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Tunable multiple Fano resonances in magnetic single-layered core-shell particles
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We investigate multiple Fano, comblike scattering resonances in single-layered, concentric core-shell
nanoparticles composed of magnetic materials. Using the Lorenz-Mie theory, we derive, in the long-wavelength
limit, an analytical condition for the occurrence of comblike resonances in the single scattering by coated
spheres. This condition establishes that comblike scattering response uniquely depends on material parameters
and thickness of the shell, provided that it is magnetic and thin compared to the scatterer radius. We also
demonstrate that comblike scattering response shows up beyond the long-wavelength limit and it is robust against
absorption. Since multiple Fano resonances are shown to depend explicitly on the magnetic permeability of the
shell, we argue that both the position and profile of the comblike, morphology-dependent resonances could be
externally tuned by exploiting the properties of engineered magnetic materials.
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I. INTRODUCTION

Optical systems exhibiting comblike resonances have
a wide range of scientific and technological applications,
especially in spectroscopy and frequency metrology [1–3].
Comblike profiles, which consist of ultrasharp resonance
peaks, can be achieved, e.g., in the electromagnetic (EM)
scattering by plasmonic nanoparticles or via morphology-
dependent resonances in nonmetallic scatterers. Indeed, plas-
monic nanoparticles support localized surface plasmon reso-
nances that are strongly dependent on their geometrical and
material parameters, allowing for engineering the scattering
response [4]. In addition, scatterers with a high degree of
symmetry, such as spheres, spheroids, and cylinders, may
support morphology-dependent resonances, which are related
to constructive interferences confined inside the particle by
almost total internal reflections [5].

Recently, a great deal of attention has been devoted to Fano
resonances in plasmonic nanostructures due to its sensitivity
to both geometry and local environment changes [6–8]. The
interference between a broad bright resonance and a narrow
dark resonance mode, supported by plasmonic nanostrutures,
gives rise to the Fano resonance, which has a characteristic,
asymmetric line shape with a narrow bandwidth [7]. By
properly choosing the materials and/or the system design,
it is possible to generate, e.g., multiple Fano, comblike
scattering resonances in plasmonic nanoparticles [9–12]. The
design of these Fano-comb nanoparticles may enable several
applications at different spectral ranges, such as improving the
resolution in comb-spectroscopy techniques [3], and optical
tagging [11].

One possible way to achieve comblike resonances in EM
scattering is to consider multilayered core-shell nanoparti-
cles [11]. The main idea is to combine localized plasmon
resonances and the scattering cancellation technique for a
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single core-shell scatterer [13–18], whose core is dielectric
and the coating is composed of multilayered semiconductor
materials with a gradient of doping level. An alternative
approach to obtain Fano-comb resonances is to consider
nonconcentric, single-layered cylindrical nanostructures [12],
whose fabrication is considerably simpler than multilayered
nanoparticles.

In the present paper, we propose an alternative approach,
based on magnetic materials, for generating comblike scatter-
ing response in concentric, single-layered core-shell nanopar-
ticles, which can exhibit Fano resonances [19–22]. Instead of
inducing Fano-comb resonances by the geometrical symmetry
breaking in single-layered core-shell nanostructures [12], we
suggest the use of high permeability covers [23] in center-
symmetric scatterers. Indeed, in the long-wavelength limit,
the presence of a ferromagnetic layer breaks the isotropy of
the Rayleigh scattering, and allows us to obtain multiple Fano,
comblike scattering resonances composed of both electric and
magnetic dipole resonances in the extinction cross sections
[24]. These Fano-like resonances, known as “unconventional”
Fano resonances [25], are different from the conventional Fano
ones [6], since they are polarization independent and arise from
the interference between EM modes with the same multipole
moment.

We explore these properties to derive analytical conditions
for the occurrence of comblike resonances in coated spheres
composed of a dielectric core and a high magnetic permeability
shell. As the condition for the occurrence of multiple Fano
resonances depends explicitly on the value of the magnetic
permeability of the shell, we argue that both the position
and profile of the comblike resonances could be externally
tuned. This tuning could be achieved by exploiting, e.g.,
the properties of engineered magnetic materials, where the
magnetic permeability can be modified by applying an external
magnetic field and/or by varying the temperature.

