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Measuring the nonseparability of vector vortex beams
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Vector beams have the defining property of nonseparable spatial and polarization degrees of freedom and are
now routinely generated in the laboratory and used in a myriad of applications. Here we exploit the nonseparability
of such beams, akin to entanglement of quantum states, to apply tools traditionally associated with quantum
measurements to these classical fields. We find that the entanglement entropy is a proxy for the average degree
of polarization and thus provides a single number for the vector nature of such beams. In addition to providing
tools for the analysis of vector beams, we also explore the concept of classical entanglement to explain why these
tools are appropriate in the first place.

DOI: 10.1103/PhysRevA.92.023833 PACS number(s): 42.25.Ja, 03.65.Ud, 03.65.Wj, 41.85.−p

I. INTRODUCTION

Light beams with spatially inhomogeneous states of polar-
ization, referred to as vector beams, have recently received
increased interest in a variety of fields [1,2]. In particular,
cylindrically symmetric vector (CV) beams have the ability to
produce tighter focal spots with strong field gradients [3,4],
finding applications in microscopy [5,6], interferometry [2],
and optical tweezing [7]. CV modes have been observed
in laser resonators [8,9] and optical fibers [10,11] and have
more recently been generated by liquid-crystal displays [12],
interferometric techniques [13], and q plates [14–16]. More
general higher-order Poincaré sphere beams are the natural
modes of many fibers [17,18]. A key characteristic of such
vector fields is the coupling between the polarization and
the spatial mode: in contrast to scalar fields, these degrees of
freedom (DOF) are nonseparable, as depicted graphically in
Fig. 1. These nonseparable DOF have been shown to improve
upon existing techniques such as polarization metrology [19].

Despite the coupling of the polarization and spatial modes,
the existing methods of measuring vector beams do so by
treating these DOF independently. For example, there has
been a great deal of work in determining the spatial mode
content of a beam, e.g., modal interference [20], phase-
retrieval algorithms [21,22], and modal decomposition by
digital holograms [23,24]. Meanwhile the state of polarization
of a beam is commonly measured using Stokes polarimetry
with which, at each point of the beam, the polarization
orientation and ellipticity can be calculated [25]. This versatile
tool has been used for the real-time monitoring of optical wave
fronts during propagation [26] and for studying topological
structures of polarization in vector vortex beams [16].

Here we employed measurement techniques more com-
monly associated with quantum entanglement experiments to
determine the degree to which a vector beam is nonseparable
in spatial mode and polarization, in other words, the degree
of the vector nature of the field. Our hypothesis is that since
nonseparability is not unique to quantum mechanics, many of
the tools for measuring this must be applicable to vector beams
too. We employ ubiquitous quantum tools to differentiate
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between scalar and vector beams: a Bell-type inequality
measurement [27], a concurrence measurement [28], and an
entanglement entropy measurement [29]. We show that the
former indicates if an unknown field is vector in nature,
while the two other measurements allow the degree to which
the field is vectorial to be measured, with a range from 0
(fully scalar) to 1 (fully vector). Bell measurements have been
performed on vector beams to illustrate a classical equivalent
of spin-orbit hybrid quantum entanglement [30,31] and have
been utilized in classical optical coherence as a quantitative
characterization technique [32]. Both the linear entropy [33]
and the Schmidt rank [34] have been suggested as measures
of classical nonseparability. Here we offer tools to determine
the degree of the vector nature of an unknown field. We
also discuss the implications of these findings for mimicking
quantum processes with classical states of light, in which the
direction of the corresponding electric field on a transversal
plane is not homogeneous, forming an example of so-called
classically entangled light [35,36].

II. THEORY

We first derive a measure for the degree of the vector nature
of coherent paraxial beams and then for the more general case
of incoherent mixtures of paraxial beams. To begin, let us
consider a paraxial vector beam with frequency ω propagating
along the z axis, as represented by a complex-valued electric
field E = E0e

iωt� with a unit-amplitude complex vector field

�(r,φ,z) = √
auR(r,φ,z)êR +

√
(1 − a)uL(r,φ,z)êL, (1)

where a determines the relative weighting of fields uR and uL,
which are normalized (i.e.,

∫ |uR,L|2rdrdφ = 1) and specify
the spatial dependence of the right-handed and left-handed
circular polarization components associated with the canonical
basis vectors êR and êL.

