
a purely classical object (amplitude of the electric field), the
hassle of the probability interpretation is avoided. In fact, the
optical systems with balanced gain and loss open the door
for realization of interesting phenomena predicted by non-
Hermitian (PT -symmetric) quantum mechanics. One of them
corresponds to the transition between exact and spontaneously
broken PT symmetry, where the behavior of a physical system
at the vicinity of the exceptional spectral points was of the main
interest [10,23,24].

The Helmholtz equation for linearly polarized light acquires
the form, (

∂2
z + ∂2

x + n2(x)

c2
ω2

)
�(x,z) = 0, (1.1)

where ω is the frequency of the monochromatic beam, and � is
electric field. The refractive index n(x) = n0 + δn(x), where
n0 > 0 and |δn(x)| � n0, is PT symmetric, i.e., δn(x) =
δn(−x)∗. In dependence of its sign, the imaginary part of
δn(x) represents loss or gain. In the paraxial approximation,
we set �(x,z) = ei

n0ω

c
zψ(x,z), where ψ(x,z) is an envelope

function slowly varying in z. Neglecting the term with ∂2
z ψ ,

the Helmholtz equation reduces then to

i∂zψ(x,z) = [−∂2
x + V (x)

]
ψ(x,z), (1.2)

where z denotes a depth of propagation of light in the crystal
while x is a transverse coordinate. The potential V (x) is
proportional to δn(x), V (x) ∼ δn(x). The form of physically
acceptable solutions of (1.2) depends on characteristics of
the considered system; they can be square integrable in x,
or quasiperiodic in x when V (x) is a periodic function.
It is worth stressing that contrary to the PT -symmetric
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quantum mechanics,1 the quantity P(z) = ∫ ∞
−∞ |ψ(x,z)|2dx is

physically relevant as it denotes the power of the beam ψ(x,z)
when measured in the depth z within the crystal. Due to the
complex refractive index, the power P(z) can be an oscillating
function in z as the beam propagates through the medium; see,
e.g., [6].

In the current article, we will have in mind primarily
the framework of paraxial approximation described by (1.2),
suitable for the low frequencies where the term ∂2

z ψ can be
neglected. Let us notice that another situation is also of interest
in the literature, where no paraxial approximation is em-
ployed [11,13]. By separation of variables �(x,z) = eiλzψ(x),
Eq. (1.1) reduces effectively to ( d2

dx2 + n2(x)
c2 ω2 − λ2)ψ(x) = 0.

Here, the inhomogeneities of the refractive index are developed
in the direction of propagation of light, contrary to (1.2)
where the light propagates in a normal direction to the
inhomogeneities of n(x). Our results will be applicable in this
scheme as well.

Supersymmetric quantum mechanics (SUSYQM) provides
powerful techniques for construction and analysis of quantum
systems. It allows us to alter interaction terms of both exactly
and quasiexactly solvable models without compromising their
solvability properties. It relates the scattering characteristics
such as reflection and transmission amplitudes of the two
systems [26]. It can serve to find integrals of motion of the new
systems; in the case of finite-gap and reflectionless systems,
the nontrivial (Lax-Novikov) integrals can be identified in a
straightforward manner [27–30]. The framework of SUSYQM
can also be used very efficiently in the analysis of the
soliton scattering, or to construct (multi)soliton solutions
of Korteweg–de Vries (KdV) and modified Korteweg–de
Vries equations proceeding from the trivial solutions; see,
e.g., [31,32].

SUSYQM relies on the intertwining operators. These are
frequently represented in terms of higher-order differential
operators and identified as Darboux-Crum transformations
known from the analysis of differential equations [33]. They
are usually used to construct systems with altered number
of discrete energies.2 Requirement of regularity of a new
system imposes some restrictions to the use and setup of
Darboux-Crum transformations. Discrete energies that lie be-
low the spectral threshold of the original system can be added
by the first-order Darboux transformations. To generate
discrete energy levels within a bounded gap separating the
spectral bands of an original, periodic system, Darboux-Crum
transformations of higher order have to be employed; see [35].

Methods of quantum mechanics provide efficient tools for
analysis of optical systems. They have been used in the optics
for a few decades [36–42]. In recent years, popularity of the
supersymmetric approach witnesses growing interest in the

1The Hamiltonian H with complex, PT -symmetric potential ceases
to be self-adjoint with respect to the usual scalar product (f,g) =∫ ∞

−∞ f ∗(x)g(x)dx. To recover physical relevance of the scalar product
and the self-adjointness of the Hamiltonian, it is necessary to make a
suitable redefinition of the former one; see, e.g., [18,25].

2They also can be used to eliminate some states in the continuous
part of the spectrum; see [34].

context of the PT -symmetric optical devices [43–48]. It allows
one to construct solvable models of optical crystals with reflec-
tionless interfaces [43], the systems possessing unidirectional
invisibility [46], or periodic crystals with invisible periodicity
defects [45].3

Developing further the pioneering ideas of von Neumann
and Wigner [49], a supersymmetric generalization of the pro-
cedure for the construction of spherically symmetric scattering
potentials that support bound states in the continuum was
proposed in Refs. [50,51]. General aspects of the technique,
known in the literature as the confluent Darboux(-Crum)
transformation, have been analyzed in the series of papers [52–
56]; see also Refs. [57,58]. The extension of the generalized
framework to the systems defined on the whole real axis leads
to the construction of non-Hermitian systems. Those were
considered in the context of optics, e.g., in Refs. [59,60].

Bound states in the continuum (BIC) can be observed
experimentally in optical systems [61] and their theoretical
investigation in the context of PT -symmetric lattices was
done, for instance, in Refs. [62,63]. The bound states located
on the threshold of the continuum spectrum of PT-symmetric
systems were considered in Ref. [45].

In the present work, by a systematic employment of
SUSYQM, we will construct PT -symmetric optical systems
where the refraction index is asymptotically real and periodic,
however, there are localized complex periodicity defects. We
will show analytically that the decay rate of the defects is
related to the energy of the bound states induced by them; the
defects fall off as x−1 or x−2 for the systems with BIC, whereas
exponential decay takes place for bound states associated with
discrete energies.

The work is organized as follows. In the next section,
we will present the main characteristics of the confluent
Darboux-Crum transformations (also called double-step Dar-
boux transformations in the literature), the basic tool for
construction of the systems with bound states in the continuum.
We will explain its relation to the standard supersymmetric
quantum mechanics and provide formulas for the bound
states and potential of the new system. We will review basic
properties of periodic systems in Sec. III, where we focus
on the PT symmetry of Bloch-Floquet states. In Sec. IV,
we will focus on the PT -symmetric potentials that support
bound states in the continuum. Results of the systematic
analysis are illustrated on the examples in Sec. V. We discuss
there, particularly, reflectionless systems that possess either
visible or invisible defects. We consider one-gap systems that
possess bound states in the continuum as well. In Sec. VI, we
discuss some peculiar properties of reflectionless and finite-
gap systems. In particular, we focus on the integrals of motion
that reflect spectral properties of the systems manifested in two
kinds of associated superalgebras. One of them corresponds
to a hidden bosonized supersymmetry. It is based here on

3Invisibility of defects in the crystal structure means that the
asymptotic form of the wave packet outgoing from the defect
coincides with the wave packet that would propagate through the
undistorted crystal. There, the reflection coefficient vanishes and the
change in the phase factor reduces to the trivial one (modulo period
of the potential); see, e.g., [45].

023839-2



PT -SYMMETRIC INVISIBLE DEFECTS AND . . . PHYSICAL REVIEW A 92, 023839 (2015)

Lax-Novikov integrals mixed up with confluent Darboux-
Crum transformations. The other one is an exotic hidden
nonlinear supersymmetry based on the extended matrix Hamil-
tonian and containing the extended number of integrals of
motion in comparison with a usual N = 2 supersymmetric
structure. The last section is devoted to discussion and outlook.