This paper is organized as follows. In Sec. II, we
briefly review the Lorenz-Mie theory for center-symmetric
coated spheres [26,27]. By applying the long-wavelength
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approximation, we obtain in Sec. III an analytical condition
to determine the position of the multiple Fano, comblike
scattering resonances as a function of the shell parameters. In
Sec. IV, we go beyond the long-wavelength limit and consider
a system composed of a dielectric nanosphere coated with
a magnetic thin shell whose permittivity is provided by a
realistic, lossy Drude model. Finally, in Sec. V, we summarize
our main results and conclude.

II. THEORETICAL BACKGROUND:
LORENZ-MIE FORMALISM

Here we present the main results of the analytic solution
of EM scattering by coated spheres, known as the Lorenz-Mie
theory [26], that are extensively used throughout this paper.
Let us assume for the incident EM wave the time harmonic
dependence e−ıωt , with ω being the angular frequency. The
scatterer is a center-symmetric, core-shell sphere, with inner
radius a and outer radius b, composed of linear, spatially
homogeneous, and isotropic magnetodielectric materials. The
electric permittivities (ε) and magnetic permeabilities (μ) of
core (0 < r � a), shell (a < r � b), and embedding medium
(b < r) are (ε1,μ1), (ε2,μ2), and (ε0,μ0), respectively. The
scatterer geometry is depicted in Fig. 1.

For the sake of simplicity, the medium (ε0,μ0) is considered
to be the vacuum and the relative parameters are εqr ≡ εq/ε0

and μqr ≡ μq/μ0, with q = 1 for the core and q = 2 for the
shell. The scattering efficiency (which is the respective cross
section in units of πb2) is

Qsca = 2

y2

∞∑
n=1

(2n + 1)(|an|2 + |bn|2), (1)

where y = kb is the size parameter of the outer sphere
(k = 2π/λ being the incident wave number) [26]. The ex-
tinction and absorption efficiencies are, respectively, Qext =
(2/y2)

∑∞
n=1(2n + 1)Re(an + bn) and Qabs = Qext − Qsca.

Here, the Lorenz-Mie scattering coefficients an (electric) and
bn (magnetic) are [26,27]

an = (D̃n/m̃2 + n/y)ψn(y) − ψn−1(y)

(D̃n/m̃2 + n/y)ξn(y) − ξn−1(y)
, (2)

bn = (m̃2G̃n + n/y)ψn(y) − ψn−1(y)

(m̃2G̃n + n/y)ξn(y) − ξn−1(y)
, (3)

FIG. 1. (Color online) A core-shell scatterer with spherical sym-
metry irradiated by a plane wave. The core has optical properties
(ε1,μ1) and radius a, whereas the shell has (ε2,μ2) and radius b. The
surrounding medium is the vacuum (ε0,μ0).

where one defines the auxiliary functions [26]

D̃n = Dn(m2y) − Anχ
′
n(m2y)/ψn(m2y)

1 − Anχn(m2y)/ψn(m2y)
, (4)

G̃n = Dn(m2y) − Bnχ
′
n(m2y)/ψn(m2y)

1 − Bnχn(m2y)/ψn(m2y)
, (5)

An = ψn(m2x)[m̃2Dn(m1x) − m̃1Dn(m2x)]

m̃2Dn(m1x)χn(m2x) − m̃1χ ′
n(m2x)

, (6)

Bn = ψn(m2x)[m̃2Dn(m2x) − m̃1Dn(m1x)]

m̃2χ ′
n(m2x) − m̃1Dn(m1x)χn(m2x)

, (7)

with x = ka being the size parameter of the inner
sphere and Dn(ρ) ≡ d[ln ψn(ρ)]/dρ. The functions ψn(ρ) =
ρjn(ρ), χn(ρ) = −ρyn(ρ), and ξn(ρ) = ψn(ρ) − ıχn(ρ) are
the Riccati-Bessel, Riccati-Neumann, and Riccati-Hankel
functions, respectively, with jn and yn being the spherical
Bessel and Neumann functions [26]. The relative refractive
index is mq = √

εqrμqr and m̃q ≡ √
εqr/μqr, with q = {1,2}

[23]. Notice that m̃q is the inverse of the usual definition
of relative impedance, Zqr = √

μqr/εqr, so that m̃q = mq for
nonmagnetic materials (μqr = 1) [23].

Equations (1)–(7) are the exact expressions for core-shell
spherical scatterers with arbitrary geometrical and material
parameters. In the following, we consider approximations
for both core and shell parameters regarding the incident
wavelength.

