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Nonclassical polarization dynamics in classical-like states
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Quantum polarization is investigated by means of a trajectory picture based on the Bohmian formulation
of quantum mechanics. Relevant examples of classical-like two-mode field states are thus examined, namely,
Glauber and SU(2) coherent states. Although these states are often regarded as classical, the analysis here
shows that the corresponding electric-field polarization trajectories display topologies very different from those
expected from classical electrodynamics. Rather than incompatibility with the usual classical model, this result
demonstrates the dynamical richness of quantum motions, determined by local variations of the system quantum
phase in the corresponding (polarization) configuration space, absent in classical-like models. These variations
can be related to the evolution in time of the phase, but also to its dependence on configurational coordinates,
which is the crucial factor to generate motion in the case of stationary states like those considered here. In this
regard, for completeness these results are compared with those obtained from nonclassical NOON states.
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I. INTRODUCTION

According to its standard definition [1], light polarization
refers to the ellipse described in time by the real component
of the electric-field vector of a harmonic wave. Hence partial
polarization can then be understood as the rapid and random
succession of more or less different polarization states. In the
quantum realm, we find that the electric field can never display
a well-defined ellipse, in just the same way that particles cannot
follow definite trajectories [2–6]. This is because the (field)
quadratures satisfy the same commutation relations of position
and linear momentum, and it brings about several remarkable
consequences: (i) there is no room for the classic, textbook
definition of polarization, (ii) the simple and elegant picture of
partial polarization as a random succession of definite ellipses
gets lost, and (iii) any quantum light state is partially polarized
because of unavoidable (quantum) fluctuations. The purpose of
this work is to investigate whether these inconvenient quantum
consequences can be overcome resorting to the Bohmian
picture of quantum mechanics.

Polarization is a preferential laboratory for the analysis and
application of fundamental aspects of the quantum theory.
In this regard, one can benefit from tools coming from
the latter to analyze optical behaviors. This is the case,
for instance, when we consider the Bohmian formulation
of quantum mechanics [7,8], which allows us to introduce
suitable well-defined trajectories into the domain of quantum
optics without violating any fundamental principle. Bearing
this in mind, here we address the question of whether the set
of trajectories determined by the Bohmian picture can still
provide a reliable representation of polarization for quantum
light states as an ensemble of electric-field trajectories. This
would provide us with a rather intuitive model to understand
quantum light closer to the original idea of polarization.

Recently the trajectories described by the electric field
of one-photon two-mode states have been determined by
following this approach [9]. Here we extend the analysis
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to more relevant examples of classical-like two-mode field
states, namely, Glauber and SU(2) coherent states [10–12].
We specifically focus on this kind of state because a priori one
might naively expect that they would constitute the appropriate
arena to disclose the statistical description of polarization
we are looking for. Surprisingly, we have found that for all
these examples of classical-like light the electric-field trajec-
tories are clearly incompatible with classical electrodynamics.
Actually, for the SU(2) states we have found that they are far
from even resembling ellipses. For completeness, these results
are compared to polarization trajectories associated with
highly nonclassical stationary fields, such as NOON states.

The two-dimensional harmonic oscillator has been con-
sidered as a working model in previous Bohmian analyses
[13,14], although it is typically associated with matter waves.
Note that the Bohmian approach is traditionally linked to
quantum mechanics, and only recently has it also been used in
problems involving electromagnetic fields (photons)—even if
in the 1970s and 1980s a few authors already considered the
possibility of extending the Bohmian approach to electromag-
netic fields. However, in the area of quantum polarization,
which we consider here, it has been little exploited as an
analysis working tool. Here we report an intriguing result,
namely, that Bohmian trajectories may reveal nonclassical
polarization dynamics displayed by polarization field states
that are universally regarded as classical.

This work is organized as follows. In Sec. II we present
the prescriptions for defining polarization trajectories as well
as a discussion of the influence of singular points on the
polarization dynamics. The dynamics associated with the
polarization trajectories for coherent, classical-like states are
reported and discussed in Sec. III, while in Sec. IV we deal with
the counterpart for nonclassical NOON states. To conclude, a
series of final remarks is summarized in Sec. V.

II. POLARIZATION TRAJECTORIES

A. Wave function for the electric field

Usually the Bohmian formulation of quantum mechanics
is applied to the evolution of a particle in its position
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(configuration) space, which involves the wave function in
the corresponding coordinate representation. In this work we
make an effective transfer of this formulation to the evolution
of a two-mode electric field, which involves the corresponding
wave function for the field variables. Fortunately, such a
transition is quite simple and straightforward, since each
field mode is formally equivalent to a mechanical harmonic
oscillator.