II. CONFLUENT DARBOUX-CRUM TRANSFORMATION
AND JORDAN STATES

For any quantum system we obtain here a partner by
employing a confluent Darboux-Crum transformation, and
observe the emergence of the Jordan states in the construction.
Such states will appear later in the structure of the Lax-
Novikov integrals controlling the invisibility of the PT -
symmetric defects.

Consider a quantum system given by the Schrödinger
Hamiltonian,

H = − d2

dx2
+ V (x). (2.1)

Let ψ0(x) be a (physical or nonphysical) eigenstate of
eigenvalue E0,

(H − E0)ψ0 = 0. (2.2)

We use it to introduce the first-order differential operators,

A := ψ0
d

dx

1

ψ0
= d

dx
− ψ ′

0

ψ0
,

(2.3)

A� := − 1

ψ0

d

dx
ψ0 = − d

dx
− ψ ′

0

ψ0
.

By definition,

Aψ0 = 0, A� 1

ψ0
= 0. (2.4)

A linear independent from ψ0 eigenstate of H of the same
eigenvalue E0 we take in a form,

ψ
	

0(x) = ψ0(x)

(∫ x

x0

ds

ψ2
0 (s)

+ a

)
, a ∈ C, (2.5)

where x0 ∈ R is some fixed point. Notice that the Wronskian
W (f,g) := fg′ − f ′g of ψ0 and ψ

	

0 is unit, W (ψ0,ψ
	

0) = 1. In
what follows by ψ	(x) we shall denote a function associated
with a function ψ(x) according to the rule (2.5).

The application of A and A� to ψ
	

0 and (1/ψ0)	, respectively,
gives

Aψ
	

0 = 1

ψ0
, A�

(
1

ψ0

)	

= −ψ0. (2.6)

By virtue of Eqs. (2.4) and (2.6), the first-order operators (2.3)
factorize the shifted Hamiltonian,

H − E0 = A�A. (2.7)

The alternative product of A and A� gives the shifted Darboux
(SUSY) partner Hamiltonian H̆ ,

H̆ − E0 = AA� = − d2

dx2
+ V̆ (x), with

(2.8)
V̆ (x) = V (x) − 2(ln ψ0(x))′′.

The nodes of ψ0 give rise to singularities in V̆ (x) not present in
V (x). When V̆ (x) is required to inherit the regularity of V (x),
ψ0 has to be fixed as a nodeless function. The intertwining
relations,

AH = H̆A, A�H̆ = HA�, (2.9)

follow then from (2.7) and (2.8). The operator H̆ − E0

annihilates the states 1/ψ0 and (1/ψ0)	.
In dependence on the nature of E0 and ψ0(x), the Hamil-

tonians H and H̆ are isospectral or almost isospectral up to
eigenvalue E0, which can be present in one system but missing
in the other one. Operators A and A� realize a mapping between
two-dimensional eigenspaces of the second-order differential
operators H and H̆ ,

AψE = ψ̆E, A�ψ̆E = (E − E0)ψE, (2.10)

for any E �= E0 and corresponding eigenstates, HψE = EψE ,
H̆ ψ̆E = Eψ̆E .

Notice that the zero mode ψ
	

0 of H − E0 is mapped by
A into the zero mode 1/ψ0 of H̆ − E0 and, analogously, the
zero mode (1/ψ0)	 of H̆ − E0 is mapped by A� into the zero
mode ψ0 of H − E0. However, the pre-image of the zero mode
ψ

	

0 of H − E0 with respect to the action of A� is not a zero
mode of H̆ − E0. Similarly, the pre-image of the zero mode
(1/ψ0)	 of H̆ − E0 under the action of A does not belong to
the kernel of H − E0. Instead, the indicated pre-images are
the Jordan states of the corresponding operators H − E0 and
H̆ − E0. Indeed, consider the equation,

Aχ = −(1/ψ0)	. (2.11)

Its solution is

χ (x) = −ψ0(x)

(∫ x

x0

1

ψ0(s)
(1/ψ0(s))	ds + a

)

= −ψ0(x)

(∫ x

x0

α + ∫ s

x0
ψ2

0 (r)dr

ψ2
0 (s)

ds + a

)
, (2.12)

where a ∈ C and α ∈ C are some constants. Acting on both
sides of (2.11) by A�, one finds that

(H − E0)χ = ψ0, (H − E0)2χ = 0. (2.13)

This means that χ (x) is the Jordan state of H − E0.
Analogously, we find that the solution of equation A�λ =
ψ

	

0, given by λ(x) = − 1
ψ0(x) (

∫ x

x0
ψ0(s)ψ	

0(s)ds + b) , b ∈ C ,

satisfies (H̆ − E0)λ = 1/ψ0 ,(H̆ − E0)2λ = 0. Without loss
of generality, we set below a = 0 in Eq. (2.12).

Let us take E �= E0 and consider the eigenstate equation,

(H − E)�(x; E) = 0. (2.14)

We suppose that E is sufficiently close to E0 and denote E −
E0 = ε. Assuming the analyticity of �(x; E) in E in vicinity
of E0, we look for solution of (2.14) close to ψ0(x) in the form
of the Taylor series in ε,

�(x; E) = ψ0(x)+
∑
n=1

εn

n!
χn(x),

(2.15)

χn(x) = ∂n�(x; E)

∂En

∣∣∣∣
E=E0

.
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Substituting this series into (2.14), we find that χn(x) are
defined recursively by

(H − E0)χ1(x) = ψ0(x), (2.16)

(H − E0)χn(x) = nχn−1(x), n = 2, . . . . (2.17)

Therefore, χ1(x) is just the Jordan state that appeared in
Eq. (2.13), χ1(x) = χ (x). The state χn(x) with n � 2 satisfies
relations (H − E0)nχn(x) = ψ0(x), (H − E0)n+1χn(x) = 0,
and can be identified as a higher, nth-order Jordan state.

Consider the system H̃ε = − d2

dx2 + Vε(x) generated from
H by applying to the latter the Darboux-Crum transformation
based on the eigenstates ψ0(x) and �(x; E),

Vε(x) = V (x) − 2[ln W (ψ0(x),�(x; E))]′′. (2.18)

Taking into account Eq. (2.15), in the limit ε → 0 we get

Ṽ := lim
ε→0

Vε(x) = V (x) − 2[ln W (ψ0(x),χ (x))]′′. (2.19)

Relation W (f,g) = f 2 d
dx

( g

f
) together with Eq. (2.12) gives us

Ṽ (x) = V (x) − 2
d2

dx2
ln I(x)

= V (x) − 4
ψ0ψ

′
0∫ x

0 ψ2
0 + α

+ 2
ψ4

0( ∫ x

0 ψ2
0 + α

)2 , (2.20)

where

I(x) =
∫ x

0
ψ2

0 (s)ds + α, (2.21)

and from now on we set x0 = 0.
In correspondence with the Darboux-Crum construction,

the Hamiltonian operators H , H̆ and

H̃ := − d2

dx2
+ Ṽ , (2.22)

are almost isospectral. Since in the limit ε → 0, A�(x; E0 +
ε) = A(ψ0 + εχ ) = εAχ = ε(1/ψ0)	, we have

H̆ − E0 = B�B, H̃ − E0 = BB�, (2.23)

where

B = η0
d

dx

1

η0
, B� = − 1

η0

d

dx
η0, with η0 := (1/ψ0)	.