We can rewrite Eq. (1) in bra-ket notation [37] as

|�〉 = √
a|uR〉 ⊗ |R〉 +

√
(1 − a)|uL〉 ⊗ |L〉, (2)

where the kets |uR〉,|uL〉 are unit vectors in an infinite-
dimensional Hilbert space H∞ representing the complex spa-
tial fields on a transversal plane (the corresponding parameter
z is omitted) and |R〉,|L〉 ∈ H2 stand for the right-handed and
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FIG. 1. (Color online) Schematic showing the spatial depen-
dency of a vector beam on the polarization state. (a) A radially
polarized vector beam incident on (b) a polarizer orientated to transmit
horizontally polarized light produces (c) two petals orientated along
the horizontal axis. (d) An azimuthally polarized vector beam incident
on (e) a polarizer orientated to transmit horizontally polarized light
produces (f) two petals orientated along the vertical axis.

the left-handed circular polarization vectors, respectively. The
symbol ⊗ denotes the tensor product between the vectors.
In quantum mechanics a state |�〉 of the form in Eq. (2)
is called nonseparable or entangled if it cannot be written
as a product of any two vectors |u〉 ∈ H∞ and |P 〉 ∈ H2,
i.e., |�〉 �= |u〉 ⊗ |P 〉. The nonseparability of the state |�〉
thus exactly matches the definition of a vector beam as a
beam with varying polarization over a transversal plane; that
is, E cannot be written as a product of a scalar field and
a polarization vector, which implies the nonseparability of
the state vector |�〉 and hence, formally, its entanglement.

Therefore, measures of entanglement for quantum systems can
be employed to measure the degree of the vector nature of a
vector beam. For example, when a = 1/2 and the two modes
|uR〉 and |uL〉 are orthogonal, the field is purely vector (a
maximally entangled state), whereas when a = 0 or 1 or the
modes are the same, the field is purely scalar (a product state).

What is the best-suited entanglement measure in order to
define the vector nature? For pure states of bipartite quantum
systems there is a fundamental entanglement measure on
which most operational measures are based, the entanglement
entropy [29]. Consider a two-partite state |�〉 ∈ H∞ ⊗ H2 as
used to describe the state of a paraxial beam. The entanglement
entropy is then given by the von Neumann entropy of the
reduced density matrix of one of the subsystems, for instance,
the polarization P , which is obtained by tracing over the spatial
degree of freedom S:

E(|�〉) = −Tr[ρP log(ρP )], ρP = TrS[|�〉〈�|]. (3)

In order to understand the physical meaning of these operations
in our optical context, we first note that the density matrix ρ

of |�〉〈�| expressed with respect to the polarization basis
|R〉,|L〉,

ρ =
(

a|uR〉〈uR| √
a(1 − a)|uR〉〈uL|√

a(1 − a)|uR〉〈uL| (1 − a)|uL〉〈uL|

)
, (4)

corresponds to the beam coherence-polarization matrix [38],
which represents the state of light of vector beams. Averaging
(tracing) ρ over the spatial degree of freedom with an arbitrary
set of orthonormal basis modes |bi〉, we obtain a matrix that
resembles a polarization (or coherency) matrix [32,39] as
usually defined for scalar beams:

ρP =
∑

i

(
a〈bi |uR〉〈uR|bi〉

√
a(1 − a)〈bi |uR〉〈uL|bi〉√

a(1 − a)〈bi |uL〉〈uR|bi〉 (1 − a)〈bi |uL〉〈uL|bi〉

)
(5)

=
(

a
√

a(1 − a)〈uL|uR〉√
a(1 − a)〈uR|uL〉 (1 − a)

)
. (6)