III. ANALYTICAL RESULTS

We proceed our analysis by taking into account the long-
wavelength regime (y = kb � 1). Within this approxima-
tion, the arguments m1x (core) and m2y (shell) of spher-
ical Bessel and Neumann functions should not necessarily
be small. Following Tribelsky et al. [25], one can write
an = F (A)

n /[F (A)
n + ıG(A)

n ] and bn = F (B)
n /[F (B)

n + ıG(B)
n ]. For

coated spheres, we calculate the new auxiliary functions in the
small-particle limit; they read

F (A)
n ≈ yn

(2n + 1)!!
[(n + 1)m̃2 − yD̃n], (8)

G(A)
n ≈ (2n − 1)!!

yn

[
D̃n + m̃2n

y

]
, (9)

F (B)
n ≈ yn

(2n + 1)!!
[m̃2yG̃n − (n + 1)]

− yn+2

2(2n + 3)!!
[m̃2yG̃n − (n + 3)], (10)

G(B)
n ≈ − (2n − 1)!!

yn

[
m̃2G̃n + n

y

]
. (11)

We find that there are electric and magnetic scattering
resonances (i.e., constructive interferences) in |an|2 and
|bn|2 when G(A,B)

n = 0 (|an|2 = |bn|2 = 1), respectively. Sim-
ilarly, destructive interferences occur whenever F (A,B)

n = 0
(|an|2 = |bn|2 = 0). These destructive interferences lead to
very small scattering cross sections, and characterize an
EM “cloaking” mode. Note that the relevant variables to
analyze electric and magnetic resonances are indeedG(A)

n /F (A)
n

and G(B)
n /F (B)

n , respectively [5]. For nonmagnetic particles
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(μ1r = μ2r = 1) the leading term in Eq. (10) vanishes, so
that it requires higher accuracy relative to other approx-
imations [25]. In particular, the expressions presented in
Ref. [25] for a homogeneous sphere are retrieved as one per-
forms the following mapping: a → b [D̃n = Dn(m1x)m̃2/m̃1,
G̃n = Dn(m1x)m̃1/m̃2] or a → 0 or m1 = m2 [D̃n = G̃n =
Dn(m2y)].

A. Shell in the ferromagnetic limit (|m2| y � 1, y � 1)

In addition to the small-particle limit (y � 1), if |m2|y 	 1
(i.e., large permittivity and/or large permeability shell mate-
rials), one has ψn(m2y) ≈ sin(m2y − nπ/2) and χn(m2y) ≈
cos(m2y − nπ/2) [26]. To simplify our analysis, let us define
the “phase shifts”


(A)
n = tan−1(−An), (12)


(B)
n = tan−1(−Bn), (13)

where An and Bn are defined in Eqs. (6) and (7), respec-
tively. The ferromagnetic limit (|m2|y 	 1) is obtained from
Eqs. (8)–(11) by replacing D̃n with cot[m2y + 
(A)

n − nπ/2]
and G̃n with cot[m2y + 
(B)

n − nπ/2], and redefining the
auxiliary functions. In particular, the dipole approximation
(n = 1) for the ferromagnetic small-particle limit leads to

F (A)
1 ≈ y

3

{
2m̃2 + y tan

[
m2y + 


(A)
1

]}
, (14)

G(A)
1 ≈ 1

y

{
m̃2

y
− tan

[
m2y + 


(A)
1

]}
, (15)

F (B)
1 ≈ −y

3

{
m̃2y + 2 cot

[
m2y + 


(B)
1

]}
, (16)

G(B)
1 ≈ 1

y

{
m̃2 − 1

y
cot

[
m2y + 


(B)
1

]}
. (17)

In Eqs. (14)–(17), the dependence on the core parameters
(ε1,μ1) and x = ka is encoded in 


(A,B)
1 . Regarding the shell

parameters (ε2,μ2), we consider two reciprocal configurations
that fulfill the limiting case of a shell with high refractive index
(|m2| = |√ε2rμ2r| 	 1), namely: (i) large permeability shells
with small permittivity (|ε2r| � 1; |μ2r| 	 1) and (ii) large
permittivity shells with small permeability (|ε2r| 	 1; |μ2r| �
1). By symmetry, one case can readily be obtained from the
other by replacing ε with μ; for our purposes, we focus on case
(i), i.e., high permeability materials with small permittivities
such that |μ2r| 	 |ε2r|.

