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We outline a general perturbative method of evaluating scattering features of finite-range complex potentials
and use it to examine complex perturbations of a rectangular barrier potential. In optics, these correspond to
modulated refractive index profiles of the form n(x) = n0 + f (x), where n0 is real, f (x) is complex valued,
and |f (x)| � 1 � n0. We give a comprehensive description of the phenomenon of unidirectional invisibility for
such media, proving five general theorems on its realization in PT -symmetric and non-PT -symmetric material.
In particular, we establish the impossibility of unidirectional invisibility for PT -symmetric samples whose
refractive index has a constant real part and show how a simple scaling transformation of a unidirectionally
invisible PT -symmetric index profile with n0 = 1 may be used to generate a hierarchy of unidirectionally
invisible PT -symmetric index profiles with n0 > 1. The results pertaining to unidirectional invisibility for
n0 > 1 open the way for the experimental studies of this phenomenon in a variety of active materials. As an
application of our general results, we show that a medium with n(x) = n0 + ζeiKx , ζ and K real, and |ζ | � 1
can support unidirectional invisibility only for n0 = 1. We then construct unidirectionally invisible index profiles
of the form n(x) = n0 + ∑

� z�e
iK�x with z� complex, K� real, |z�| � 1, and n0 > 1.
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I. INTRODUCTION

Time-independent scattering theory is a well-established
discipline with numerous applications in different areas of
physics and engineering. The standard textbook treatments of
this theory are usually confined to real scattering potentials,
but the generalization to complex potentials does not cause
any severe difficulties [1]. Recent years have witnessed a
growing interest in the study of complex scattering potentials
because unlike real potentials they are capable of supporting
interesting phenomena, such as spectral singularities [2–5]
and unidirectional invisibility [6–9]. Spectral singularities
correspond to scattering states which behave like zero-width
resonances [2,10]. They provide a mathematical description
of lasing at the threshold gain [4] and antilasing [11].
Unidirectional invisibility is the property of having perfect
transmission and unidirectional reflection. The possibility of
realizing it has attracted a lot of attention because it provides a
tool for constructing certain optical devices having one-way re-
flection [12]. Another remarkable property of unidirectionally
invisible potentials is that they serve as the building blocks
for constructing potentials with given scattering properties
at a given wave number [13]. These observations provide
ample motivation for a systematic study of the problem of
characterizing scattering potentials displaying unidirectional
invisibility. The purpose of this article is to propose a solution
to this problem which can be conveniently employed in a wide
range of easily realizable optical setups.

Consider the Helmholtz equation,

E ′′(x) + k2n(x)2E (x) = 0, (1)

which describes the propagation of time-harmonic electro-
magnetic waves interacting with an infinite planar slab of
optically active material. Here the electric field is given by
�E(x,t) = e−ikctE (x)êy , êy is the unit vector along the positive
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y axis in some Cartesian coordinate system {(x,y,z)}, k is the
wave number, c is the speed of light in vacuum, and n(x) is
the refractive index of the medium. For a slab consisting of
material obtained by doping a homogeneous host medium with
index of refraction n0, the latter has the form

n(x) =
{

n0 + ν(x) + iκ(x) for x ∈ [0,L],

1, otherwise,
(2)

where ν and κ are piecewise continuous real-valued functions
with support [0,L] and L is the thickness of the slab. Let n0

and n′
0 denote the real and imaginary part of n0, respectively,

so that

n0 = n0 + in′
0. (3)

Then the regions in the optically active part of the space,
i.e., [0,L] in which n′

0 + κ(x) takes negative (respectively,
positive) values display gain (respectively, loss) properties.
For a nonexotic active material, n0 � 1, and |n′

0|, |ν(x)|, and
|κ(x)| are at least three orders of magnitude smaller than n0,

|n′
0| + |ν(x)| + |κ(x)| � 1 � n0. (4)

We can identify (1) with the time-independent Schrödinger
equation,

−ψ ′′(x) + v(x)ψ(x) = k2ψ(x) (5)

for the complex barrier potential,

v(x) = k2[1 − n(x)2] ≈
{

v0 + v1(x) for x ∈ [0,L],

0 for x /∈ [0,L],
(6)

where we have employed (4) and introduced

v0 := k2
(
1 − n2

0

)
, v1(x) := −2k2n0[ν(x) + iκ(x)]. (7)

In Refs. [6–8], the authors note that for

v0(x) = 0, v1(x) = z e2πix/L, (8)

z ∈ R+, z � 1, and k = π/L, the potential (6) displays
unidirectional invisibility. This corresponds to a slab with
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n0 = 1 for which we can employ the perturbative treatment of
the scattering phenomenon as outlined in Ref. [14]. It turns out
that this potential violates the condition of perfect transmission
if one goes beyond the first-order perturbations theory, i.e.,
it displays perturbative unidirectional invisibility [14]. An
experimental verification of this behavior requires modulating
both the real and the imaginary parts of the refractive index
n(x). The latter is usually performed by pumping the active
media to maintain the desired gain or loss profile for the slab.
Manufacturing samples with particular shapes for the real part
of the refractive index requires other means [15].

To the best of our knowledge, except for the results obtained
for bilayer slabs in Ref. [9], the recent theoretical developments
[6–8,14] in the study of the unidirectional invisibility are ob-
tained under the assumption that n0 = 1. This imposes severe
limitations on the direct experimental manifestations of this
phenomenon because it restricts the choice of the host medium
and subsequently puts strong bounds on the attainable values
of the imaginary part of n(x). In this article, we avoid these
limitations by offering a generalization of the perturbative
approximation scheme developed in Ref. [14] to situations
where n0 > 1. This allows for a comprehensive study of the
subject and reveals a number of remarkable properties of the
finite-range PT -symmetric and non-PT -symmetric optical
potentials supporting perturbative unidirectional invisibility.