To take advantage of that equivalence in the simplest
terms, we recall that a one-dimensional mechanical harmonic
oscillator of mass M with Hamiltonian

H = p2

2M
+ 1

2
kq2, (1)

with q and p being its position and linear momentum. This
Hamiltonian can be quite conveniently described in terms of
the dimensionless creation b† and destruction b operators,
defined as

b =
√

k

2�ω
q + i

p√
2�ωM

, (2)

with ω = √
k/M , and satisfying the commutation relation

[b,b†] = 1, so that H = �ω(b†b + 1/2).
Likewise, a quantum one-mode electric field of frequency

ω can be readily described by the complex amplitude operator
a as E ∝ a exp(−iωt) in the complex representation. The
operators a and a† satisfy the same commutation relation of
b and b†; this is [a,a†] = 1. Regarding the real and imaginary
parts of E, the following quadrature operators are defined,

X = 1√
2

(a + a†), Y = i√
2

(a† − a), (3)

which satisfy the commutation relation [X,Y ] = i. These oper-
ators can be regarded, respectively, as the field counterparts of
the mechanical position q and linear momentum p operators.
This allows us to introduce the quadrature representation
of any one-mode field state |ψ〉 as ψ(x) = 〈x|ψ〉 in terms
of the eigenstates |x〉 of the quadrature operator X, where
X|x〉 = x|x〉. In this representation the quadrature operators
become Xψ(x) = xψ(x) and Yψ(x) = −i∂ψ(x)/∂x.

After Eqs. (2) and (3) the equivalence between the me-
chanical oscillator and the field mode can be carried out in
very simple terms if we take units in which � = m = ω = 1.
For example, the free-field Hamiltonian reads H = a†a + 1/2.
More importantly, we can easily construct the wave functions
for the number states |n〉 and the coherent states |α〉, defined
by the eigenvalue equations

a†a|n〉 = n|n〉, a|α〉 = α|α〉, (4)

in terms of their mechanical counterparts after Eqs. (4.1.32)
and Eqs. (4.3.41) in Ref. [15] as

ψn(x) = 〈x|n〉 = 1√
2nn!

√
π

Hn(x)e−x2/2, (5)

where Hn are the corresponding Hermite polynomials, and

ψα(x) = 〈x|α〉 =
(

1

π

)1/4

e−(x−x̃)2/2eiỹx, (6)

where
√

2α = x̃ + iỹ. Both expressions can be easily derived
from the the eigenvalue equations, (4), and the differential
form of the couple-amplitude operator a → (x + ∂/∂x)/

√
2

in the quadrature representation ψ(x).
After this transformation from quantum mechanics to

quantum optics, the only care to be taken is to remember that
here x does not represent a position, but the electric field in the
form of the field quadrature X. This allows us the following
fruitful translation to polarization of the Bohmian formulation
of the evolution of a two-dimensional harmonic oscillator.

B. Polarization guidance equation

In analogy to the Bohmian formulation of quantum me-
chanics or, in short, Bohmian mechanics [7], polarization
trajectories described by the transverse electric field for two-
mode harmonic light can be obtained by solving the guidance
equation [9]

ẋ = ∇S, (7)

where x = (x1,x2) denote the real, transverse components
of the electric-field strength in Cartesian coordinates, S is
the phase of the field-state wave function in quadrature
representation, and the gradient ∇S is taken with respect to
x = (x1,x2). Note that, as in the usual Bohmian formulation,
we have recast the electric-field wave function in polar form,

ψ(x,t) ≡ 〈x|ψ(t)〉 = |ψ(x,t)|eiS(x,t), (8)

where we have assumed the field state |ψ(t)〉 to be pure, and
|x〉 = |x1〉|x2〉 represents the eigenstates of the corresponding
quadrature operators.

Note that because light polarization just describes the time
evolution of the electric field, its configuration space is given
by the electric-field variables (x1,x2), which play the same role
as the coordinates r in the case of particle dynamics. Once the
general guidance equation is established, sets of polarization
trajectories are determined by plugging the corresponding
quantum field state (its phase) into this equation and then
solving it for some particular set of initial conditions, as in
classical mechanics.