We recall that vanishing shell parameters facilitate the
scattering cancellation (EM cloaking). This mechanism is
based on the cancellation of the EM fields due to a local
negative polarizability coefficient. The electric dipole (n = 1)
is associated with the local polarization vector P(r,ω) =
ε0[εr(r,ω) − 1]E(r,ω), where one considers the local fields
and parameters inside the scatterer. Thereby, in case (i),
one may locally induce a polarization vector out of phase
to the electric field, allowing for the partial cancellation
of the scattering efficiency (Qsca ≈ 0). In addition, large
values of the magnetic permeability in small-particle limit
are responsible for breaking the isotropy of the Rayleigh
scattering, favoring backscattering [23] and EM resonances
inside the particle [24]. Consequently, one could in principle

engineer suitable properties to tune both cloaking and strong
scattering responses in magnetic core-shell spheres.

In case (i), spherical shell materials with |μ2r| 	 1 lead
to high refractive (|m2| 	 1) and low impedance (|m̃2| �
1) indices, since low permittivity is considered. Therefore,
from Eqs. (14) and (16), the electric and magnetic cloaking
in the ferromagnetic limit occur for tan[m2y + 


(A)
1 ] ≈ 0

and cot[m2y + 

(B)
1 ] ≈ 0, respectively. Conversely, for case

(ii), |ε2r| 	 1 leads to |m2| 	 1 and |m̃2| 	 1, which read-
ily provide the electric and magnetic cloaking conditions:
cot[m2y + 


(A)
1 ] ≈ 0 and tan[m2y + 


(B)
1 ] ≈ 0. These are the

analytical conditions for EM cloaking to occur in both cases
(i) and (ii). Notice that, for this set of cloaking conditions,
one can readily obtain case (i) from case (ii) by replacing
An with Bn, and vice versa. In the following, we present a
special configuration where multiple electric and magnetic
Fano resonances in the scattering cross section are achieved.

B. Core in the Rayleigh limit (|m1|x � 1, x � 1)

Let us consider now a nondispersive dielectric core (ε1,μ1)
coated with a dispersive magnetic shell [ε2(ω),μ2(ω)], with
|μ2r(ω)| 	 1, both of them lossless media. Fixing the size
parameters x = ka and y = kb, the cloaking condition at
resonance ω = ω0 [Qsca(ω0) = 0] takes place for a certain

refractive index m2 ≡ m2(ω0) and 

(A,B)
1 ≡ 


(A,B)
1 (ω0):

tan
[
m2y + 


(A)
1

] = cot
[
m2y + 


(B)
1

] = 0. (18)

Since the arguments of these trigonometric functions are
very large, it is convenient to consider a small frequency
variation δω in the vicinity of ω0, leading to a corresponding
variation δm (which is not necessarily small) in the refractive
index: m2(ω0 + δω) = m2 + δm. To simplify our analysis,
consider that only ε2 = ε2(ω) depends on the frequency in this
range δω, so that the impedance index remains approximately
unchanged: m̃2(ω0 + δω) ≈ m̃2(ω0) = m̃2 � 1.

In addition to the small-particle (x < y � 1) and fer-
romagnetic (|m2|y 	 1) limits for the shell, we im-
pose that the dielectric core satisfies the Rayleigh
limit: |m1|x � 1. This provides A1 ≈ [ε1rx tan(m2x) +
2m̃2]/[ε1rx − 2m̃2 tan(m2x)], where we have used D1(m1x) ≈
2/(m1x) + O(x) and B1 is readily obtained from A1 by re-
placing (ε1r,m̃2) with (μ1r,1/m̃2). Consequently, 


(A,B)
1 (ω0 +

δω) ≈ 

(A,B)
1 − (δm)x. From the latter approximation, we can

finally write the analytical expressions in terms of the aspect ra-
tio S ≡ a/b = x/y, which is a geometric parameter that plays
a crucial role on the EM cloaking. Imposing S ≈ 1, we obtain

tan
[
m2(ω0 + δω)y + 


(A)
1 (ω0 + δω)

]
≈ tan

[
(m2 + δm)y + 


(A)
1 − (δm)x

]
= tan

[
m2y + 


(A)
1 + y(1 − S)δm

]
= tan

[
m2y + 


(A)
1

] + tan[y(1 − S)δm]

1 − tan
[
m2y + 


(A)
1

]
tan[y(1 − S)δm]