(2.24)
There holds Bη0 = 0, Bη0

	 = 1/η0 ,B�(1/η0) =
0, B�(1/η0)	 = −η0 , and so, ker (H̃ − E0) =
span {1/η0,(1/η0)	} . From (2.23) it follows that

BH̆ = H̃B, B�H̃ = H̆B�. (2.25)

The H and H̃ are intertwined then by the second-order
differential operators,

(BA)H = H̃ (BA), (A�B�)H̃ = H (A�B�). (2.26)

The eigenstates ψ and ψ̃ of H and H̃ , Hψ = Eψ , H̃ ψ̃ = Eψ̃ ,
for E �= E0 satisfy

ψ̃ = (BA)ψ = (E0 − E)ψ

+ ψ0∫ x

0 ψ2
0 (s)ds + α

(ψψ ′
0 − ψ0ψ

′), (2.27)

(A�B�)ψ̃ = (E − E0)2ψ. (2.28)

Notice that in accordance with Eqs. (2.27) and (2.24),
the eigenstate ψ

	

0 of H of eigenvalue E0 is mapped into the
corresponding eigenstate of H̃ ,

ψ̃0	 = − 1

η0
= − ψ0∫ x

0 ψ2
0 (s)ds + α

. (2.29)

To simplify notations, in what follows we re-denote −ψ̃
	

0
by �̃0.

Thus, the confluent double-step Darboux transformation
coincides with the second-order Darboux-Crum transforma-
tion based on the eigenstate ψ0(x) of H , (H − E0)ψ0 = 0,
and the associated with it Jordan state χ (x) that satisfies
(H − E0)χ (x) = ψ0(x), (H − E0)2χ (x) = 0; see Eq. (2.19).

The described picture can be generalized further by apply-
ing the confluent Darboux-Crum transformations based on the
eigenstate ψ0 and the associated Jordan states χ1, . . . ,χn of H ;
see (2.16) and (2.17). A new Hamiltonian H̃n, H̃1 = H̃ , will
be intertwined then with H by the nth-order operators. Instead
of analyzing such new systems following the line presented
here, we just notice that a Wronskian formulation for confluent
supersymmetric transformation chains was discussed, e.g., in
Ref. [55].

III. PT -SYMMETRIC SYSTEMS

We are going to consider PT -symmetric systems with ei-
ther periodic or asymptotically periodic potential. Theoretical
aspects of the complex and PT -symmetric periodic potentials
have been a subject of intensive research; see, e.g., [64–69].
We will focus on the construction of PT -symmetric systems
by applying the confluent Darboux-Crum transformations to
Hermitian periodic Schrödinger Hamiltonians. We suppose
that the initial system is given by a real, regular, even
L-periodic potential defined on the real line,

V (x + L) = V (x), V (−x) = V (x), V ∗(x) = V (x).
(3.1)

The generic properties of the solutions of the equation,(
− d2

dx2
+ V (x)

)
ψ = Eψ, E ∈ R, (3.2)

are described then by Floquet’s theorem [70]. It tells that
the two linearly independent solutions of (3.2), which are
neither periodic nor antiperiodic, can be written in terms of
quasiperiodic functions,4

ψ±(x) = e±ikxuk(±x), uk(x + L) = uk(x),

k ∈ C,
kL

π
/∈ Z. (3.3)

Here, we have taken into account that the spatial reflection
operator P is the symmetry of H . We deal with the bounded
(“stable”) solutions as long as k is purely real. Their energies
belong to the interior of the allowed bands. The functions (3.3)

4We call a function f (x) quasiperiodic when it satisfies f (x + L) =
cf (x) where c is a complex number.
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with Im k �= 0 are unbounded (“unstable”) as they diverge
exponentially when x goes towards plus or minus infinity. The
corresponding energies are nonphysical and form forbidden
bands in the spectrum. When one of the solutions of (3.2)
is periodic or antiperiodic, i.e., when kL

π
∈ Z, the second

solution can either have the same periodicity or can fail to
be quasiperiodic at all.5 The former property corresponds
to the solutions inside the allowed bands, while the latter
characterizes the states at the edges of the allowed energy
bands.6

In order to get PT -symmetric Hamiltonian H̃ , we suppose
that the eigenfunction ψ0 of the initial PT -symmetric Hamil-
tonian H is also an eigenstate of the operator PT ,

PT ψ0 = εψ0, ε2 = 1, (H − E0)ψ0 = 0, E0 ∈ R.

(3.4)
The requirement of PT symmetry of H̃ is equivalent
to PT d2

dx2 ln I(x)PT = d2

dx2 ln I(x) with I(x) defined in
Eq. (2.21). Taking into account (3.4) and (2.21), this require-
ment can be met provided that α is purely imaginary,

α = iα
R
, α

R
∈ R. (3.5)

Besides, α
R

has to be (and can be) fixed in a way such that Ṽ

is free of singularities, i.e., I(x) is nodeless. We suppose this
to be the case from now on.

Let us discuss in more detail the consequences of the
requirement (3.4) for both stable and unstable solutions.

First, let us suppose that ψ0 is a linear combination of the
stable states g± with real quasimomentum,

g± = a±e±ikxuk(±x), k ∈ R, k �= n
π

L
, |a±| = 1.

(3.6)
In the definition of g−, we used the fact that P is a symmetry
of H . The phase factors a± are fixed such that there holds

PTg± = g±, Pg± = g∓, T g± = g∓. (3.7)

This implies that any linear combination b1g+ + b2g− with
real b1,b2 is PT symmetric. It is also nodeless provided
that |b1| �= |b2|; this follows from the fact that the real and
imaginary parts of the latter linear combination are two
independent solutions of (3.2), and, hence, cannot vanish
simultaneously.

Secondly, we consider the case when kL
π

∈ Z. Let us take
ψ0 as a linear combination of the states where at least one of
them is periodic or antiperiodic and PT symmetric. Let us
denote it p(x). We have

ψ0(x) = c+p(x) + c−q(x), p(x + 2L) = p(x), (3.8)

5When (3.2) has a periodic or antiperiodic solution p(x), then the
other solution y(x) satisfies y(x + 2L) = y(x) + γp(x). The actual
value of γ depends on the concrete form of the potential in Eq. (3.2)
(one can have γ = 0); see [70] for more details.

6The free particle system is a particular example where all
physical solutions are periodic. Indeed, the Hamiltonian H = − d2

dx2

is translation invariant and the solutions sin kx and cos kx are periodic
with the period 2π

k
for any real k �= 0, while the constant solution with

k = 0, at the edge of continuous spectrum has an arbitrary period.

where the function q(x) can be written as q(x) =
p(x)

∫ x

0
1

p(s)2 ds. As it was already noted, such states are
associated either with the band-edge energies or they can
correspond to specific energy levels from the interior of the
allowed energy bands as well. When PTp(x) = εp(x), then
PT q(x) = −εq(x). Hence, ψ0 is PT symmetric provided that
c+ ∈ R and c− ∈ iR up to a common multiplicative factor.

Finally, let us consider ψ0 as a linear combination of
unstable states (3.3) with complex quasimomentum, k =
k2 − ik1, k1 > 0, k1,k2 ∈ R. One can show that k2 = πn

L

where n is an integer. Indeed, let f (x) = ek1xeik2xuk(x) be
an unbounded solution of (3.2). Then f ∗(x) is also a solution.
Considering asymptotic behavior of the two functions, we find
that f (x) = cf ∗(x) for a constant c. We get c = e−2ik2x u∗

k (x)
uk(x) .