It is worth pointing out that in the quantum case all the
information on the polarization state is encoded in the scalar
wave function ψ(x,t). More importantly, since ψ(x,t) repre-
sents a probability amplitude, its phase has no classical analog.
Therefore everything about the polarization trajectories relies
on a nonclassical object, and hence we should expect that
most conclusions derived from the phase of ψ(x,t) will have
no classical counterpart at all.

C. Equilibrium points

Except for the Glauber coherent states, here we have
essentially focused on stationary states, and hence the topology
of their phase in the polarization configuration space is going
to be time independent. This means that any motion will
be associated with this topology rather than with the time
evolution of the phase gradient, as shown in [9]. In this case,
the mathematical framework of the stability theory is of much
interest, for it may allow us to elucidate dynamical properties
by identifying possible equilibrium points [16]. These points
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are going to determine the behavior of the polarization trajec-
tories in their vicinity and, therefore, the general dynamical
landscape associated with each quantum state.

The nodes or zeros of the wave function, where
ψ(x) = 0 and the phase S is undefined, constitute the first
kind of candidate to equilibrium point. As is well known
[17–19], nodes or phase singularities organize the global
spatial structure of the flow of an optical field. This follows
from Stoke’s theorem, which states that unless the curl of a
certain vector field is 0 within a certain region (irrotational
flow), the line integral around a closed loop enclosing such
a region (i.e., the circulation of such a vector field) will
be nonzero. If this vector field is identified with the phase
gradient, then we know that this quantity will be invariant
under the addition to the phase of any integer multiple of
2π . Consequently, if the curl of ∇S is nonzero, its circulation
will be quantized. This is precisely what we observe in the
case of Bohmian trajectories that whirl around a node of the
wave function [20–23], where the quantization is in terms of
integer multiples of 2π�. Of course, this also holds for the
polarization trajectories that we are dealing with here, since∮

ẋ · dx =
∮

dS = 2πσ. (9)

As can be inferred from the latter integral, the presence
of zeros in the wave function allows the introduction of a
circulation number or topological charge, σ . This number has
to be an integer, since the line integral provides the change
experienced by the phase after an excursion returning to the
original point [24–27]. Or, in topological terms, it accounts
for the number of jumps between different equivalent points
of the Riemann surface described by the logarithm of the wave
function. In all cases examined in this work, the trajectories
around the zeros will be nearly circular in a neighborhood
of the node, giving rise to a vortical dynamics [20–24]. It
is worth noting that in quantum mechanics, it was Dirac
who first noticed this effect [28], suggesting the existence of
magnetic monopoles. The concept of magnetic monopole has
been further developed in the literature within the grounds of
quantum hydrodynamics [29]. On the other hand, recently it
has also been possible to recreate Dirac’s monopoles under lab-
oratory conditions making use of the properties displayed by
different materials, such as crystals made of spin ice [30–33] or
Bose-Einstein condensates of rubidium atoms [34]. Of course,
strictly speaking, these are not elementary monopoles, but
quasiparticles arising as an emergent phenomenon associated
with a collective behavior, which display analogous properties
to the hypothesized Dirac monopole.

Critical or stationary points, i.e., points at which all partial
derivatives of a given function are 0, constitute the second kind
of equilibrium point that we may identify. In our particular
context, stationary points xs will produce a vanishing phase
gradient, i.e., ∇S = 0. That is, given the guidance equation,
(7), we will find

dr x
dtr

∣∣∣∣
x=xs

= 0 (10)

for all r > 0. In all cases examined in this work, the trajectories
near these points are hyperbolic, with the corresponding value
of xs being a saddle point of the velocity field ∇S. We

FIG. 1. (Color online) Polarization trajectories for a two-mode
coherent state with α1 = 4 and α2 = 2i. The contour plot represents
the probability density associated with the one-cycle averaged
probability distribution for the electric field P (x).

have found no maxima or minima of S, which would lead,
respectively, to sinks and sources of trajectories.

It is worth noting that both nodes and stationary points
are zeros of the current density, j = |ψ |2∇S = Im(ψ∗∇ψ).
Nonetheless, the role played by these two types of equilibrium
points is different. The asymptotically stable and unstable
branches associated with the stationary points define sep-
aratrices around the nodes, which determine domains with
different dynamical behavior. In particular, the direction of the
flow around the nodes changes sign when one passes from
the domain of one of these nodes to another adjacent one.
As shown below, in some cases these domains are included
within a larger domain with a preferential flow direction, while
in others the full configuration space is totally divided into
domains without enabling the appearance of larger domains.