= tan[y(1 − S)δm]

≈ y(1 − S)δm;

023835-3



ARRUDA, MARTINEZ, AND PINHEIRO PHYSICAL REVIEW A 92, 023835 (2015)

similarly, cot[m2y + 

(B)
1 + y(1 − S)δm] = − tan[y(1 −

S)δm] ≈ −y(1 − S)δm, since we can choose |δm|y(1 − S) �
1 even if |δm|y 	 1 (small shell thickness). Hence, by
assuming a shell with high refractive index so that |m2|y 	 1,
the condition S ≈ 1 guarantees the validity of our analysis.
Notice, however, if one imposes |δm|y � 1, this analysis
is valid for every 0 < S < 1. In particular, for S ≈ 0
[homogeneous sphere (ε2,μ2)], we retrieve the results of Ref.
[25]. Substituting these approximations into Eqs. (14)–(17)
and redefining the auxiliary functions, we obtain

F (A)
1 ≈ y3

3

[
2m̃2

y2(1 − S)
+ δm

]
, (19)

G(A)
1 ≈ m̃2

y2(1 − S)
− δm, (20)

F (B)
1 ≈ −y3

3

[
m̃2

1 − S
− 2δm

]
, (21)

G(B)
1 ≈ m̃2

1 − S
+ δm. (22)

From Eqs. (19) and (20), the constructive and destruc-
tive interferences in |a1|2 occur for δm

(A)
+ ≡ m̃2/[y2(1 −

S)] and δm
(A)
− ≡ −2m̃2/[y2(1 − S)], respectively. Analo-

gously, constructive and destructive interferences in |b1|2
occur for δm

(B)
− ≡ −m̃2/(1 − S) and δm

(B)
+ ≡ m̃2/[2(1 − S)],

respectively. In particular, we have analytically demon-
strated that both |a1|2 and |b1|2 have a Fano line
shape [25]: |a1|2 ∝ (ρ + β)2/(ρ2 + 1), where ρ = [(1 +
α)δm − αδm

(A)
+ − δm

(A)
− ]/[|γ |√α(3 − α)], α = y6/9, β =

2γ /[|γ |√α(3 − α)], and γ = δm
(A)
− − δm

(A)
+ . The |b1|2 profile

is obtained from |a1|2 by replacing δm
(A)
± with δm

(B)
∓ . Assum-

ing that only ε2 depends on ω and |μ2r| 	 1, we expect a Fano
line shape for both |a1|2 and |b1|2 as a function of ε2(ω).

These asymmetric dipole resonances in total cross sections
are referred to as unconventional Fano resonances [19,25],
which usually occur beyond the applicability of the Rayleigh
approximation and are intrinsically different from the con-
ventional Fano resonance that arises from the interference
between different multipole orders in a specific scattering
direction [6,28]. Here unconventional Fano resonances result
from the interference of different EM modes excited inside
the scatterer due to its high refractive index (hence, beyond
the Rayleigh limit) with the same multipole moment n = 1.
Moreover, note that the asymmetry parameter β has different
signs in |a1|2 and |b1|2 profiles as a function of frequency
[see the terms ±δm in Eqs. (19)–(22)]. This provides a
configuration in which the destructive interferences of the
electric and magnetic dipoles coincide without overlapping the
scattering resonances. Therefore, we have “comblike” electric
and magnetic dipole resonances for |m1|x � 1, |m2|y 	 1,
and y � 1, with the additional condition S ≈ 1 if |δm|y 	 1.
The analysis for the case |ε2r| 	 1, with |μ2r(ω)| � 1, is
completely analogous.

C. Comblike resonances in core-shell particles

We have demonstrated so far that it is possible to obtain, in
the long-wavelength regime (kb � 1), multiple Fano, comb-
like resonances in the scattering cross section of concentric
core-shell spheres. The basic conditions consist of a core in
the Rayleigh limit (|m1|ka � 1, ka � 1) and a concentric
shell with both large refractive index (|m2|kb 	 1) and
aspect ratio near to unity (a ≈ b). With a proper choice of
parameters, one can obtain electric and magnetic Fano-like
resonances with a scattering minimum at the same frequency
(antiresonance or Fano dip). As we shall demonstrate, by
making these approximations the Fano dips of the electric
and magnetic dipole resonances overlap without any additional
assumption, giving rise to the unconventional Fano resonances.
However, the approximation S ≈ 1 (small shell thickness) is
now mandatory.