Substituting x → x + L on the right-hand side, the equation
is satisfied provided that k2 = πn

L
. The equation also implies

that uk(x) and u∗
k(x) differ just by a multiplicative constant,

and, hence, uk(x) can be fixed as a real function. We can write
the fundamental solutions in terms of real functions,

f+ = ek1xuk(x), f− = Pf+ = e−k1xuk(−x), (3.9)

that satisfy the following relations,

Tf± = f±, PTf± = f∓. (3.10)

To get an eigenstate of PT , we have to take the linear
combination,

F± = Cf+ ± C∗f−, PT F± = ±F±,
(3.11)

C = c1 + ic2, c1,c2 ∈ R.

These states are nodeless if c1c2 �= 0. In such a case, the real
and imaginary parts form the fundamental set of solutions and
cannot vanish simultaneously at the same point.

IV. PROPERTIES OF H̃

In this section, we address the question of square integrabil-

ity of �̃0 = −ψ̃
	

0 and of the asymptotic behavior of Ṽ . We shall
consider separately three situations, distinguished by the three
qualitatively different forms of ψ0 discussed in the previous
section. In the first two cases, ψ0 will be associated with the
energy E0 belonging to an allowed spectral band, whereas in
the third case, E0 will be the nonphysical eigenvalue of H

belonging to the spectral gap.
Let us start with the case where ψ0 is a linear combination

of the quasiperiodic functions (3.6),

ψ0(x) = c+eikxuk(x) + c−e−ikxuk(−x), (4.1)

where c± are real constants. In order to show that �̃0 is square
integrable, let us suppose that ψ0 is a periodic function with
period �, i.e., ψ0(x + �) = ψ0(x). This requirement is satisfied
when the periods of eikx and uk are commensurable. It is
worth emphasizing that in some cases, � may be reduced to
the original period L of the Hamiltonian H . We have∫ x

0
ψ2

0 (s)ds =
∫ [ x

�
]�

0
ψ2

0 (s)ds +
∫ x

[ x
�

]�
ψ2

0 (s)ds

=
[
x

�

]
Q0 +

∫ x

[ x
�

]�
ψ2

0 (s)ds, (4.2)
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where Q0 ≡ ∫ �

0 ψ2
0 (s)ds and [ x

�
] is the integer part of x

�
.

We suppose here that the integral Q0 is nonvanishing.
Using (4.2) and boundedness of ψ0, we can see that �̃0 decays
asymptotically as 1/x,

�̃0 = ψ0∫ x

0 ψ2
0 (s)ds + iα

R

= ψ0[
x
�

]
Q0 + ∫ x

[ x
�

]� ψ2
0 (s)ds + iα

R

∼ 1

x
for |x| → ∞,

(4.3)

and, therefore, the eigenstate �̃0 is square integrable.
For the second case, let us consider ψ0 as fixed in Eq. (3.8),

ψ0 = c+p(x) + c−q(x), ψ0(x + 2nL) = ψ0(x) + nγp(x),

γ �= 0, (4.4)

where γ and c± are constants. Notice that when γ = 0, ψ0

reduces to the form of Eqs. (4.1)–(4.3) apply in this case.

When γ �= 0, we can make the same steps that led to (4.3),
yielding∫ x

0
ψ2

0 (s)ds = c0 + c1

[
x

2L

]
+ c2

[
x

2L

]2

+ c3

[
x

2L

]3

+
∫ x

[ x
2L

]2L

ψ2
0 (s)ds ∼ x3 for |x| → ∞,

(4.5)

where cj , j = 0,1,2,3, are constants. Hence, the function �̃0

is also square integrable in this case,

�̃0 = ψ0∫ x

0 ψ2
0 (s)ds + iα

R

∼ 1

x2
, |x| → ∞. (4.6)

In contrast to (4.3), it decays as 1/x2.
In the last case, ψ0 is given as a linear combination of

unbounded solutions (3.11). We fix

ψ0 = F+ = ek1xuk(x) + e−k1xuk(−x) (4.7)

(the analysis for another choice of ψ0 would follow similar steps). To make the forthcoming computation compact yet easy to
follow, let us introduce the following temporal notations,

x̃ ≡
[

x

L

]
, J (x) = e2k1xuk(x)u′

k(x), G(x) = uk(x)uk(−x), K(x) =
∫ x−x̃L

0
J (s)ds, (4.8)

and then we can write∫ x

0
ψ2

0 (s)ds =
∫ x

−x

e2k1su2
k(s)ds + 2

∫ x

0
uk(s)uk(−s)ds

=
[
e2k1su2

k(s)

2k1

]x

−x

− 1

k1

(
x̃−1∑

n=−x̃

e2k1nL

∫ L

0
J (s)ds + e2x̃Lk1K(x) − e−2x̃Lk1K(−x)

)
+ 2

∫ x

0
G(s)ds

=
[
e2k1su2

k(s)

2k1

]x

−x

− 1

k1
(Q sinh 2k1x̃L + e2x̃Lk1K(x) − e−2x̃Lk1K(−x)) + 2

∫ x

0
G(s)ds, (4.9)

where we integrated by parts in the second line and summed
over n in the third line. Here, Q = (coth kL − 1)

∫ L

0 J (s)ds

is a number, whereas K(x) = K(x + L) is a periodic function.
We can see that (4.9) increases exponentially at large |x|. Thus,
the eigenstate �̃0 decays exponentially for x → ±∞,

�̃0 =
⎧⎨⎩

2k1uk(x)
u2

k(x)−2K(x)−Q
e−k1x, x → ∞,

− 2k1uk(−x)
u2

k(−x)−2K(−x)−Q
ek1x, x → −∞,

(4.10)

and represents a quadratically integrable bound state of H̃ .
The Hamiltonian H̃ constructed by fixing ψ0 as either (4.1)

or (4.4) has some remarkable properties. First, we can observe
that the potential term Ṽ (x) coincides asymptotically with
V (x). This can be seen easily from the relation,

Ṽ = V − 4�̃0ψ
′
0 + 2�̃2

0ψ2
0 . (4.11)

For (4.1), where ψ0 is bounded and �̃0 decays as 1/x, the
function Ṽ − V disappears as 1/x. When we have (4.4), ψ0

has linearlike behavior whereas �̃0 decays as 1/x2. Hence,

the term Ṽ − V vanishes as 1/x2. The periodicity defects
Ṽ − V are invisible; apart from the bound state �̃0, an arbitrary
eigenstate ψ̃ of H̃ coincides asymptotically with an eigenstate
ψ of H where ψ̃ = BAψ . The wave function does not acquire
any phase shift when passing through the defect.

These conclusions stem directly from the chain of equali-
ties,

ψ̃ = BAψ = (E0 − E)ψ + ψ0∫ x

0 ψ2
0 + α

(ψψ ′
0 − ψ0ψ

′)

(4.12)

= (E0 − E)ψ + �̃0(ψψ ′
0 − ψ0ψ

′), H̃ ψ̃ = Eψ̃,

(4.13)

where the second term in Eq. (2.28) vanishes asymptotically
(|ψ0| and |ψ | are bounded), implying ψ̃ |x→±∞ = (E0 − E)ψ .
Let us notice that for ψ0 = const (in this case H corresponds
to the free particle), the second term in Eq. (4.11) cancels out.

The invisibility of the periodicity defect in Ṽ does not take
place when ψ0 is fixed as a linear combination of unbounded,
exponentially growing states. The potential term Ṽ of H̃ is
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asymptotically periodic, however, it does not coincide with V in general. We have

Ṽ =
⎧⎨⎩V − 8k1uk(x)

(
k1uk(x)+(uk (x))′

u2
k(x)−Q−2K(x)

− k1u
3
k(x)

(u2
k(x)−Q−2K(x))2

)
, x → ∞,

V − 8k1uk(−x)
(

k1uk(−x)+(uk (−x))′

u2
k(−x)−Q−2K(−x)

− k1u
3
k(−x)

(u2
k(−x)−Q−2K(−x))2

)
, x → −∞,

(4.14)

which is an L periodic and real [uk is L periodic and real;
see (3.10) and (4.7)] function. Also, the function ψ̃ differs
asymptotically from ψ as the second term in Eq. (4.13) is not
vanishing. Notice that when uk is constant, then K(x) = 0,
Q = 0, and Ṽ coincides asymptotically with V . This is the
case when H is the Hamiltonian of the free particle.