In the remainder of this section we survey some of the
basic properties of the transfer matrices, give a precise
definition of unidirectional invisibility, and provide a brief
review of a recently proposed dynamical formulation of
time-independent scattering theory which serves as the basic
theoretical framework for the developments we report in this
article.

For a general real or complex scattering potential v(x)
and a real wave number k, the solutions of the Schrödinger
equation (5) have the following asymptotic form:1

ψ(x) → A±eikx + B±e−ikx for x → ±∞. (9)

The 2 × 2 matrix M satisfying

M
[
A−
B−

]
=

[
A+
B+

]
(10)

is called the transfer matrix of v(x). Its entries Mij are related
to the reflection and transmission amplitudes Rl/r and T of the
potential v(x) according to [2]

M11 = T − RlRr

T
, M12 = Rr

T
,

(11)

M21 = −Rl

T
, M22 = 1

T
.

As a simple consequence of (11) we also recover the well-
known identity det M = 1 [17,18].

The transfer matrix and the reflection and transmission
amplitudes are functions of the wave number. Suppose that
we fix a particular value k� for the latter. Then, by definition,

1By a scattering potential we mean a function v:R → C ful-
filling the decay condition

∫ ∞
−∞ dx(1 + |x|)|v(x)| < ∞ so that the

Schrödinger equation (5) admits scattering (Jost) solutions [16].

v(x) is said be unidirectionally reflectionless from the left
(respectively, right) or simply left reflectionless (respectively,
right reflectionless) for k = k� if Rl(k�) = M21(k�) = 0 [re-
spectively, Rr (k�) = M12(k�) = 0]. It is called unidirectionally
invisible from the left (respectively, right) or simply left
invisible (respectively, right invisible) at the wave number k�

if in addition we have T (k�) = M22(k�) = M11(k�) = 1.
In Refs. [14,19], we propose a dynamical formulation of the

one-dimensional potential scattering that identifies the transfer
matrix M of a complex scattering potential v(x) with the
asymptotic time-evolution operator for a nonunitary two-level
quantum system. More specifically, M = U (∞,−∞), where

U (τ,τ0) := T exp

{
−i

∫ τ

τ0

dτ ′H (τ ′)
}

is the time-evolution operator for the non-Hermitian Hamilto-
nian operator,

H (τ ) := w(τ )K(τ ), (12)

w(τ ) and K(τ ) are given by

w(τ ) := v(τ/k)

2k2
= 1 − n(τ/k)2

2
, (13)

K(τ ) :=
[

1 e−2iτ

−e2iτ −1

]
, (14)

and T denotes the time-ordering operation. This observation
suggests a straightforward perturbative computation of M
provided that we identify the unperturbed Hamiltonian with
that of the free particle, i.e., H (τ ) = 0. In optical applications
this corresponds to n0 = n0 = 1. Performing the first-order
Born approximation for this system paves the way for a
general characterization of perturbative unidirectional reflec-
tionlessness and invisibility for materials with n0 = n0 = 1
[14]. This is however overly restrictive because the condition
n0 = n0 = 1 can only be realized for gaseous active media
which are known to have very low gain and loss coefficients
[20].

II. PERTURBATIVE SERIES EXPANSION
FOR THE TRANSFER MATRIX

Consider the truncated potentials,

vτ (x) :=
{

v(x) for x � τ/k,

0 for x > τ/k,

where τ is a real number and let I stand for the 2 × 2 unit
matrix. Then, the transfer matrix of vτ (x), which we denote
by M(τ ), satisfies [14,19]

i ∂τ M(τ ) = H (τ )M(τ ), (15)

M(−∞) = I, M(∞) = M. (16)

Now, suppose that we can express v(x) in the form

v(x) = v(0)(x) + v(1)(x), (17)
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where v(j )(x) with j = 0,1 are scattering potentials with
v(1)(x) playing the role of a perturbation. Furthermore, let

wj (τ ) := v(j )(τ/k)

2k2
, Hj (τ ) := wj (τ )K(τ ),

v(j )
τ (x) :=

{
v(j )(x) for x � τ/k,

0 for x > τ/k,

M0 and M0(τ ) be the transfer matrices of v(0)(x) and v(0)
τ (x),

respectively, M̂ := M−1
0 M, and

M̂(τ ) := M0(τ )−1M(τ ). (18)

Then,

H (τ ) = H0(τ ) + H1(τ ), (19)

i ∂τ M0(τ ) = H0(τ )M0(τ ), (20)

M0(−∞) = I, M0(∞) = M0. (21)

If we solve (18) for M(τ ) and substitute the resulting
expression together with (19) and (20) in (15), we find

i ∂τ M̂(τ ) = Ĥ (τ )M̂(τ ), (22)

M̂(−∞) = I, M̂(∞) = M̂, (23)

where

Ĥ (τ ) := M0(τ )−1H1(τ )M0(τ )

= w1(τ )K̂(τ ), (24)

K̂(τ ) := M0(τ )−1K(τ )M0(τ ). (25)

We can express (22) and (23) in the form

M̂ = T exp

{
−i

∫ ∞

−∞
dτ ′Ĥ (τ ′)

}
= I +

∞∑
�=1

M̂(�), (26)

where

M̂(�) := (−i)�
∫ ∞

−∞
dτ�

∫ τ�

−∞
dτ�−1 · · ·

∫ τ2

−∞
dτ1Ĥ (τ�)Ĥ (τ�−1) · · · Ĥ (τ1)