However, the vector-beam equivalent of the polarization
matrix for scalar beams can be argued to be the local po-

larization matrix ρ̃(r,φ,z) = (|uR |2 uRu∗
L

uLu∗
R |uL|2 ), where each matrix

element depends on the spatial coordinates r,φ,z, and defines
in this way the polarization properties of the beam in each point
in space [38]. On the other hand, the reduced density matrix ρP

determines the average polarization of the vector beam. It can
be detected, for example, by measuring the components si =
Tr[σiρP ] of the Bloch vector s with ρP = (I + ∑

i siσi)/2,
which correspond to the Stokes parameters. Here i = 1,2,3
and the Pauli operators σi are given by σ1 = |H 〉〈H | −
|V 〉〈V |, σ2 = 1

2 (|H + V 〉〈H + V | − |H − V 〉〈H − V |), and
σ3 = |R〉〈R| − |L〉〈L|. This is done, e.g., by means of
polarization filters that cover the full beam cross section
and integrating the total beam intensity after the filters.
Alternatively, the total beam intensity after the filters can be
determined by detecting and integrating the modal weights

|〈bi |uR,L〉|2 [Eq. (5)] with respect to any basis set of spatial
modes |bi〉. We discuss the application of such a modal decom-
position technique below. Since the reduced density matrix
ρP [Eq. (6)] describes the state of polarization averaged over
a transversal plane, in general, it resembles the polarization
matrix of an incoherent mixture, even though the vector beam
including the spatial dependence is characterized by a coherent
superposition |�〉. Only in the extreme case of a beam with
homogeneous polarization |P 〉, i.e., for a scalar beam, does the
reduced density matrix reflect a pure state, ρP = |P 〉〈P |. For
vector beams, ρP can be written as a mixture of pure states:
ρP = ∑

i pi |Pi〉〈Pi |. The entanglement can thus be quantified
in terms of the “mixedness” of ρP as given by the von Neumann
entropy [see Eq. (3)]. The latter yields the Shannon entropy
of the statistical weights pi of a decomposition of ρP with
respect to orthonormal states |Pi〉. This is given by the spectral
decomposition of ρP , where the spectral values are the weights
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pi . The eigenvalues of ρP read (1 ± s)/2, and s = ||s||, the
length of the Bloch vector, is given by

s(ρP ) = (
Tr

[
ρ2

P

])1/2 =
(∑

i

〈σi〉2

)1/2

. (7)

Hence, the entropy of entanglement can be expressed as

E(|�〉) = h

(
1 + s

2

)
, (8)

where h(x) = −x log(x) − (1 − x) log(1 − x) is the binary
entropy. Note that s is a measure of mixedness of ρP and thus
the vector nature of ρ in its own right. Optically, it corresponds
to the degree of polarization of the averaged polarization state.

For incoherent vector beams with mixed states, the degree
of mixedness (entropy) of the reduced density matrix can
obviously not be directly used to determine the degree of the
vector nature of the beam. While the notion of entanglement
entropy E can be extended to mixed states, it is, in general,
very difficult to calculate. An exception is a vector beam with
only two orthonormal spatial modes populated. In this case
the spatial degree of freedom and the polarization form a pair
of two-level systems, and E can be determined for all mixed
beam states by means of the concurrence C. In order to use
the concurrence to determine the degree of the vector nature
of a paraxial beam, the spatial degree of freedom has to be
projected onto a two-dimensional subspace. This could, for
example, be the space spanned by two Hermite-Gaussian or
Laguerre-Gaussian modes and can be accomplished by using
mode filters. In this regard we point out that, analogous to
polarization states on the Poincaré sphere, we can depict orbital
angular momentum (OAM) states of a reduced subspace on an
equivalent sphere [40]. For example, the left- and right-handed
helicities of the OAM states that lie on the poles of this sphere
correspond to the left- and right-handed circularly polarized
states on the Poincaré sphere (see Fig. 2). After this projection
of the spatial degree of freedom, the elements of the resulting
4 × 4 beam coherence-polarization matrix can be detected by
means of state tomography.