For some specific choices of H and ψ0, the intermediate,
PT -symmetric Hamiltonian H̆ can be identified with the
original Hamiltonian H up to a constant displacement of the
coordinate,

H̆ (x) = H − 2(ψ ′
0/ψ0)′ = H (x + c), (4.15)

where c preserves7 the PT symmetry of H̆ (x). When this
is the case, the term ψ ′

0/ψ0 has period L, that is only
possible provided ψ0 = eikxuk(x). The requirement that ψ0

is an eigenfunction of PT forces k to be real. Hence, we can
get (4.15) for physical energy E0 and quasiperiodic ψ0 only.
The Hamiltonian H̃ is intertwined with H̆ by B = η0

d
dx

1
η0

[see (2.24)], where η0 is a linear combination of eikxuk(x + c)
and e−ikxuk(−x − c). To make it satisfy PT η0 = η0, we take

η0 = eikx(c1uk(x + c) + c∗
1PT uk(x + c))

+ e−ikx(c2uk(−x − c) + c∗
2PT uk(−x − c)). (4.16)

The Hamiltonian H̃ = H (x + c) − 2(η′
0/η0)′ is not neces-

sarily L periodic. However, it can have period � when the
periodicities of eikx and uk(x) are commensurable. When this
is not the case, Ṽ fails to be periodic at all. In the next section,
we will discuss some examples where these conclusions will
be illustrated explicitly.

V. EXAMPLES

A. Reflectionless systems

Let us analyze the systems generated by confluent Darboux-
Crum (double-step Darboux-Jordan) transformation from the
free particle,

H = − d2

dx2
. (5.1)

We will discuss the cases where ψ0 is a linear combination
of either stable or unstable solutions of the equation (H −
E0)ψ = 0. First, we fix ψ0 as a linear combination of the
unstable states corresponding to the energy E0 = −k2

0 < 0.
Without loss of generality, we can choose ψ0 in the following
form,

ψ0 = cosh(k0x + iτ ), k0 > 0, τ ∈ R. (5.2)

7Hence, c is either real or its imaginary part coincides with the
imaginary period of H̆ (x).

Then, according to Eqs. (2.20), (2.22), and (2.29), the explicit
form of the Hamiltonian H̃ and of its quadratically integrable

bound state �̃0 ≡ −ψ̃
	

0 can be written as

H̃ = − d2

dx2
+ 2

(
cosh4(k0x + iτ )

S2
H

− k0 sinh(2(k0x + iτ ))

SH

)
,

�̃0 = cosh(k0x + iτ )

SH

, (5.3)

where

SH = iα̃ + x

2
+ 1

4k0
sinh(2(k0x + iτ )), (5.4)

and α̃ = α
R

− 1
4k0

sin 2τ . The amplitude of both the potential

Ṽ and the bound state �̃0 decays exponentially for large |x|.
As a second case, we consider ψ0 to be a linear combination

of stable solutions of (H − E0)ψ = 0 with E0 = k2
0 > 0 by

mixing the plane waves eik0x and e−ik0x ,

ψ0 = cos(k0x + iτ ), k0 > 0, τ ∈ R. (5.5)

The function ψ0 is even with respect to the action of PT . The
explicit form of the Hamiltonian H̃ and of its bound state �̃0

is8

H̃ = − d2

dx2
+ 2

(
cos4(k0x + iτ )

S2
T

+ k0 sin(2(k0x + iτ ))

ST

)
,

�̃0 = cos(k0x + iτ )

ST

, (5.6)

ST = iα̃ + x

2
+ 1

4k0
sin(2(k0x + iτ )), (5.7)

where α̃ = α
R

− 1
4k0

sinh 2τ . In contrast with the previous
case, the amplitude of both the potential and the bound state
decays now as 1/x for large |x|.

Next, we choose ψ0 as a single stable quasiperiodic
eigenfunction of H ,

ψ0 = eik0x. (5.8)

In this case, H̃ can be written as

H̃ = − d2

dx2
+ 2k2

0

sin2(k0x + iτ )
, τ = 1

2
ln(1 + 2k0αR

),

(5.9)

which corresponds to the PT -regularized trigonometric
Pöschl-Teller potential [72].9 For this choice of ψ0, the
intermediate Hamiltonian H̆ reduces to H . Hence, H and

8Some analogous but Hermitian system with singularities on the
real line was considered in Ref. [71].

9For a wider class of such systems, see also [73].
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H̃ are effectively intertwined by the first-order Darboux trans-
formation. It is worth noticing that the periodic Hamiltonian
H̃ has a nondegenerate energy level at E = E0. Indeed, one of
the solutions of (H̃ − E0)f = 0 given by (2.29) is a bounded

periodic function �̃0 = −ψ̃
	

0,

�̃0 = 1

sin(k0x + iτ )
. (5.10)

The second solution �̃
	

0 grows asymptotically as |x| and,
hence, it fails to be stable quasiperiodic state.

Finally, let us take ψ0 as a linear combination of the band-
edge states corresponding to E0 = 0, i.e.,

ψ0 = bx + ic, (5.11)

where b �= 0 and c are real parameters. Notice that (5.11) can
be obtained from (5.2) or (5.5) in the limit k0 → 0. As we
found in the preceding section, in this case the potential Ṽ has
to decay asymptotically as 1/x2. The actual form of Ṽ and of
the bound (quadratically integrable) state �̃0 is given by

H̃ = − d2

dx2
− 2(bx + ic)

SC

(
2b − (bx + ic)3

SC

)
,

(5.12)
�̃0 = bx + ic

SC

,

SC = icx (bx + ic) + b2x3

3
+ iα

R
. (5.13)

For c = 0, we get the potential whose real singular analog
was discussed, e.g., in Ref. [74] in the context of solutions of
the KdV equation. For b = 0, we get a regularized two-body
Calogero potential,

Ṽ = 2c4

(c2x − iα
R
)2

. (5.14)

Let us mention that a similar system, the PT -regularized
Calogero model with both the centrifugal barrier and confining
x2 potential term, was considered in Refs. [75,76], where its
spectral properties were discussed in detail.

The fact that H̃ is intertwined with the free particle
by the confluent Darboux-Crum transformation implies that
the systems described by H̃ are reflectionless (the known
reflectionless systems are related with the free particle system
by the Darboux-Crum transformation; see, e.g., [77]). As we
discussed in the preceding section, the systems constructed by
fixing ψ0 as (5.5) or (5.11) possess invisible potential barriers
since there is no phase shift of wave functions.

When ψ0 is a linear combination of unbounded states (5.2),
then the potential Ṽ is still reflectionless. However, when
we substitute (5.2) and (5.3) into (4.12) and (4.13), we get
the following asymptotic form of the wave functions in the
continuous part of the spectrum,

lim
x→∞ BAe±ikx = (E0 − E + 2k0(k0 ∓ ik))e±ikx

= (k0 ∓ ik)2e±ikx, (5.15)

lim
x→−∞ BAe±ikx = (E0 − E + 2k0(k0 ± ik))e±ikx

= (k0 ± ik)2e±ikx . (5.16)

Hence, the functions acquire nontrivial phase shifts by the in-
teraction with the potential, that makes the potential detectable
in principle.