= (−i)�
∫ ∞

−∞
dτ�

∫ τ�

−∞
dτ�−1 · · ·

∫ τ2

−∞
dτ1K̂(τ�)K̂(τ�−1) · · · K̂(τ1)

�∏
p=1

w1(τp)

= 1

(2ik)�

∫ ∞

−∞
dx�

∫ x�

−∞
dx�−1 · · ·

∫ x2

−∞
dx1K̂(kx�)K̂(kx�−1) · · · K̂(kx1)

�∏
p=1

v(1)(xp). (27)

Note also that

M = M0M̂ =
∞∑

n=0

M(n), (28)

where

M(n) :=
{

M0 for n = 0,

M0M̂(n) for n � 1.
(29)

Truncating the series on the right-hand side of (28), we obtain
approximate perturbative expressions for the transfer matrix
of the form

M ≈
N∑

n=0

M(n), (30)

where N is the order of the approximation
(perturbation).

III. UNIDIRECTIONAL INVISIBILITY IN MODULATED
REFRACTIVE INDEX PROFILES

Consider the optical potentials of the form (6). Then, for
x /∈ [0,L], v(0)(x) = v(1)(x) = 0, whereas for x ∈ [0,L],

v(0)(x) ≈ v0 = k2(1 − n2
0

)
,

(31)
v(1)(x) ≈ v1(x) = −2k2n0[ν(x) + iκ(x)].

In particular v(0)
τ (x) is a barrier potential with a constant height

whose transfer matrix M0(τ ) can be calculated in a closed and
exact form [9]. For τ ∈ [0,kL], it reads

M0(τ ) =
[

[cos(n0τ ) + in+ sin(n0τ )]e−iτ in− sin(n0τ )e−iτ

−in− sin(n0τ )eiτ [cos(n0τ ) − in+ sin(n0τ )]eiτ

]
, (32)

where n± := (n0 ± n
−1
0 )/2. We also have

M0(τ ) =
{

I for τ � 0,

M0(kL) for τ � kL.
(33)

In particular,

M(0) = M0 = M0(kL). (34)

In view of (27) and the fact that v(1)(x) vanishes for x /∈ [0,L],
the calculation of M̂(�) and consequently M̂ and M only
require the evaluation of K̂(τ ) for τ ∈ [0,kL]. To do this we
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substitute (14) and (32) in (25). Simplifying the resulting equation we then find

K̂(τ ) =
[

cos2(n0τ ) + n
−2
0 sin2(n0τ )

[
cos(n0τ ) − in−1

0 sin(n0τ )
]2

−[
cos(n0τ ) + in−1

0 sin(n0τ )
]2 − cos2(n0τ ) − n

−2
0 sin2(n0τ )

]
, (35)

where τ ∈ [0,kL]. Again, because v(1)(x) = 0 for x /∈ [0,L],
as far as (27) is concerned we can treat (35) as if it holds for
all τ ∈ R.

Inserting (35) in (27), expressing cos(n0kx) and sin(n0kx)
in terms of e±in0kx , and using the expression for the Fourier
transform of a function u(x), namely,

ũ(k) :=
∫ ∞

−∞
dx e−ikxu(x), (36)

we can determine M̂(1). Substituting the result in (29),
employing (33) and (32), and introducing

ṽ±(k) := ṽ(1)(±2n0k), ṽ0 := ṽ(1)(0), (37)

we find the following expressions for the entries of M(1):

M
(1)
11 (k) = M

(1)
22 (−k)

= e−ikL

8ikn2
0

{(
n2

0 − 1
)
[ein0kLṽ+(k) + e−in0kLṽ−(k)]

+ [
2
(
n2

0 + 1
)

cos(n0kL) + 4in0 sin(n0kL)
]
ṽ0

}
,

(38)

M
(1)
12 (k) = M

(1)
21 (−k)

= e−ikL

8ikn2
0

{
(n0+1)2ein0kLṽ+(k)+(n0−1)2e−in0kLṽ−(k)

+ 2
(
n2

0 − 1
)

cos(n0kL)ṽ0
}
. (39)

We can use these relations together with (30) and (32) to
give a first-order treatment of the finite-range perturbations
of a real or complex rectangular barrier potential. As we
alluded to above, this should provide accurate results in optical
applications, where v(1)(x) is given by (31). We must however
note that due to the k dependence of this potential, we can use
(38) and (39) provided that we set

ṽ±(k) := −2k2n0[ν̃(±2n0k) + iκ̃(±2n0k)],
(40)

ṽ0 := −2k2n0[ν̃(0) + iκ̃(0)].

Suppose that we wish to characterize unidirectionally
or bidirectionally reflectionless configurations of a generic
optically active slab using our first-order perturbative scheme.
Without loss of generality, we can take n′

0 = 0 so that
n0 = n0 � 1, i.e., we consider the barrier potential v(x) of the
form (6) with

v0 = k2
(
1 − n2

0

)
. (41)

This is unidirectionally reflectionless to the first order of
perturbation theory if the unperturbed barrier potential is
reflectionless to the zeroth order of perturbation theory. In
view of (32) and (34), this happens whenever n0kL differs
from an integer multiple of π by a term k1 that is of the order

of one or higher in the perturbation parameter,

k = k0 + k1, k0 := πm0

n0L
,

(42)
m0 = 1,2,3, . . . , |k1| � k0.