III. FIELD TRAJECTORIES FOR
CLASSICAL-LIKE STATES

A. Glauber coherent states

Two-mode quadrature coherent states, typically known as
Glauber coherent states and denoted |α1,α2〉, constitute the
paradigm of classical light. Their electric-field wave function
after Eq. (6) is in the two-mode field scenario

ψ(x,t) ∝ e−(x−x̃)2/2ei ỹ·x, (11)

where x̃ and ỹ are real two-dimensional vectors defined ac-
cording to the relation

√
2αe−it = x̃ + i ỹ, with α = (α1,α2).

Thus these vectors evolve in time as

x̃� =
√

2|α�| cos(t − δ�), ỹ� = −
√

2|α�| sin(t − δ�), (12)

with δ� = arg α� for � = 1,2. Since the phase is S = ỹ · x the
guidance equation is simply ẋ = ∇S = ỹ, which can be easily
solved analytically to give

x�(t) = x�(0) +
√

2|α�| cos(t − δ�) −
√

2|α�| cos δ�; (13)

that is,

x(t) − x(0) = x̃(t) − x̃(0). (14)

In Fig. 1 we have plotted three polarization trajectories
for a Glauber coherent state by considering different initial
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conditions in Eq. (13). The solid line represents the most
probable trajectory, starting at t = 0 at the maximum of (11),
i.e., x(0) = x̃(0), so that x(t) = x̃(t); the other two trajectories
(dashed and dotted lines) start from points 1 standard deviation
from the maximum. The background represents a contour
plot of the probability density associated with the one-cycle
averaged probability distribution for the electric field,

P (x) ∝
∫ 2π

0
|ψ(x,t)|2dt. (15)

As happens with the Bohmian trajectories of a quantum
harmonic oscillator, here we also note that any trajectory
associated with a Glauber state displays the same topology and
keeps a constant distance with respect to the most probable
one, as inferred from Eq. (14). In this case, this topology
coincides with the polarization ellipse of a classical harmonic
wave with complex-amplitude vector α. Nonetheless, only the
most probable trajectory (solid line in Fig. 1) is centered at
the origin; any other trajectory will be slightly displaced, as
mentioned before (see dashed and dotted lines in Fig. 1).
Although coherent states are regarded as typical examples
of classical-like light, such a displacement constitutes an
important difference with respect to what one would expect
from classical electrodynamics, namely, zero displacement
(i.e., concentric trajectories).

B. SU(2) coherent states

The two-mode Glauber coherent states define another
interesting family of classical-like states regarding polariza-
tion, namely, SU(2) coherent states. These states arise after
recasting the two-mode Glauber coherent states as [11,12]

|α1,α2〉 = e−|α|2/2
∞∑

n=0

|α|neinδ

√
n!

|n,
〉. (16)

Here |n,
〉 denotes the SU(2) coherent state with n photons,
which reads explicitly as

|n,
〉 =
n∑

m=0

(
n

m

)1/2

cosm θ

2
sinn−m θ

2
e−imδ|m,n − m〉, (17)

where |m,n − m〉 are two-mode photon-number states, and
(assuming α1 real without loss of generality)

α1 = |α| cos
θ

2
, α2 = |α| sin

θ

2
e−iδ. (18)

It is worth noting that the polarization state, as given by the
Stokes parameters, is the same for the Glauber coherent states
and all the SU(2) coherent states in Eq. (16).

The wave function ψ(x,t) accounting for SU(2) coherence
states with n photons, given by Eq. (17), reads after Eq. (5) as

ψ(x,t) ∝
n∑

m=0

αm
1 αn−m

2

m!(n − m)!
Hm(x1)Hn−m(x2)e−x2/2e−int.

(19)

Here, the only analytical solution to the guidance equation
holds in the particular case of |α1| = |α2| and δ = ±π/2,
for which we have ψ(x) ∝ (x1 ± ix2)ne−x2/2. In this case, all
trajectories are circles and there is only one node at the origin

FIG. 2. (Color online) (a) Streamlines illustrating the trajectory
dynamics associated with an SU(2) coherent state with α1 = 4,
α2 = 2i, and n = 3. The contour plot represents the probability
density |ψ(x,t)|2 of the electric field. (b) Enlargement of (a) to show
the dynamics around the central node and the two adjacent hyperbolic
stationary points. (c) Four polarization trajectories showing the
incompatibility with the classical electrodynamics of a freely evolving
two-mode harmonic electric field.

with charge σ = ±n, the sign depending on the helicity of the
classical polarization ellipse.