In the following we demonstrate experimental methods
to measure the degree of the vector nature by means of
state tomography and by detecting the degree of (averaged)
polarization. Moreover, we introduce a third method that is
based on measuring the violation of a Bell inequality.

FIG. 2. (Color online) Bloch sphere representation of the degrees
of freedom. (a) Bloch sphere representation for the states of
polarization. (b) An analogous representation for orbital angular
momentum states.

III. EXPERIMENTAL RESULTS

Our experimental setup can be seen in Fig. 3 and can be
divided into two parts: the preparation of the vector beam and
the measurement of its nonseparability. Without any loss of
generality we have chosen to create vector vortex modes that
lie on the higher-order Poincaré sphere.

We made use of a q plate [14] to prepare vector vortex
modes. The q plate uses a spatially variant geometric phase
to couple polarization to orbital angular momentum following
the selection rules

|�,L〉 → |� + Q,R〉, (9)

|�,R〉 → |� − Q,L〉. (10)

The azimuthal charge introduced by the q plate is Q = 2q. The
polarization distribution after the q plate depends on the initial
incident polarization state. That is, horizontally polarized light
will be transformed into a radially varying polarization state,
while an azimuthally varying state is created from vertically
polarized light incident on the q plate. In our experiment
q = 1/2, and the incident Gaussian beam was horizontally
polarized with � = 0, thereby generating a radially polarized
vortex mode consisting of a superposition of � = ±1 modes.
Thus, the field after the half-wave plate can be described by

|�〉 = √
a|� = 1〉|R〉 ± √

1 − a|� = −1〉|L〉, (11)

where |� = ±1〉 represent the azimuthal components of the
vortex beam.

FIG. 3. (Color online) Schematic representing the experimental
procedure with which to generate and measure cylindrical vector
(CV) beams. A horizontally polarized Gaussian beam incident on
the q-wave plate is converted to a radially polarized vortex beam.
The q plate converts left-handed circularly (LHC) polarized light
into right-handed circularly (RHC) polarized light and adds OAM
of +1 to the incident beam, while RHC is converted to LHC and
OAM of −1 is added to the incident beam. Thus, the generated
beam is a superposition of OAM modes, |� = 1〉 + |� = −1〉, with
radially varying polarization. A quarter-wave plate was inserted
only to measure the circularly polarized modes and was set at
an orientation of π/4 rad. The half-wave plate is then rotated by
an angle θ1, thereby measuring the polarization of the beam. The
hologram encoded onto the SLM represents a superposition of OAM
modes, |� = 1〉 + exp(iθ2)|� = −1〉, where θ2 is the orientation of
the hologram. The SLM, Fourier lens, and CCD camera together
form the OAM-polarization detection component using a modal
decomposition technique. The SLM directs horizontally polarized
light into only the first diffraction order and therefore simultaneously
acts as a polarizer while also performing an azimuthal decomposition.
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To perform the necessary projections and state tomography
we require only a wave plate and a spatial light modulator
(SLM). In an entanglement setup, separate projections of
the same property are performed simultaneously on a pair
of entangled photons. For example, the polarization states
are measured by placing a polarizer in the path of each
photon, and the simultaneous arrival of the photons is recorded.
Analogously, the OAM of each photon can be measured using
SLMs as mode-specific filters. In the case of vector beams, both
DOF must be measured locally: polarization and OAM. The
measurement of states on the OAM subspace is performed by
modal decomposition [24] using an SLM. In this experiment,
we generated vortex modes carrying a superposition of OAM
values � = ±1.

SLMs are also polarization sensitive in that the desired
beam reflected from the screen consists of only horizontally
polarized light. As such, the SLM acts as a horizontal polarizer,
which, when rotated, acts as a filter for the linear polarization
states: horizontal, vertical, diagonal, and antidiagonal. As
a matter of practicality, we fixed the SLM to reflect only
horizontally polarized light and instead inserted a half-wave
plate before the SLM, which we rotate to realize a filter for the
linear polarization states. By inserting an additional element,
a quarter-wave plate, we were able to filter the circularly
polarized components. The quarter-wave plate and rotation
of the half-wave plate perform all the necessary projective
measurements as outlined in the theory. After the modal
decomposition of the input field u into the azimuthal modes