We can use this relation to simplify the expression for the
entries of M(0) and M(1). This gives

M
(0)
11 ≈ e−iμ(1 + iX+) ≈ M

(0)∗
22 ,

(43)
M

(0)
12 ≈ ie−iμX− ≈ M

(0)∗
21 ,

M
(1)
11 ≈ e−iμY0, M

(1)
12 ≈ e−iμY+, (44)

M
(1)
21 ≈ −eiμY−, M

(1)
22 ≈ −eiμY0, (45)

where we have employed (32), (34), (38), (39), and (42),
introduced

μ := πm0
(
1 + n−1

0

)
, X± := 1

2

(
n2

0 ± 1
)
k1L, (46)

Y0 :=
(
n2

0 − 1
)
[ṽ+(k0) + ṽ−(k0)] + 2

(
n2

0 + 1
)
ṽ0

8ik0n
2
0

, (47)

Y± := (n0 + 1)2ṽ±(k0) + (n0 − 1)2ṽ∓(k0) + 2
(
n2

0 − 1
)
ṽ0

8ik0n
2
0

,

(48)

and used “≈” to mean that we ignore quadratic and
higher-order terms in powers of k1.

The potential v(x) is invisible from the left or right
to the first order of perturbation theory if the unperturbed
barrier potential has the same property to the zeroth order of
perturbation theory. According to (43) this holds if and only if
eiμ = 1, alternatively, n0 is a rational number of the form

n0 = m0

2j0 − m0
, j0 = 1,2,3, . . . . (49)

Note that because n0 � 1, j0 must satisfy m0 < 2j0 � 2m0.
The following are simple consequences of (43)–(48).
(1) Rl ≈ 0 if in addition to (42) we have M

(0)
21 + M

(1)
21 ≈ 0.

The latter means

(n0 + 1)2ṽ−(k0) + (n0 − 1)2ṽ+(k0)

+ 2
(
n2

0 − 1
)(

ṽ0 − 2n2
0k0k1L

) = 0. (50)

(2) Rr ≈ 0 if in addition to (42) we have M
(0)
12 + M

(1)
12 ≈ 0.

This is equivalent to

(n0 + 1)2ṽ+(k0) + (n0 − 1)2ṽ−(k0)

+ 2
(
n2

0 − 1
)(

ṽ0 − 2n2
0k0k1L

) = 0. (51)

(3) T ≈ 1 if (42) holds together with M
(0)
22 + M

(1)
22 ≈ 1.

This is the case whenever(
n2

0 − 1
)
[ṽ+(k0) + ṽ−(k0)]

+ 2
(
n2

0 + 1
)(

ṽ0 − 2n2
0k0k1L

) = 0. (52)
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Now, we are in a position to examine the conditions for the
perturbative invisibility of the potential v(x). This potential is
perturbatively left invisible provided that (42), (49), (50), and
(52) hold whereas (51) is violated. For n0 > 1, which is the
case of our interest, we can write (50) and (52) as

ṽ±(k0) +
(

n0 ± 1

n0 ∓ 1

)(
ṽ0 − 2n2

0k0k1L
) = 0. (53)

Similarly, v(x) is right invisible, if and only if, in addition to
(42) and (49), (51), and (52) are satisfied but (50) is violated.
For n0 > 1, we can express (51) and (52) in the form

ṽ±(k0) +
(

n0 ∓ 1

n0 ± 1

)(
ṽ0 − 2n2

0k0k1L
) = 0. (54)

In order for the potential to be perturbatively bidirectionally
invisible, for n0 > 1, (53) and (54) must hold simultaneously.
This implies

ṽ±(k0) = 0, ṽ0 = 2n2
0k0k1L, (55)

which also apply for the case of n0 = 1. Notice that the second
of these relations sets the imaginary part of ṽ0 to zero and
determines k1. In view of (40) and (42), we can express (55)
as

ν̃(±2πm0/L) + iκ̃(±2πm0/L) = 0,
(56)

k1 = −πm0[ν̃(0) + iκ̃(0)]

n2
0L

2
∈ R.

For unidirectionally invisible configurations having n0 > 1,
both of the equations in (55) are violated, and we can use (53)
and (54) to show that

ṽ+(k0)

ṽ−(k0)
=

(
n0 − 1

n0 + 1

)2ε

, ε :=
{−1 for left invisibility,

1 for right invisibility.

(57)

In particular, we have the following criterion for perturbative
unidirectional invisibility.

Theorem 1. Let v(x) be a finite-range potential of the
form (6) with n0 = n0 > 1. Then a necessary condition for
the perturbative unidirectional invisibility of v(x) is that
ṽ+(k0)/ṽ−(k0) be given by (57) for some k0 of the form (42).
In particular this quantity must take a real and positive value.

As a simple application of this theorem consider the
potential,

v(x) =
{
v0 + ax + bx2 for x ∈ [0,L],
0, otherwise,

(58)

where a and b are nonzero complex parameters and suppose
that k0 satisfies (42). Then,

ṽ+(k0)

ṽ−(k0)
= 2

[
1 − πim0

(
a

Lb
+ 1

)]−1

− 1,

which is real and positive provided that there is a real number
ξ not larger than π−1 such that a = (−1 + iξ )Lb. According
to Theorem 1 if this condition is violated, the potential (58) is
incapable of supporting perturbative unidirectional invisibility.

Next, let us examine the consequences of a constant real
shift of the potential on its support, i.e.,

v(x) → w(x) :=
{

v(x) + α for x ∈ [0,L],

0 for x /∈ [0,L],
α ∈ R.