To illustrate our results, let us consider propagation of a light
beam in the optical crystal with the refractive index described
by Ṽ . For the reflectionless systems discussed in this section,
one can find explicit solutions of the Helmholtz equation (1.2).
They can be obtained with the use of the intertwining operator
BA and the solution of the “time”-dependent free Schrödinger
equation i∂zψ(x,z) = −∂2

xψ(x,z) that has the following form:

ψ(x,z) = σ√
σ 2 + 2iz

eiω0(x−x0− 1
2 v0z)e

− (x−x0−v0z)2

2(σ 2+2iz) . (5.17)

For z = 0, it coincides with the Gaussian wave packet
ψ(x,0) = eiω0(x−x0)e−(x−x0)2/2σ 2

. Here, x0 is the initial position
of the wave packet, σ is the width parameter, while ω0 and
v0 = 2ω0 are the analogs of the wave number and group
velocity, respectively. Then the solution of Eq. (1.2) with Ṽ can
be constructed as follows (notice that the intertwining operator
BA is z independent):

i∂zψ̃(x,z) = [−∂2
x + Ṽ (x)

]
ψ̃(x,z), ψ̃(x,z) = BAψ(x,z).

(5.18)

The intensity of the wave packet |ψ̃(x,z)|2 is depicted in Fig. 1,
where the absence of any reflections on the potential barrier is
manifest. In order to see the contrast with a reflective potential
barrier, we plot in Fig. 2 the intensity of the wave packet
propagating in the potential given by only the real part of a
complex reflectionless potential.

B. One-gap systems

Let us take now the initial system described by the one-gap
Lamé Hamiltonian,

H = − d2

dx2
+ V (x),

V (x) = 2κ2sn2 (x,κ) − κ2 = −2 dn2 (x,κ) + 1 + κ ′2.

(5.19)

The operator has period 2K , where K ≡ K(κ) is the com-
plete elliptic integral of the first kind, K(κ) = ∫ π/2

0 (1 +
κ2 sin2 φ)−1/2dφ, κ ∈ (0,1) is the modular parameter, and
κ ′ = √

1 − κ2 is the complementary modular parameter.10 The
spectrum of the Schrödinger operator H consists of two bands.
The finite (valence) band is formed by the energies E ∈ [0,κ ′2],
and the infinite (conduction) band stretches over the interval
E ∈ [1,∞). The functions,

�a
±(x) = H (x ± a)

�(x)
exp[∓xZ(a)], (5.20)

solve the eigenstate problem,

H�a
±(x) = E(a)�a

±(x), E(a) = dn2 (a,κ). (5.21)

10Lamé potential (5.19) possesses also a second, purely imaginary
period 2iK ′, K ′ = K(κ ′), that is behind its one-gap nature.
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|ψ̃(x, z)|2
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x

Ṽ (x)

|ψ̃(x, z)|2
z

x

x

Ṽ (x)

|ψ̃(x, z)|2
z

x

x

Ṽ (x)

|ψ̃(x, z)|2
z

x

x

Ṽ (x)

(a)

(b)

(c)

(d)

FIG. 1. (Color online) Reflectionless optical
potentials. (Left) PT -symmetric potential
Ṽ (x) = −2 d2

dx2 ln (
∫ x

0 ψ2
0 (s)ds + iα

R
) discussed

in Sec. V A. The solid blue (dashed red) line
represents the real (imaginary) part. (Right)
Intensity |ψ̃(x,z)|2 of the light beam when
propagating through the optical potential.
There is a bound state of energy with
(a) E0 = −k2

0 , (b) E0 = 0, (c) E0 = k2
0 . The

periodic system (d) has no bound states. The
respective ψ0 and parameters for the construction
of the potentials in each case are given as
follows. (a) ψ0 = cosh(k0x + iτ ), α

R
= 1.15,

k0 = 0.7, τ = 1.4. (b) ψ0 = bx + ic, α
R

= −2.8,
b = −0.26, c = −0.5. (c) ψ0 = cos(k0x + iτ ),
α

R
= 4, k0 = 0.7, τ = 1. (d) ψ0 = eik0x , α

R
= 1,

k0 = 0.7. In ψ̃(x,z), we fix σ = 2, x0 = −50, and
ω0 = π/2 in all the cases; see (5.17) and (5.18).

Here �, H , and Z are Jacobi’s Theta, Eta, and Zeta functions,
while parameter a can take arbitrary complex values. The
functions dn (x,κ), as well as cn (x,κ) and sn (x,κ) that will
be used later on, are Jacobi elliptic functions.

The actual value of a determines whether the function is
bounded or unbounded. Let us write a = β + iγ , β,γ ∈ R.
The wave functions are unbounded (nonphysical) when the

corresponding energies belong to the lower infinite band, E ∈
(−∞,0), or to the finite spectral gap, E ∈ (k′2,1). This happens
provided β ∈ (0,K), and γ = K ′ or γ = 0, respectively. The
two bands of physical eigenvalues correspond to γ = [0,K ′],
and β = K for a finite (valence), and β = 0 for infinite
(conduction) bands. The properties of the functions (5.20) with
respect to the parity and complex conjugation were discussed
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|ψ̃(x, z)|2

FIG. 2. (Color online) Reflective optical potential. Intensity
|ψ̃(x,z)|2 of the light beam when propagating through the real part
of the potential, Re[Ṽ (x)], in the model (5.12). The parameters are
the same as in (b) of Fig. 1. The two main reflections that appear
about x = 0 correspond to those produced by each potential well; see
Fig. 1(b).

in detail in Ref. [35], and their behavior under the composite
PT transformation is given by

PT �
iK+β
± (x) = ei

βπ

K �
iK+β
∓ (x) for β ∈ (0,K), (5.22)

PT �
β
±(x) = −�

β
∓(x) for β ∈ (0,K), (5.23)

PT �
K+iγ
± (x) = �

K+iγ
± (x) for γ ∈ [0,K ′], (5.24)

PT �
iγ
± (x) = −�

iγ
± (x) for γ ∈ [0,K ′], (5.25)

where (5.22) and (5.23) correspond to the lower semi-infinite
forbidden band and the finite spectral gap, while Eqs. (5.24)
and (5.25) correspond to the finite and infinite allowed bands,
respectively.

As discussed in the preceding section, we can construct
operators H̃ with bound states of arbitrary energy by taking
ψ0 as an appropriate linear combination of (5.20). In the
current case, we deal with the situation where analytical
calculation of Ṽ and ψ̃0 gets exceedingly difficult in general
due to the term

∫ x

0 ψ2
0 (s)ds whose analytical form is rather

unreachable. We focus here to the special cases where ψ0 is 2K

periodic [dn (x,κ)], or 4K periodic [cn (x,κ) and sn (x,κ)],
and corresponds to the band-edge energies. The band-edge
states and eigenvalues are given by the relations,

H dn (x,κ) = 0, H cn (x,κ) = k′2 cn (x,κ),

H sn (x,κ) = 1 sn (x,κ). (5.26)

Taking ψ0 as one of the band-edge states, we get

H̃ = H + 4κ2 sn (x,κ) cn (x,κ) dn (x,κ)

SE

+ 2
FE

S2
E

, (5.27)

where we abbreviated

FE =
⎧⎨⎩κ4 sn4(x,κ),

κ4 cn4(x,κ),
dn4(x,κ),

SE =
⎧⎨⎩−x − iκ2α̃ + E(x,κ), ψ0 = sn (x,κ),

−(1 − κ2)x + iκ2α̃ + E(x,κ), ψ0 = cn (x,κ),
iα̃ + E(x,κ), ψ0 = dn (x,κ).