exp(i�φ) such that u = ∑
� a� exp(i�φ), the modulus of the

modal weighting coefficients a� can be determined by the
inner product of the field with an azimuthal match filter. That is,
|〈u| exp(i�φ)〉| = |a�|, which can be experimentally performed
by directing the field u onto an SLM encoded with the match-
filter hologram, exp(−i�φ), and recording the on-axis intensity
on a CCD camera after Fourier lens L1 in Fig. 3. We used a
HoloEye Pluto SLM with a resolution of 1080 × 1920 pixels
and pixel size of 8 μm/pixel. The SLM was calibrated for a
2π phase shift at 633 nm [41].

We first performed a Clauser-Horne-Shimony-Holt-Bell
(CHSH-Bell) inequality measurement [42] to demonstrate a
violation of Bell’s inequality using vector vortex modes. Typ-
ically, a CHSH-Bell inequality is performed on an entangled
pair of photons and using a single degree of freedom, e.g.,
polarization [27] or OAM [43]. In our experiment, instead
of measuring one degree of freedom nonlocally (e.g., two
separated photons), we measure two DOF locally, i.e., on the
same classical field. The CHSH-Bell parameter S satisfies the
inequality −2 � S � 2 for classical correlations, in the case
of entanglement, or for scalar beams, in the case of classical
fields. We define the Bell parameter S as

S = E(θ1,θ2) − E(θ1,θ
′
2) + E(θ ′

1,θ2) + E(θ ′
1,θ

′
2), (12)

where E(θ1,θ2) can be calculated by measuring the on-axis
intensity I (θ1,θ2) on the camera:

E(θ1,θ2) = I (θ1,θ2) + I
(
θ1 + π

2 ,θ2 + π
2

) − I
(
θ1 + π

2 ,θ2
) − I

(
θ1,θ2 + π

2

)
I (θ1,θ2) + I

(
θ1 + π

2 ,θ2 + π
2

) + I
(
θ1 + π

2 ,θ2
) + I

(
θ1,θ2 + π

2

) . (13)

Here θ1 and θ2 are the angles of orientation of the half-
wave plate and the encoded hologram, respectively. For each
orientation of the wave plate, the holograms were rotated from
θ2 = 0 to θ2 = π , and the on-axis intensity was recorded. This
was repeated for four different orientations of the half-wave
plate: θ1 = 0 rad, θ1 = π/8 rad, θ1 = π/4 rad, and θ1 = 3π/8
rad, as shown in Fig. 4. From Eqs. (12) and (13) we found our
Bell parameter to be S = 2.72 ± 0.02. We have demonstrated
a violation of Bell’s inequality by 36 standard deviations for
these vector vortex modes. This highlights the nonseparability
of the classical mode.

Next, we performed a full state tomography measurement
to calculate the density matrix of the state, which we achieve by
modifying existing tomography tools [28,44] to include both
polarization and OAM. In this measurement we required not
only the superposition states of polarization and OAM but also
the pure states: left and right circular polarization and � = ±1
OAM modes. In terms of the higher-order Poincaré sphere,
the pure modes are represented at the poles of the sphere.
For each of the six polarization states (right, left, horizontal,
diagonal, vertical, and antidiagonal), a modal decomposition
was executed using six different holograms: |� = 1〉, |� = −1〉,
|� = 1〉 + exp(iθ2)|� = −1〉 for θ2 = 0,π/2,π,3π/2. Fig-
ure 5 shows the normalized intensity measurements for
each of the six polarization states and the six OAM
states.