(59)

It is easy to show that for the values of k0 given by (42), this
transformation leaves ṽ±(k0) invariant and changes ṽ0 by a real
additive term, namely, αL, i.e.,

ṽ±(k0) → w̃±(k0) = ṽ±(k0), ṽ0 → w̃0 = ṽ0 + αL.

In particular, if we choose α = 2n2
0k0k1, then Eqs. (50)–(55)

for the transformed potential w(x) have the same form as
those of v(x) with k1 set to zero. More generally, we have the
following useful result.

Theorem 2. Let v(x) be as in Theorem 1. Then we can tune
the value of k1 and hence the wave number k at which v(x) is
perturbatively unidirectionally or bidirectionally invisible by
performing a constant shift of its real part according to (59).

IV. INVISIBLE PT -SYMMETRIC POTENTIALS

Let P and T denote the space-reflection and time-reversal
operators,

Pψ(x) := ψ(L − x), T ψ(x) := ψ(x)∗,

and consider a PT -symmetric optical potential given by (6)
and (7), that by definition satisfies v(L − x)∗ = v(x). Then,
without loss of generality, we can take n0 = n0 ∈ R so that
v0 = k2(1 − n2

0) is real. This in turn implies

ν(L − x) = ν(x), κ(L − x) = −κ(x). (60)

Using these relations and the fact that ν(x) and κ(x) vanish for
x /∈ [0,L], we find that

ν̃(k) = 2e−ikL/2
∫ L/2

0
dx cos

[
k

(
L

2
− x

)]
ν(x), (61)

κ̃(k) = −2ie−ikL/2
∫ L/2

0
dx sin

[
k

(
L

2
− x

)]
κ(x). (62)

In particular, because n0k0 = πm0/L and m0 is an integer,
ν̃(±2n0k0) and κ̃(±2n0k0), respectively, take real and imagi-
nary values. It is also easy to see that

ν̃(−2n0k0) = ν̃(2n0k0), κ̃(−2n0k0) = −κ̃(2n0k0), (63)

ν̃(0) =
∫ L

0
dx ν(x), κ̃(0) = 0. (64)

In Ref. [9], we show that the equations governing the
phenomenon of unidirectional invisibility have an intrinsic
PT symmetry. This makes PT -symmetric potentials the
primary class of potentials with this property. An interesting
manifestation of this observation is the fact that for PT -
symmetric potentials the quantity ṽ−(k0)/ṽ+(k0) is always real
(see Theorem 1). This follows from (40), (42), and (63) and
the above-mentioned reality of ν̃(±2n0k0) and iκ̃(±2n0k0).
More generally, for PT -symmetric potentials, we can express
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Condition (57) of Theorem 1 as

κ̃(2n0k0) = 2iεn0ν̃(2n0k0)

n2
0 + 1

. (65)

Next, we consider the cases where ν(x) is a constant.
Then (61) implies ν̃(2n0k0) = 0. This in turn reduces (65)
to κ̃(2n0k0) = 0 and leads to ṽ±(k0) = 0. As we discussed
earlier, this marks the perturbative bidirectional invisibility of
v(x) and proves the following theorem.

Theorem 3. Let v(x) be a PT -symmetric potential of
the form (6). Suppose that the real part of v(x) takes a
constant value on its support [0,L]. Then v(x) cannot display
perturbative unidirectional invisibility.

This theorem shows that one cannot realize unidirectional
invisibility by engineering the loss-gain profile of an optically
active material obtained by doping a homogeneous host
medium; the real part of the refractive index must also be
modulated properly.

Employing (63) in (40), we obtain

ṽ±(k0)= − 2n0k
2
0[ν̃(2n0k0)±iκ̃(2n0k0)], ṽ0 = −2n0k

2
0 ν̃(0).

(66)

These relations simplify the conditions (50)–(52) for perturba-
tive reflectionlessness and transparency of the potential v(x)
and lead to the following observations.

(1) v(x) is perturbatively reflectionless from the left (ε =
−1) or right (ε = 1) at the wave number k = k0 + k1 provided
that (

n2
0 + 1

)
ν̃(2n0k0) + 2iε n0κ̃(2n0k0)

+ (
n2

0 − 1
)[

ν̃(0) + n0Lk1

k0

]
= 0. (67)

(2) It is perturbatively transparent at this wave number if
and only if n0 and k1, respectively, are given by (49) and

k1 = − k0

n0
(
n2

0 + 1
)
L

× [(
n2

0 − 1
)
ν̃(2n0k0) + (

n2
0 + 1

)
ν̃(0)

]
. (68)

These observations lead to the following characterization
of perturbative unidirectional invisibility for PT -symmetric
potentials.

Theorem 4. Let v(x) be a PT -symmetric potential given
by (6) and (7), j0 and m0 be positive integers, n0 = n0 =
(2j0/m0 − 1)−1 � 1, and k0 := πm0/n0L. Then v(x) displays
perturbative unidirectional invisibility for the wavelength k =
k0 + k1 if and only if (65) and (68) hold and ν̃(2n0k0) �= 0.

Let us also note that Eqs. (67) and (68) simplify con-
siderably for n0 = 1. In this case they imply that v(x) is
perturbatively unidirectionally reflectionless if

ν̃(2k0) = −iεκ̃(2k0) �= 0, (69)

and perturbatively transparent if

k1 = −k0ν̃(0)

L
. (70)

The fact that k1 does not enter in (69) seems to indicate
that perturbative reflectionlessness is not sensitive to small

changes in the wavelength whenever n0 = 1. This is consistent
with the known results for specific PT -symmetric potentials
considered in the literature (see for example Ref. [14]).