To identify the positions in frequency where these comb-
like resonances occur, we set m̃2 → 0 for |μ2r| → ∞
(ferromagnetic limit), leading to A1 ≈ tan(m2x) and B1 ≈
− cot(m2x). From Eqs. (14) and (16), the cloaking condi-
tion becomes tan[m2y(1 − S)] = 0, i.e., m2y(1 − S) = Nπ ,
with N = ±1, ± 2, . . .. Note that we impose S ≈ 1 because
|m2|y 	 1. In particular, this cloaking condition is readily
obtained from Eq. (14), but not from Eq. (16). By show-
ing that 


(B)
1 ≈ tan−1[cot(m2x)] = π/2 − cot−1[cot(m2x)] =

π/2 − m2x and using the trigonometric identity cot(ϕ1 +
ϕ2) = (cot ϕ1 cot ϕ2 − 1)/(cot ϕ1 + cot ϕ2), one can easily
demonstrate that Eq. (16) also provides tan[m2y(1 − S)] = 0.
Explicitly, we have

cot
[
m2y + 


(B)
1

] ≈ cot[m2y + π/2 − m2x]

= cot [m2y(1 − S) + π/2]

= − tan [m2y(1 − S)].

The condition N = 0 (i.e., S = 1 since |m2|y 	 1) leads to
a homogeneous dielectric sphere (ε1,μ1), and, thereby, there
is no cloaking. These integer numbers N , which discretize
EM cloaking for a certain set of parameters, can roughly be
interpreted as indicating the “cavity modes” of the magnetic
shell. In fact, λ2 being the wavelength inside a nanoshell with
thickness d ≡ b − a, the EM cloaking occurs for λ2 ≈ 2d/N .
Note that this is the same condition for resonant modes in
a Fabry-Pérot cavity with d being the separation distance
between its mirrors. Since this analytical result is typical
of resonant optical cavities, it suggests that the cloaking
condition does not depend on the geometry of the particle
(optical cavity), but rather the magnetic material parameters,
shell thickness, and irradiation schemes. Analogously, similar
results are obtained for the reciprocal configuration (high per-
mittivity coatings) setting 1/m̃2 → 0, for |ε2r| → ∞, where
the same cloaking condition is achieved.

Rewriting the cloaking condition, we explicitly have a
mutual dependence between ε2r and μ2r, for y � 1, |m1|x �
1, |m2|y 	 1, and S ≈ 1:

ε2rμ2r ≈
[

πN

y(1 − S)

]2

, N = ±1, ± 2, . . . . (23)

Note from Eq. (23) that for y ≈ 1, large values of μ2r (or
ε2r) are obtained for S ≈ 1 (small shell thickness). Besides,
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Eq. (23) does not depend on (ε1,μ1), and this independence
on the core material parameters is valid for |m1|x � 1. This
is of great interest, for instance, to cloak an arbitrary dielectric
particle. Also, due to the electric and magnetic Fano-like
resonances, the cloaking frequencies given by Eq. (23) are
spectrally near a pair of scattering resonance peaks. Each of
these scattering, Fano-comb resonances are associated with a
mode number N and are referred to as morphology-dependent
resonances of first order (n = 1).

IV. NUMERICAL RESULTS AND DISCUSSIONS

In the following we do not restrict ourselves to the
small-particle limit, in which our previous analytical results
are based, but we rather consider the exact expressions
within the Lorenz-Mie theory, given by Eqs. (1)–(7). In
particular, we consider a dielectric core with optical properties
(ε1r = 10, μ1r = 1). For the shell material, we consider a
lossy Drude model for the relative permittivity, εDrude =
ε∞ − ω2

p/[ω(ω + ı�)], with the same parameters as used in
Ref. [11] for aluminum-doped zinc oxide semiconductors:
ε∞ = 3.3, ωp = 2213.2 THz, and � = 0.002ωp. The core
radius is a = 100 nm and the aspect ratio is S = 0.9 (b ≈
0.13λ). For the shell permeability, instead of assuming μ2r = 1
(nonmagnetic material), we investigate the cases μ2r = 103,
2 × 103, 5 × 103, and 104.