This coincides exactly with the circular polarization as-
sociated with the complex-amplitude vector α. For any other
general case, the trajectories shown in Fig. 2(a) provide an idea
of the general trend. These trajectories, displayed in the form of
streamlines (arrows indicate the directionality of the motion),
correspond to an SU(2) coherent state with α1 = 4, α2 = 2i,
and n = 3; the contour plot represents the probability density
|ψ(x,t)|2 associated with the coherent state considered. This
example illustrates without loss of generality the results we
have found for all cases examined, specifically that there are
n nodes located along the major axis of the classical ellipse
associated with the complex vector α. In the vicinity of the
nodes, the trajectories are nearly circular [24], as can be better
seen in the enlargement around the central node provided in
Fig. 2(b). The three nodes have the same topological charge,

023832-4



NONCLASSICAL POLARIZATION DYNAMICS IN . . . PHYSICAL REVIEW A 92, 023832 (2015)

σ = +1. Between any two consecutive nodes, along the line
connecting them, there are n − 1 hyperbolic stationary points
[16]. In the vicinity of these points, the trajectories display a
hyperbolic topology with identical semiaxes [see Fig. 2(b)].

The trajectory that passes just through the two stationary
points is a separatrix, which separates the three dynamical
domains associated with each note from a single outer domain,
where the trajectories move around the all three nodes.
Actually, far from the nodes the trajectories approach circles.
This can be readily shown analytically by considering the
approximation Hn(x) ≈ (2x)n for large x and substituting it
into the wave function, (19), which yields

ψ(x) ∝ (α · x)ne−x2/2, (20)

and hence ẋ ∝ (x2,−x1), ẋ · x = 0, and |x| = constant along
each trajectory, which define a circular motion. Of course, the
rotation of the outer trajectories of the three central domains
can be associated with the motion around a single effective
node of charge |σ | = n. As an illustration of the extremely
streaking behavior displayed by the polarization trajectories
associated with these classical-like polarization states, a
representative set of them is shown in Fig. 2(c). As is apparent,
the behavior exhibited by all these trajectories is clearly incom-
patible with the classical electrodynamics corresponding to a
freely evolving two-mode harmonic electric field.

IV. NONCLASSICAL FIELD: NOON STATES

For the sake of comparison, we also briefly consider a
paradigm of nonclassical state, namely, a NOON state. These
states constitute the polarization analog of Schrödinger cat
states or coherent superpositions of distinguishable states. In
the photon-number basis they read [35–38] as

|ψ〉 ∝ α1|n,0〉 + α2|0,n〉. (21)

This can be regarded as an alternative quantum version of the
coherent superposition of two orthogonal oscillations, which
is the actual origin of polarization. The corresponding wave
function is

ψ(x) ∝ [α1Hn(x1) + α2Hn(x2)]e−x2/2. (22)

A global picture of the dynamics for NOON states is
provided in Fig. 3(a) in terms of streamlines. For comparison
with the case analyzed in Sec. III, the values α1 = 4,
α2 = 2i, and n = 3 have been considered again. An enlarge-
ment showing the dynamical details in the vicinity of one of the
hyperbolic stationary points and the adjacent nodes is shown
in Fig. 3(b). The nodes form an array of n × n domains, where
the trajectories are nearly circles with σ = ±1. In this case, the
sign of σ is always opposite for nearest neighbors. On the other
hand, the stationary points form a (n − 1) × (n − 1) array, such
that the corresponding separatrixes divide the configuration
space into isolated domains regardless of how far we find
from the nodes. These points are located along the diagonals
connecting nodes with the same sign of σ , and again, the
trajectories in their vicinity display a hyperbolic topology.

FIG. 3. (Color online) (a) Streamlines illustrating the trajectory
dynamics associated with a NOON state with α1 = 4, α2 = 2i, and
n = 3. The contour plot represents the probability density |ψ(x,t)|2
of the electric field. (b) Enlargement of (a) to show the dynamics
around one of the hyperbolic stationary points and the corresponding
four adjacent nodes.