Next, we observe that because n0k0 = πm0/L, we can write
(65) as

f̃ε

(
2πm0

L

)
= 0, (71)

where

f±(x) := ν(x) ± i
(
n2

0 + 1
)

2n0
κ(x). (72)

This suggests that any PT -symmetric potential (6) for which
the right-hand side of (72) differs from that of v(x) by a
constant multiplicative factor will have similar unidirectional
invisibility properties as v(x). The following is a precise
statement of this result.

Theorem 5. Let v(x) and v̌(x) be PT -symmetric po-
tentials of the form (6) with the corresponding refractive
indices n(x) = n0 + ν(x) + iκ(x) and ň(x) = ň0 + ν̌(x) +
iκ̌(x), where n0 = (2j0/m0 − 1)−1 � 1, ň0 = (2ǰ0/m0 −
1)−1 � 1, j0, ǰ0, and m0 are positive integers, and ν, κ, ν̌,
and κ̌ are real-valued functions vanishing outside [0,L]. Let
k0 := πm0/n0L and k1 be given by (68), and suppose that
there is a nonzero real number α of the order of 1 such that

ν̌(x) = αν(x), κ̌(x) = αň0
(
n2

0 + 1
)
κ(x)

n0
(
ň2

0 + 1
) . (73)

Then v(x) is perturbatively left invisible (respectively, right
invisible) for the wave number k = k0 + k1 if and only if v̌(x)
is perturbatively left invisible (respectively, right invisible) for
the wave number ǩ := n0k0/ň0 + ǩ1, where

ǩ1 := − πm0α

ň2
0

(
ň2

0 + 1
)
L2

[(
ň2

0 − 1
)
ν̃

(
2πm0

L

)
+ (

ň2
0 + 1

)
ν̃(0)

]
.

For example, consider the case where α = ň0 = 1,

ν̌(x) = ν(x) = ν0 cos

(
2πm0x

L

)
,

(74)

κ̌(x) =
(
n2

0 + 1
)
κ(x)

2n0
= ν0 sin

(
2πm0x

L

)
,

ν0 ∈ R, and x ∈ [0,L]. Then the hypothesis of Theorem 5
holds for the refractive index profiles,

n(x) = n0 + ν0

[
cos

(
2πm0x

L

)
+ 2in0

n2
0 + 1

sin

(
2πm0x

L

)]
,

(75)

ň(x) = 1 + ν0e
2πim0x/L. (76)

Because the latter is perturbatively left invisible for the
wavelength ǩ = πm0/L [14], according to Theorem 5, the
former should be perturbatively left invisible for some wave-
length k = πm0/n0L + k1. Using (74), we can easily show
that ν̃(2πm0/L) = ν0L/2 and ν̃(0) = 0. Substituting these
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FIG. 1. (Color online) Graphs of |Rl |2 (navy dashed curve), |Rr |2
(thick solid red curve), and |T − 1|2 (solid green curve) as functions
of the wavelength λ for the refractive index profile given by (75) and
(78). The fact that |Rl |2 and |T − 1|2 take much smaller values than
|Rr |2 is evidence of the unidirectional invisibility of this index profile.

relations in (68) and setting k0 = πm0/n0L give

k1 = −πm0
(
n2

0 − 1
)
ν0

2n2
0

(
n2

0 + 1
)
L

. (77)

We have checked the above predictions by numerically
evaluating Rl/r and T for the index profile (75) with the
following numerical values for its parameters:

n0 = 2, ν0 = 3 × 10−3, L = 6 μm, m0 = 8. (78)

This choice of m0 yields n0 = 2 for j0 = 6 and ň = 1 for ǰ0 =
8. In view of (77) and (78), k1 = −9.424 778 × 10−4 μm−1.
We also find for the wave number and the wavelength at which
(75) is perturbatively left invisible, k = 2.093 452 μm−1 and
λ = 3001.35 nm, respectively. Figure 1 shows the plots of
the reflection coefficients |Rl/r |2 and the quantity |T − 1|2
confirming the validity of our approximate (perturbative)
results concerning left invisibility of the index profile (75)
for the parameter values (78). Let us also note that for these
values, the index profile (76) is left invisible for the wavelength
λ̌ = 2L/m0 = 1500 nm.

V. INVISIBLE LOCALLY PERIODIC PERTURBATIONS
AND THEIR SUPERPOSITIONS

Consider the locally periodic potential,

v(x) =
{

v0 + zeiKx for x ∈ [0,L],

0, otherwise,
(79)

where v0, z, and K are real parameters and z �= 0 �= K . In
optical applications, v0 is given by (41) and

z = −2k2n0ν0, (80)

where ν0 is a real parameter determining the complex refractive
index of the medium according to (2) with

n0 = n0, ν(x) = ν0 cos(Kx), κ(x) = ν0 sin(Kx). (81)

For n0 = 1, we have v0 = 0, and (79) with K being an integer
multiple of 2π/L is the primary example of a unidirectionally
invisibility potential considered in the literature [6–8,14]. In
what follows we explore the invisibility properties of the
potential (79) for arbitrary n0 � 1 and K ∈ R.

For the potential (79), v(1)(x) = zeiKx and (36) gives

ṽ(1)(k) = iz[1 − ei(K−k)L]

K − k
.

Substituting this equation in (37), we obtain ṽ±(k) and ṽ0.
These together with (50)–(55) allow us to determine the
reflectionless and invisible configurations of (79). We describe
these by considering the following two cases separately.