Figure 2 shows comblike, multiple Fano resonances in the
scattering efficiency Qsca for Re[ε2r(ω)] > 0 and ω in the
vicinity of ωp, with 1.2 < m1x < 1.7 and 0.4 < y < 1. In
Fig. 2(a), we plot the scattering efficiency for μ2r = 103 (i.e.,
1.7 < |m2|y < 48) showing both the electric and magnetic
dipole contributions with the corresponding antiresonance
or Fano dip in between. The inset of Fig. 2(a) shows the
scattering efficiency Q

(app)
sca calculated from the electric and

magnetic dipole approximations, given by Eqs. (14)–(17). As
can be confirmed by comparing the inset to the main plot
of Fig. 2(a), these approximations are in good agreement
with the exact Lorenz-Mie theory, from which the main plot
in Fig. 2(a) is calculated. However, from now on, all the
calculations are performed using the exact expressions for
the Lorenz-Mie coefficients [26]. Increasing μ2r up to 2 × 103

(i.e., 2.4 < |m2|y < 67), a second scattering dip appears in the
same spectral frequency range, as evinced in Fig. 2(b). A very
good estimate of the frequency position of these scattering
minima is given by Eq. (23), even though the Rayleigh and the
small-particle limits are not entirely satisfied. For this set of
parameters, very efficient cloaking is achieved for a dielectric
sphere (ε1r = 10,μ1r = 1) around ω ≈ 1.08ωp, for N = 2 and
μ2r = 2 × 103. We emphasize, nevertheless, that our aim is not
to find an optimal set of parameters to cloak a dielectric particle
[29], but rather to achieve Fano-comb scattering resonances as
a function of the magnetic permeability of the coating.

In Figs. 3(a) and 3(b), we show the comblike scattering
response for μ2r = 5 × 103 and compare it to the analytical
prediction given by Eq. (23), which determines the values of
ε2r for which these multiple Fano resonances occur. As it can
be seen from Fig. 3, Eq. (23) gives an excellent prediction
for the frequency position of comblike resonances even for
a lossy shell with ε2r(ω) > 1, y ∼ 1, and for higher orders
of N . Figure 3(b) corroborates that Eq. (23) is valid even

FIG. 2. (Color online) Scattering efficiency Qsca for a dielectric
sphere (ε1r = 10, μ1r = 1) coated with a plasmonic, lossy magnetic
shell [ε2r(ω) = εDrude,μ2r 	 1]. The inner sphere has radius a =
100 nm and aspect ratio S = a/b = 0.9. The dotted line represents
the sphere without coating. The cloaking occurs at ε2r values given
by Eq. (23). (a) Qsca for μ2r = 103. The |a1|2 and |b1|2 curves refer
to the electric and magnetic dipole contributions within the exact
Lorenz-Mie theory, respectively. The inset is calculated from the
dipole approximations (14)–(17), showing that Q

(app)
sca is in good

agreement with Qsca. (b) Qsca for μ2r = 2 × 103.

beyond the Rayleigh limit for the core and is robust against
absorption, provided that |m2|y 	 1 (with |μ2| 	 |ε2|) and
S ≈ 1. In particular, note that each value of N replicates
the same scattering profile of electric and magnetic dipole
resonances, but with different amplitudes, and that they are
approximately equally spaced in frequency. Also, the inset
in Fig. 3(a) shows high absorption in these antiresonance
scattering points (Fano dips). This high absorption can be
associated with resonances of the EM energy within the
scatterer [27,30]. In fact, according to Refs. [19,28], the Fano
resonance in the scattering cross sections may lead to off-
resonance field enhancement within the particle.

It is important to mention that the profile and the position of
the comblike resonances can be externally tuned in engineered
magnetic materials. Indeed, by applying an external magnetic
field and/or varying the temperature, one can change the
value of μ2. Ferromagnetic materials, for instance, typically
follow the Curie-Weiss law above their critical temperature Tc
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FIG. 3. (Color online) Comblike scattering response for a di-
electric sphere (ε1r = 10, μ1r = 1) coated with a plasmonic, lossy
magnetic shell [ε2r(ω) = εDrude,μ2r 	 1]. The inner sphere has radius
a = 100 nm and aspect ratio S = a/b = 0.9. The cloaking occurs
at ε2r values given by Eq. (23). (a) Scattering efficiency Qsca

and absorption efficiency Qabs (inset) for μ2r = 5 × 103. (b) Shell
permittivities ε2r calculated from the Drude model and from Eq. (23)
for μ2r = 5 × 103 and N = 1, 2, and 3. The intersection between the
vertical lines and the Drude curve corresponds to the localization, in
frequency, of the Fano comb.