This tomographic method produces an overcomplete set
of 36 measurements, which can be used to minimize the χ2

quantity and reconstruct the density matrix ρ. The degree of
the vector nature of any field can then be calculated from
the density matrix. We found the concurrence, a measure of

FIG. 4. (Color online) Bell-type curves for four different orien-
tations of the half-wave plate. Orientations include θ1 = 0, θ1 = π/8,
θ1 = π/4, and θ1 = 3π/8. For each change in polarization distri-
bution, the hologram representing the superposition state |� = 1〉 +
exp(iθ2)|� = −1〉 was rotated by θ2 = {0,π} rad, and the on-axis
intensity was recorded.
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FIG. 5. (Color online) Experimental measurements obtained
from a full state tomography measurement. The polarization was
measured using a combination of a quarter-wave plate and half-wave
plate. For each polarization state, the field was decomposed in the
� = |1| OAM basis, which includes both pure and superposition
states, and the on-axis intensity was recorded. The measurements
outlined by blue dashed lines were used to calculate the entanglement
entropy of the vector beam, where either the pure OAM states (first
two columns) or the circularly polarized states (first two rows) were
chosen as the basis state.

the degree of the vector nature, of our vectorial field to be
C = 0.96 ± 0.01, while we found that of a scalar state to be
C = 0.09 ± 0.01. A maximal vector field is represented by 1,
while a value of 0 represents a purely scalar field.

In fact, two states selected on the polarization (or OAM)
sphere and projective measurements on the OAM (or po-
larization) are all that is required for the measurement
of the entanglement entropy. This space within the full
tomography measurements is shown within the dashed lines
in Fig. 5. The purity r of the reduced density matrix in
Eq. (7) was calculated by first selecting a spatial basis,
e.g., the pure OAM states (|� = ±1〉) shown as the first
two columns in Fig. 5, and then calculating the compo-
nents of the Bloch vector. For example, 〈σ3〉 = Tr[(|R〉〈R| −
|L〉〈L|)ρp] = ∑

i=−1,1 |〈l = i|uR〉|2 − |〈l = i|uL〉|2. Similar
results are found for σ1 and σ2, where the horizontal and
vertical states and the diagonal and antidiagonal states are
considered, respectively. This resembles a degree of polar-
ization measurement, and of course, any spatial basis can be
chosen. However, the Poincaré and Bloch spheres in Fig. 2
clearly illustrate the analogy between polarization and an
OAM subspace, and as such, we can also first choose a
polarization basis, e.g., the circularly polarized states shown
as the first two rows in Fig. 5, to calculate the purity r . Using
Eq. (8), we calculated the entanglement entropy for the vector
vortex beam to be 0.98 ± 0.01, which indicates a high level of
nonseparability or vector nature. Table I compares the results
of the three techniques for vector and scalar beams. We find
that all the tools provide an accurate measure of the classical
field and that in particular we are able to quantify the degree
of the vector nature of the field.

TABLE I. Comparison between vector and scalar beams for
three different measurements: a Bell inequality measurement, a
concurrence measurement, and an entropy measurement. A Bell
parameter greater than 2 represents a vector beam, while a value
close to 1 for both the concurrence and entropy represents a vector
beam. The errors for the scalar beam were insignificant.

Bell parameter Concurrence Entropy

Vector 2.72 ± 0.02 0.96 ± 0.01 0.98 ± 0.01
Scalar 0.10 0.09 0.02

IV. DISCUSSION

In the 1990s statistical tools were applied to laser beam
characterization and led to the now ubiquitous beam quality
factor M2 as a measure of modal content and divergence; here
we provide a measure for the vector nature of classical fields
through the use of quantum tools. It should be noted that this
is a very practical tool: vector beams (for example, radially
polarized beams) are now routinely used in applications such
as laser materials processing, so a single measure of the
quality of such beams could be of value to the community.
The suitability of the quantum tools to this problem lies in
the common property that vector beams share with entangled
states: nonseparability. In some sense these fields may be
considered akin to entangled states, and hence, the phrase
“classical entanglement” has emerged [34,36,45–47]. But we
stress that while these fields are nonseparable in polarization
and spatial modes, they are not entangled in the quantum
sense; one would not extend the nonseparability property
to nonlocality or nonrealism (there is no unique reality before
measurement). But it is interesting to ask whether such fields
may be used to mimic quantum processes in which only the
nonseparability property is required. Such fields may then
be applicable as vehicles to realize quantum processes such
as quantum random walks [48] as well as tripartite quantum
states [39].