Case I. K = ±2πm/L for a positive integer m: Then in
order for the potential to have perturbative unidirectional
reflectionlessness or perfect transmission, we must have
m = m0 so that

K = ±2n0k0 = ±2πm0

L
. (82)

Furthermore, the following hold.
(I.1) The potential (79) is perturbatively left or right

reflectionless whenever

k1 = (n0 ± ε)z

4n2
0(n0 ∓ ε)k0

= −(n0 ± ε)k0ν0

2n0(n0 ∓ ε)
. (83)

where

ε :=
{

−1 for left reflectionlessness,

1 for right reflectionlessness.
(84)

(I.2) It displays perturbative perfect transmission provided
that n0 satisfies (49) and

k1 =
(
n2

0 − 1
)
z

4n4
0

(
n2

0 + 1
)
k0

= −(
n2

0 − 1
)
k0ν0

2n0
(
n2

0 + 1
) . (85)

(I.3) It supports perturbative unidirectional invisibility if
and only if n0 = 1 and k1 = 0. This is the case studied in
Refs. [6–8,14].

Case II. K is not an integer multiple of 2π/L: Then
(79) supports unidirectional reflectionlessness or perfect trans-
mission only if k1 = 0. Furthermore, we can establish the
following.

(II.1) The potential (79) is perturbatively left or right
reflectionless whenever

K = (−ε ±
√

2n2
0 − 1

)
k0, (86)

where ε is defined by (84).
(II.2) It displays perturbative perfect transmission pro-

vided that n0 satisfies (49), and

K = ±
√

2
(
n2

0 + 1
)
k0. (87)

(II.3) It does not support perturbative unidirectional invis-
ibility for any value of n0 � 1.
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The fact that for n0 > 1 the potential (79) cannot support
perturbative unidirectional invisibility motivates the search
for its generalizations that possess this property. For example
consider the potentials of the form

v(x) =
⎧⎨⎩v0 + z0 +

N∑
�=1

z�e
iK�x for x ∈ [0,L],

0, otherwise,
(88)

where v0 is given by (41) for some n0 � 1, N � ∞, z� are
real or complex, K� are real, and z� �= 0 �= K�. Then, in view
of (42), we find

ṽ±(k0) =
N∑

�=1

iz�(1 − eiK�L)

K� ∓ 2n0k0
,

(89)

ṽ0 = z0L +
N∑

�=1

iz�(1 − eiK�L)

K�

.

Next, we substitute (89) in (53) and (54) to determine the
conditions for the perturbative unidirectional invisibility of the
potential (88). This results in the following pair of necessary
conditions for the perturbative left invisibility:

N∑
�=1

z�F�G
±
� (k0) = i z̃0L(n0 ± 1)

2n0
, (90)

where

F� := 1 − eiK�L

K�

, G±
� (k) := K� − (1 ± n0)k

K� ∓ 2n0k
,

(91)
z̃0 := z0 − 2n2

0k0k1.

Similarly, we find the following equations for perturbative
right invisibility:

N∑
�=1

z�F�G
±
� (−k0) = i z̃0L(n0 ± 1)

2n0
. (92)

The potential (88) is perturbatively left invisible (respectively,
right invisible) if and only if (90) [respectively, (92)], (42) and
(49) are satisfied while ṽ0 �= 0.

For instance consider the case that z0 = 0, N = 2, and
K1 �= K2, i.e.,

v(x) =
{

v0 + z1e
iK1x + z2e

iK2x for x ∈ [0,L],

0, otherwise.
(93)

Then we can set k1 = 0 so that z̃0 = 0 and the left-invisibility
conditions (90) reduce to a pair of homogeneous linear
equations for z1 and z2. These have a nontrivial solution of
the form

z2 = −F1G
+
1 (k0)z1

F2G
+
2 (k0)

, (94)

provided that

F1 �= 0 �= F2, (95)

G+
1 (k0)G−

2 (k0) − G−
1 (k0)G+

2 (k0) = 0. (96)

For K1 = 2k0, Eq. (96) implies K2 = 2k0, which violates
the condition K1 �= K2. Therefore, we take K1 �= 2k0. In view
of this relation and (91), we can reduce (96) to a quadratic
equation for K2 with a pair of solutions, namely, K2 = K1,
which is inadmissible, and

K2 = 2k0

[
1 −

(
n2

0 − 1
)
k

K1 − 2k0

]
. (97)

We can express this relation in the following more symmetric
form:2

(K1 − 2k0)(K2 − 2k0) = −2
(
n2

0 − 1
)
k2

0, (98)

which, in particular, implies K2 �= 2k0.
Next, we examine the consequences of (95). According to

(91), this relation implies that either K1 = −K2 = ±2n0k0 =
±2πm0/L or K1 and K2 are not integer multiples of 2π/L.
The first of these possibilities is in conflict with (98). Hence
the second must hold.

Substituting (97) in (94) and using (42) to simplify the
result, we find

z2 = − 4k
[
K1−

(
n2

0+1
)
k0

][(
K1−k0

)2−n2
0k

2
0

]
(eiK1L − 1)z1

K1(K1−2k0)
(
K2

1 −4n2
0k

2
0

)(
e−2ik2L(n2

0−1)/(K1−2k0)−1
) .

(99)

A similar analysis of the necessary conditions for the
realization of perturbative right invisibility of (93) yields

K2 = −2k0

[
1 +

(
n2

0 − 1
)
k0

K1 + 2k0

]
, (100)

z2 = 4k
[
K1 + (

n2
0 + 1

)
k0

][
(K1 + k0)2 − n2

0k
2
0

]
(eiK1L − 1)z1

K1(K1 + 2k0)
(
K2

1 − 4n2
0k

2
0

)(
e−2ik2L(n2

0−1)/(K1+2k0) − 1
) .