(5.28)

Here, E(x,κ) is the incomplete elliptic integral of the second
kind, E(x,κ) = ∫ x

0 dn2(s,κ) ds. The extra potential terms [in
addition to initial V (x) from (5.19)] vanish for large |x| (due
to asymptotically linear behavior of SE), so that Ṽ coincides
asymptotically with V . In Ref. [35], it was found that real
periodicity defects, associated with discrete energies in the
forbidden bands, induce phase shifts of the wave functions. In
the current case, a PT -symmetric defect associated with the
band-edge energy does not alter the asymptotic form of the
wave functions.

Despite the explicit analytical form of H̃ for the generic
choice of ψ0 is unreachable, we can still make some interesting
conclusions. Let us discuss briefly the properties of the
intermediate Hamiltonian H̆ when ψ0 = �a

±(x). As it was
discussed in Ref. [35], in this case H̆ coincides with the
original but displaced Hamiltonian H ,

H̆ (x) = H (x + a + iK ′) − E0, (5.29)

where K ′ = K(κ ′). Notice that H (x + a + iK ′) is PT sym-
metric whenever a = iγ or a = K + iγ for γ = [0,K ′], i.e.,
when �a

±(x) corresponds to the physical state. We can fix the
solutions of (H̆ − E0)f = 0 in the following form,

ψ± = �a
ε (x + a + iK ′) ± PT �a

ε (x + a + iK ′),

PT ψ± = ±ψ±, (5.30)

where ε equals either + or −. By the construction, (5.30)
are eigenfunctions of PT . They are also quasiperiodic and
bounded. In order to construct the Hamiltonian H̃ , we fix B

in terms of η0 which is a linear combination of ψ+ and ψ−.
However, taking into account that

PT �a
±(x + a + iK ′)

=
{−�a

±(x + a + iK ′), a = iγ,

e±2iK( π
2K

−i Z(a))�a
±(x + a + iK ′), a = K + iγ,

(5.31)

one can check that it is sufficient to consider only η0 = �a
±(x +

a + iK ′). This gives

H̃ = H̆ − 2(ln η0)′′ = H (x + a + iK ′) − 2(ln η0)′′

=
{

H (x + 2iγ ), η0 = �a
+(x + a + iK ′),

H (x), η0 = �a
−(x + a + iK ′).

(5.32)

Clearly, H̃ has no bound state as 1/η0 is not quadratically
integrable. Darboux transformation based on η0 produces from
H̆ either the initial Hamiltonian H (x) or its complex shifted
copy H (x + 2iγ ).
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Finally, let us make a brief comment on the unbounded
states (5.20) that can be written as f± = ek1xeik2xuk0 (x),
k1,k2 ∈ R. In the one-gap system, the value of k2 distinguishes
the valence and conduction bands; it is equal to 0 for the states
from the lower forbidden band, whereas k2 = π

2K
for the finite

gap; see [35] for the details.

VI. HIDDEN AND EXOTIC SUPERSYMMETRIC
STRUCTURES ASSOCIATED WITH FINITE-GAP SYSTEM

H̃ , AND JORDAN STATES

Spectrum of a generic periodic Hamiltonian possesses an
infinite number of gaps and bands. However, there is a class
of systems whose spectra contain just a finite number of
gaps. If we denote the number of gaps as n, the free-particle
Hamiltonian (5.1) represents the system with n = 0, whereas
the one-gap Lamé Hamiltonian (5.19) qualifies for n = 1. The
peculiarity of having a finite number of gaps in the spectrum is
associated with the existence of an integral of motion known
as the Lax-Novikov operator L. This integral is represented by
a (2n + 1)-order differential operator.

In correspondence with the Burchnall-Chaundy theo-
rem [78–81], its square is a polynomial in H ,

L2 =
2n+1∏
m=1

(H − Em), [H,L] = 0. (6.1)

Here, Em are the energies corresponding to the edges of the
allowed energy bands.

The Lax-Novikov integral reflects spectral degeneracy of
the finite-gap system. It distinguishes two states corresponding
to the doubly degenerate energies in the interior of the bands.
Particularly, in the one-gap case, the Bloch states (5.20) of
the same energy are eigenstates of L of eigenvalues differing
in sign. For the free particle (5.1), the Lax-Novikov integral
coincides with the momentum operator L = −i d

dx
. It annihi-

lates a constant, which is the wave function corresponding
to zero energy. In the case of the one-gap Lamé system,
the integral acquires a rather nontrivial form of the third
order differential operator, that annihilates the band-edge states
sn(x,κ), cn(x,κ), and dn(x,κ); see [27,28,35] for its explicit
form.

The operator H̃ constructed from a finite-gap Hamiltonian
H possesses the integral of motion obtained by a dressing
procedure,

L̃ = BALA�B�, [H̃ ,L̃] = 0. (6.2)

When L is of order 2n + 1, then L̃ has order 2n + 5. Making
use of the intertwining relations, we find that L̃ satisfies the
relation,

L̃2 = (H̃ − E0)4
2n+1∏
m=1

(H̃ − Em). (6.3)

The operator L̃ inherits the properties of L. Bloch solutions
of the equation (H̃ − E)ψ̃ = 0 corresponding to the double-
degenerate energy level E are also eigenstates of L̃ of
eigenvalues differing in sign. When E corresponds to one of the
nondegenerate band-edge energies Em, m = 1,...,2n + 1, the
corresponding physical states are annihilated by this operator.

Let us clarify the point where L and L̃ differ from each other.
For the purpose we shall analyze the kernel of L̃.

We suppose that Em �= E0 for m = 1,...,2n + 1. There are
2n + 1 states ψ̃m in the kernel which are images of the states
ψm annihilated by L,

ψ̃m = BAψm, Lψm = 0, m = 1,...,2n + 1. (6.4)

Let us define auxiliary functions �2 and �3 that satisfyL�2 =
ψ0 and L�3 = χ. Then we find the remaining four vectors
from the kernel of L̃,

f0 = η−1
0 , f1 = η−1

0

∫ x

0

η(s)

ψ0(s)
ds, (6.5)

f2 = η−1
0

∫ x

0

η0(s)

ψ0(s)

∫ s

0
ψ0(r)�2(r)drds,

(6.6)
f3 = η−1

0

∫ x

0

η0(s)

ψ0(s)

∫ s

0
ψ0(r)�3(r)drds.

Using the explicit form (2.3) and (2.24) of A� and B�, one can
check that there holds

B�f1 = −ψ−1
0 , A�B�f2 = �2, A�B�f3 = �3. (6.7)

The functions f1, f2, and f3 are the Jordan states of H̃

associated with E0,

(H̃ − E0)j fj = 1

η0
, (H̃ − E0)j+1fj = 0, j = 1,2,3.

(6.8)
As it was shown in Refs. [27,28], the finite-gap systems

possess a hidden N = 2 superalgebra graded by the parity
operator P . The two supercharges, anticommuting with P , are
given byL and iPL. It was shown there that the superalgebraic
structure is preserved by the Darboux-Crum transformation
based on the band-edge states. In our current case, the
intertwining operators BA and A�B� are PT symmetric,
however, they do not need to have a definite parity with respect
to the space inversion P . Hence, as neither H̃ nor L̃ have
definite parity, P is prevented from being a viable grading
operator. Instead, we can consider the PT symmetry operator,
which commutes both with H and L. Let us define L1 = iL
and L2 = iPTL. These operators anticommute with PT , and
generate the N = 2 supersymmetry of H ,

[La,H ] = 0, {La ,Lb} = −δab

2n+1∏
n=1

(H − En), a,b = 1,2.