V. CONCLUSION

Using measurement techniques more commonly associated
with quantum entanglement, we have demonstrated methods to
distinguish between scalar and vector beams and to determine
the degree of nonseparability, or vector nature, of the vector
beam. We find that the entanglement entropy is a proxy for
the average degree of polarization and thus provides a single
number for the vector nature of such beams. We envisage that
such tools will find practical use in applications in which such
beams are routinely used.

APPENDIX A: ACTION OF THE HALF-WAVE PLATE

The spatial light modulator (SLM) acts on only the
horizontally polarized component of a beam. As such, if the
SLM is rotated, it will act on the different states of polarization.
The rotation of the half-wave plate in the experimental setup is
equivalent to rotating the SLM, as the half-wave plate changes
the polarization state of the beam and the SLM thereafter acts
on the horizontal component. A half-wave plate can be written
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as a Jones matrix as follows:(
cos(2θ ) sin(2θ )
sin(2θ ) − cos(2θ )

)
, (A1)

where θ is the angle between the fast axis and the horizontal
axis. By setting θ = 0 rad, the polarization of a field u is
transformed as (

ux

uy

)
0 rad−−→

(
ux

−uy

)
. (A2)

As the SLM acts on only the horizontal component of the field,
we see that we measure the original horizontal component.
However, if the plate is rotated such that θ = π/4 rad, then we
measure the vertical component of the original beam.(

ux

uy

)
π/4 rad−−−→

(
uy

ux

)
. (A3)

Similarly, the diagonal and antidiagonal polarization compo-
nents can be measured by orientating the plate at θ = π/8
rad and θ = 3π/8 rad, respectively. This is seen in Eqs. (A4)
and (A5). (

ux

uy

)
π/8 rad−−−→ 1√

2

(
ux + uy

ux − uy

)
, (A4)

(
ux

uy

)
3π/8 rad−−−−→ 1√

2

(−ux + uy

ux + uy

)
. (A5)

Thus, using the half-wave plate together with the polarization-
sensitive SLM, each polarization state along the equator of the
Poincaré sphere can be measured.

APPENDIX B: ACTION OF THE QUARTER-WAVE PLATE

A quarter-wave plate was inserted between the q plate and
half-wave plate in Fig. 3 to measure the circular polarization
states of the vector beam. The Jones matrix for a quarter-wave
plate is written as(

cos2 θ + i sin2 θ sin θ cos θ − i sin θ cos θ

sin θ cos θ − i sin θ cos θ sin2 θ + i cos2 θ

)
. (B1)

Again, θ is the angle between the fast axis of the plate and
the horizontal axis. Setting the plate at an orientation with
θ = π/4, the Jones matrix becomes

exp(iπ/4)√
2

(
1 −i

−i 1

)
. (B2)

Thus, the action of a quarter-wave plate orientated at θ =
π/4 on a field u is described by(

ux

uy

)
π/4 rad−−−→ exp(iπ/4)√

2

(
ux − iuy

−ux + uy

)
. (B3)

Thus, looking at only the horizontal component, the quarter-
wave plate allows us to measure right-circularly polarized
light. If the half-wave plate is oriented at either θ = 0 or
θ = π/4, we can measure right- or left-circularly polarized
light, respectively.

APPENDIX C: CONCURRENCE

The entanglement entropy E can be determined for all
mixed beam states by means of the concurrence C:

E(ρ) = h

(
1 + √

1 − C2

2

)
. (C1)

Because of the one-to-one correspondence between C and
E, the concurrence represents an alternative entanglement
measure for pairs of two-level systems. It is given by

C(ρ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (C2)

with λi being the eigenvalues in decreasing order of the
Hermitian matrix

R = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), (C3)

where the asterisk (∗) represents the complex conjugate and
σy is the Pauli y matrix,

σy =
[

0 −i

i 0

]
. (C4)
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[22] H. Lü, P. Zhou, X. Wang, and Z. Jiang, Appl. Opt. 52, 2905
(2013).

[23] D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré,
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