V. FINAL REMARKS

We have addressed a Bohmian approach to light polariza-
tion in quantum optics [7–9] by computing the trajectories
described by the electric field of some classical-like two-mode
states. In general, we have noted that for Glauber coherent
states all trajectories have the same elliptic form as the mean
field, even if they are not centered at the origin. To some extent,
this was an expected result. However, for SU(2) coherent
states, the corresponding trajectories are farther away from
being ellipses. This can be ascribed to the fact that, although
SU(2) coherent states are stationary, they are still able to exhibit
a trajectory dynamics due to local phase variations, i.e., to a
purely geometric origin, as previously shown in the case of
single-photon superpositions [9].
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Now, what is really quite remarkable here is the fact that
polarization trajectories may display a dynamics far beyond
the expected classical elliptical trajectories, even in the case
of polarization field states that are universally regarded as
classical. Instead, the results reported show that many different
trajectories, with very different topologies, are compatible
with every single state, which is in compliance with some
recent quantum-polarization approaches, where the degree of
polarization can never reach unity [4,39–41].

In principle, these new results should be observable in
practice in virtue of the close relationship between the
Bohmian picture of quantum dynamics and the concept of
weak measurement [42–44]. Note that this connection has
already been proven experimentally in benchmark experiments
[45,46]. Furthermore, it has also been adapted to the case
where the Bohmian trajectories hold in the field-quadrature
space by means of the homodyne scheme, as shown in
Ref. [47].

As shown here, the strange dynamics reported for SU(2)
coherent states is primarily determined by the equilibrium
points of the electric-field wave function, in particular, a web
of vortices. Analogously, this geometrical nature has also been
observed in nonclassical light. This naturally leads to the
issue of Bohmian chaos [48], which is absent in all cases
analyzed here, because vortices need to be evolving in time.
In 1995 Parmenter and Valentine [49] showed that just a linear
superposition of eigenstates of a two-dimensional anisotropic
harmonic oscillator might lead to chaos under some specific
conditions, an idea that Makowski and Frąckowiak [50] further
analyzed in 2001, identifying the “simplest non-trivial model
of chaotic Bohmian dynamics.’ Nonetheless, the link between
Bohmian chaos and vorticality was first established by Frisk in
1997 [51], and more recently Wiskniacki, Pujals and Borondo
[52,53] found that, in particular, it is the movement of vortices
that induces the appearance of chaos, which explains why
there are no signatures of chaos in our case. From a dynamical
viewpoint, the states analyzed are all stable, although a slight
perturbation would lead to motion of the observed saddle
points and, therefore, to the appearance of chaos, although this
is a subject that goes beyond the scope of the current work.

The above results, in contradiction with the type of
dynamics that one would expect in principle from classical
electrodynamics, constitute a quite remarkable issue, since
such field states are universally regarded as classical-like
concerning polarization. Nonetheless, there are some quantum

approaches where these states also display nonclassical
polarization features, as discussed in [54–56]. In this regard,
a natural question that arises here is whether there is any
relationship between the manifestation of nonclassical polar-
ization in these approaches and the one discussed here within
the Bohmian framework. The answer is positive, there being a
straightforward link between them. In terms of a mechanical-
like language, the phase gradient in Eq. (7) provides the local
value of a linear momentum. This can be suitably expressed as
a local mean value of the momentum either via Wigner-Moyal
phase-space distributions or via Terletsky-Margenau-Hill
ones [57–62], which are the ones displaying nonclassical
behavior in [54–56]. Trajectories displaying strange
behaviors might then be regarded as the result of quantum
polarization distributions incompatible with classical
physics.

From the above comments, it is clear that Glauber and SU(2)
coherent states must be separately analyzed. The Wigner distri-
bution for Glauber coherent states is classical (it is everywhere
positive definite), and consequently, one should go to nonlinear
functions of the trajectories. This is because nonlinear local
moments are related exclusively to Terletsky-Margenau-Hill
[62], which is nonclassical for Glauber coherent states [54–56].
Regarding SU(2) coherent states, their characteristic trait is the
presence of vortices governing the topology of the trajectories.
These vortices arise when the amplitude of the wave function
vanishes. This vanishing implies that both the Wigner and the
Terletsky-Margenau-Hill distributions will be negative definite
in regions around vortices. Roughly speaking, this means that
the trajectories orbiting the vortices should be influenced by
the nonclassical negative values of these distributions.

To conclude, we would like to stress the fact that the def-
inition of the electric-field trajectories has no straightforward
classical counterpart. There seems to be no simple classical
analog for the phase of the electric-field wave function.
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D. S. Hall, Nature 505, 657 (2014); V. Pietilä and M. Möttönen,
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