[31]: μ2r ∝ (T − Tc)−1. Metamaterials made of ferroelectric
compounds are examples of systems with tunable magnetic
permeability at terahertz frequencies, with relatively low losses
[32]. In these materials the tunability is achieved by varying
the temperature, so that they could possibly be employed in an
experimental verification of our findings. This possibility of
tuning the value of μ2 has influence not only on the resonance
position but also on the number of resonances that compose
the comblike scattering response at a given spectral range. This
can be seen, e.g., in Fig. 2.

We emphasize that previous proposals involving comblike
resonances in core-shell nanoparticles are based mainly on
nonmagnetic materials [11,12]. In these previous systems, the
position and profile of comblike resonances are determined a
priori by the nanostructure design, either by varying the plasma
frequencies with a gradient of doping level in multilayered
spheres [11] or by constructing nonconcentric core-shell
nanowires [12]. This fact, which distinguishes our proposal
from the previous ones, allows for tunable, versatile comblike
scattering response in concentric, single-layered core-shell
nanoparticles.

FIG. 4. (Color online) Comblike scattering response for a di-
electric sphere (ε1r = 10, μ1r = 1) coated with a plasmonic, lossy
magnetic shell [ε2r(ω) = εDrude, μ2r = 104]. The inner sphere has
radius a = 100 nm and aspect ratio S = a/b = 0.9. The cloaking
occurs at ε2r values given by Eq. (23). (a) Scattering efficiency Qsca.
(b) Differential scattering efficiencies Qback and Qfoward (inset).

In Fig. 4(a), the shell permeability μ2r = 104 is one
order of magnitude greater than in Fig. 2(a), which implies
that more scattering dips occur at the same spectral range.
The differential efficiencies for the back and forward scat-
tering [26], respectively, Qback = |∑∞

n=1(2n + 1)(−1)n(an −
bn)|2/y2 and Qforward = |∑∞

n=1(2n + 1)(an + bn)|2/y2, are
plotted in Fig. 4(b). Due to the fact that the shell is magnetic
(μ2r = 1) light scattering is asymmetric with a backscattering
dominance; indeed, Qback has essentially the same profile
as Qsca, as can be verified in Figs. 4(a) and 4(b). On one
hand, the interference between electric and magnetic dipoles
facilitates the suppression at the scattering dips of order N in
the backscattering direction. On the other hand, the forward
scattering efficiency Qforward, plotted in the inset of Fig. 4(b),
shows a strong suppression in the spectral frequency region
between the N and N + 1 dips, and additional Fano dips due
to the conventional Fano resonance. This strong asymmetry
between back and forward scattering may be exploited in
applications. Indeed, the ultrasharp Fano-comb scattering
suggests applications in optical tagging and signal processing,
for instance. In contrast to previous studies on multiple Fano
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resonances [11,12], our approach not only allows one to
analytically predict, by Eq. (23), the frequency position where
these resonances are expected to occur, but also allows for the
possibility of tuning their positions via the external variation
of the magnetic permeability of the nanoshell.

V. CONCLUSIONS

Within the Lorenz-Mie theory, we have investigated the
possibility of achieving multiple Fano resonances in the
scattering response of dielectric spheres coated with a single-
layer, concentric magnetic shell. We have derived, in the
long-wavelength limit, explicit analytical conditions for the
occurrence of comblike resonances in core-shell spheres. In
particular, we have shown that nanoshells with high magnetic
permeability or high electric permittivity values induce the
formation of multiple Fano, comblike resonances composed
of electric and magnetic dipole resonances. These Fano-comb
resonances have been shown to follow a typical relation of a
resonant optical cavity. As the condition for the occurrence of
multiple Fano, morphology-dependent resonances explicitly
depends on the magnetic permeability of the shell, we
argue that both the position and profile of the comblike
resonances could be tailored by an external magnetic field

and/or by varying the temperature. Together with the simplicity
of employing a single-layered core-shell nanoparticle, this
tunability of the single scattering response distinguishes our
proposal from the previous ones considered so far, which
are based on, e.g., multilayered semiconductor materials or
nonconcentric core-shell particles. These singular scattering
properties make the system proposed here a tunable, versatile
optical device that may find applications in multifrequency
biosensing, optical tagging, and signal processing.
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