(6.9)
Notice that the sign of the anticommutator is changed when
compared to the Hermitian case discussed, for instance, in
Refs. [27,28]. As the intertwining operators BA and A�B�

commute with PT , this superalgebraic structure can be
identified easily in the system described by H̃ as well,

[L̃a,H̃ ] = 0, {L̃a ,L̃b} = −δab(H − E0)4
2n+1∏
m=1

(H − En),

a,b = 1,2, (6.10)

where the supercharges are defined as L̃a = BALaA
�B�. The

grading operator of the superalgera (6.10) is PT .
Let us make a brief comment on the finite-gap systems

where the intermediate Hamiltonian satisfies H̆ = H (x + c);
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see (5.8) or (5.29). In these cases, the Lax-Novikov operator
associated with H̃ reduces to (2n + 3)-order differential opera-
tor L̃(x) = B(x)L(x + c)B�(x). It satisfies L̃2 = ∏2n+1

m=1 (H̃ −
Em)(H̃ − E0)2.

The scheme given by the relations (6.9) and (6.10) cor-
responds to a bosonized supersymmetry, where no fermionic
degrees of freedom are present in the system [82–84]. How-
ever, by using the confluent Darboux-Crum transformations,
an extended, exotic supersymmetry can also be constructed.
Let us define a matrix Hamiltonian,

H =
(

H 0
0 H̃

)
, (6.11)

which resembles the supersymmetric Hamiltonian of the
standard supersymmetry; see [26]. Instead of having linear
supercharges, we can construct a pair of supercharges of
the second order based on the confluent Darboux-Crum
transformations, by taking the Pauli matrix σ3, σ 2

3 = 1, as
the grading operator,

Q1 =
(

0 A�B�

BA 0

)
, Q2 = iσ3Q1. (6.12)

The supercharges commute with the Hamiltonian and anti-
commute with σ3, resulting in the following N = 2 nonlinear
superalgebra,

[H,Qa] = 0, {Qa,σ3} = 0, {Qa,Qb} = 2δab(H − E0)2,

a,b = 1,2. (6.13)

The finite-gap nature of the Hamiltonians H and H̃ guarantees
the existence of integrals L and L̃. They can be used to define
two bosonic supercharges for H,

L1 =
(

(H − E0)2L 0
0 L̃

)
, L2 = iσ3L1. (6.14)

In this definition, the polynomial (H − E0)4 was inserted
to keep the same differential order 2n + 5 of the diagonal
elements (recall that L is of order 2n + 1 whereas L̃ is of order
2n + 5). The bosonic and nonlinear property of the integrals
L are summarized in the following superalgebra,

[H,La] = 0, [La,σ3] = 0,

{La,Lb} = 2δab(H − E0)4
2n+1∏
m=1

(H − Em), a,b = 1,2.

(6.15)

The full supersymmetric structure gets enlarged if we consider
also a new set of fermionic integrals by multiplying the
integrals (6.12) by the extended Lax-Novikov operator L1,

S1 = Q1L1, S2 = iσ3Q1L1, (6.16)

which satisfy

[H,Sa] = 0, {Sa,σ3} = 0. (6.17)

Finally, the nonlinear superalgebra can be completed by means
of the remaining (anti)commutation relations,

[Qa,L2] = −2εabSb,

[Sa,L2] = −2εab

2n+1∏
m=1

(H − Em)(H − E0)4Qb, (6.18)

{Qa,Sb} = 2SaQb + 2δab(H − E0)2L1. (6.19)

Hence, the extended system (6.11) is characterized by
exotic supersymmetric structure described by the four super-
charges Qa and Sa , and the two bosonic integrals La , which
together generate the nonlinear superalgebra (6.13), (6.15),
and (6.17)–(6.19).

VII. DISCUSSION

We showed that the confluent Darboux-Crum (double-step
Darboux-Jordan) transformation is an efficient tool for creating
PT -symmetric systems that are asymptotically real and
periodic, and have a periodicity defect disappearing for large
|x|. We pointed out the difference between the confluent and
usual second-order Darboux-Crum transformations. Whereas
the intertwining operators of the standard one annihilate two
(formal) eigenstates of the initial Hamiltonian, the intertwining
operators of the generalized transformation annihilate, besides
an eigenstate of H , also the associated Jordan state; see
Eqs. (2.25), (2.24), (2.11), and (2.13).

The described confluent Darboux-Crum transformations
were applied to a generic Hamiltonian with real even periodic
potential (3.2). We discussed the general aspects of the
constructionlike existence of (quadratically integrable) bound
states and asymptotic behavior of the created systems. We
showed that bound states in the continuous part of the spectrum
are associated with invisibility of the periodicity defects.

It was also shown that the decay rate of the periodicity defect
is determined by the position of the bound-state energy in the
spectrum; when it belongs to the interior of the energy band
or it can be identified with the band-edge energy, amplitudes
of the defects disappear as x−1 or x−2. When the bound state
corresponds to discrete energy in the energy gap or lower
forbidden band, exponential decay of the defect takes place.
It would be interesting to verify whether this observation is of
general validity, i.e., whether a periodicity defect of the 1/x

or 1/x2 decay induces a bound state in the energy continuum,
whereas the defects with exponential decay are responsible for
discrete energies.

The application of the generic results was focused on
the special class of periodic systems that possess a finite
number of gaps in their spectra. In Sec. V A, we considered
reflectionless systems derived by the confluent Darboux-Crum
transformation from the free-particle model. In particular, we
constructed reflectionless PT -symmetric systems which are
completely invisible.

In Sec. V B, we discussed asymptotically periodic systems
with periodicity defects derived from the one-gap system
described by the Lamé equation. It is worth noticing that
in the recent work [35], similar systems with soliton defects
described by a Hermitian Hamiltonian were constructed from
the one-gap Lamé system using standard Darboux-Crum
transformations. There, an analysis was provided how to
construct new Hamiltonians with periodicity defects, that
induce bound states with discrete energy in the gap or in the
lower forbidden band, below the valence band. Section V B
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extends those results with the use of the generalized (confluent)
Darboux-Crum transformations. It allowed us to construct sys-
tems with bound state energy of arbitrary value. In particular,
we constructed explicit models where the bound state was
associated with the band-edge energy. We also discussed the
specific case where the intermediate Hamiltonian coincides
with the original one up to a complex shift of coordinates.

In Sec. VI, we discussed a set of integrals of motion asso-
ciated with finite-gap systems, which give rise to bosonized
and exotic supersymmetries. We showed in detail how the
superalgebraic structure of the integrals of motion differs from
the standard case when the supercharges based on the confluent
Darboux-Crum transformation are taken into account.

Despite illustrating our results on the finite-gap systems,
we would like to stress that the results of Sec. IV apply to a
broad class of real even periodic potentials.

The invisibility of periodicity defects discussed in this
paper resemble the Klein tunneling. This phenomenon occurs
in relativistic quantum mechanics where spin-1/2 particles
can tunnel through strong electrostatic barriers. When the
particles are massless, the barrier becomes invisible for the
particles in the sense that it has no effect on their dynamics,
independently of its actual form. Although Klein tunneling
was not observed for elementary particles, it is manifested
in carbon nanostructures where dynamics is governed by the
one- or two-dimensional Dirac equation. There, it can cause
absence of backscattering of Dirac fermions on impurities in

carbon nanotubes; see, e.g., [85] and references therein. In
our case, the invisibility is very model sensitive. In contrast
to the Klein effect, even a slight change of the potential can
make it visible as the beam or particles start to scatter off it.
The physics behind these two phenomena is distinct; whereas
Klein tunneling stems on existence of solutions corresponding
to antiparticles, invisibility discussed in this paper is rather the
result of a fine interference of transmitted and reflected waves
on the particular potential barriers.
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