(101)

These can be obtained from (97) and (99), respectively, by
taking k0 to −k0. Note also that in (97) and (101), k0 and n0

are given by (42) and (49).
Equations (97)–(101) describe perturbative unidirection-

ally invisible configurations provided that they do not hold
simultaneously. If they do, we obtain a bidirectionally invisible
configuration. This happens whenever

K1 = −K2 = ±
√

2
(
n2

0 + 1
)
k0, z2 = −z1e

iK1L. (102)

Substituting these relations in (93) and introducing z :=
2eiK1L/2z1, we find

v(x) =
{

v0 + iz sin[K1(x − L/2)] for x ∈ [0,L],

0, otherwise,

(103)

which is PT -symmetric for real values of z. This potential
displays perturbative bidirectional invisibility at the wave
numbers k = k0 provided that v0, n0, and K1 satisfy (41), (49),

2This is a manifestation of the fact that the transformation K1 ↔ K2

leaves (96) invariant.
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FIG. 2. (Color online) Graphs of |Rl |2 (navy dashed curve), |Rr |2
(thick solid red curve), and |T − 1|2 (solid green curve) as functions
of the wavelength λ for the potential given by (103)–(106). The fact
that these curves take a zero value for their common minimum at
λ = 1500 nm is a clear manifestation of the bidirectional invisibility
of the potential.

and (102). If K2 and z2 are given by (97) and (99) [(100) and
(101), respectively] and we use a value of K1 which violates
the first equation in (102), then the potential (93) displays
perturbative left (respectively, right) invisibility.

In the remainder of this section we consider concrete optical
implementations of our results for a sample with n0 = 3.4
which in light of (41) implies

v0 = −10.560k2. (104)

Suppose that we wish to realize perturbative invisibility for
k = k0 = 4π/3 μm which corresponds to the wavelength λ =
1500 nm. Then, according to (49), we can take m0 = 51 and
j0 = 33 which together with (42) determine the thickness of
the slab to be

L = 11.250 μm. (105)

Setting n0 = 3.4 and k0 = 4π/3 μm in (102), we find
that the potential (103) is bidirectionally invisible for this
wavelength provided that we take K1 = ±20.994 μm−1 and
|z1/k2

0 | � 1. Figure 2 gives a graphical demonstration of a
direct numerical calculation of |Rl/r |2 and |T − 1|2 for the
potential (103) with

z = 0.05k2
0, K1 = 20.994 μm−1. (106)

As seen from this figure, |Rl/r |2 and |T − 1|2 take very small
values for λ = 1500 nm. More specifically, our numerical
calculations give |Rl/r |2 < 10−5 and |T − 1|2 < 10−7. This
provides an independent confirmation of our result pertaining
to the perturbative bidirectional invisibility of this potential.

Next, we examine a left-invisible configuration of the
potential (93). This requires determining the values of z2 and
K2 using (97) and (99) but does not restrict the choice of z1

and K1 except for the fact that |z1/k2| � 1, K1 �= 8π/3 μm =
8.377 58 μm−1, and K1 �= ±20.994 μm−1. We choose

z1 = 0.08k2
0, K1 = −17.593 μm−1, (107)

1499.9 1500. 1500.1
0

0.0002

0.0004

0.0006

Λ nm

FIG. 3. (Color online) Graphs of |Rl |2 (navy dashed curve), |Rr |2
(thick solid red curve), and |T − 1|2 (solid green curve) as functions
of the wavelength λ for the potential given by (93), (104), (105),
(107), and (108). The graphs for |Rl |2 and |T − 1|2 overlap in the
scale depicted here.

which together with (97) and (99) give

z2 = (−0.111 478 + 0.017 0778i)k2
0, K2 = 22.647 μm−1.

(108)

Figure 3 shows the plots of |Rl/r |2 and |T − 1|2 for the poten-
tial (93) with v0, L, z1, K1, z2, and K2 given by (104), (105),
(107), and (108). It clearly confirms the left invisibility of this
potential for λ = 1500 nm. Our numerical calculations show
that for this wavelength, |Rl|2 < 10−9, |T − 1|2 < 10−10, and
|Rr/Rl|2 > 105.

VI. CONCLUDING REMARKS

In this article we have developed a general perturbative
scheme for the study of scattering properties of optical material
obtained by modulating a general homogenous medium whose
refractive index n0 may exceed unity substantially. We have
modeled this problem in terms of a perturbed rectangular
barrier potential and conducted a detailed investigation of
its scattering features paying particular attention to unidi-
rectionally invisible configurations. The result is a set of
basic theorems revealing the general properties of perturbative
unidirectional invisibility.

PT -symmetric potentials have a distinctive place in the
study of the phenomenon of unidirectional invisibility for the
very equations that define this phenomenon are PT invariant
[9]. This leads to a variety of simplifications when one
searches for PT -symmetric unidirectionally invisible poten-
tials. Among the most important results of our investigation is
the observation that a PT -symmetric refractive index profile
with a constant real part (on its support) cannot display
unidirectional invisibility. Another remarkable result is the ex-
istence of families of unidirectionally invisiblePT -symmetric
index profiles whose members are obtained from a seed
member by performing certain scaling transformations. These
map index profiles with n0 = 1 to those with n0 > 1.
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We have also examined the locally periodic complex expo-
nential potentials of the form (79) and showed that they support
perturbative unidirectional invisibility only for the known
PT -symmetric case where n0 = 1. The superpositions of
a finite number of such potentials are, however, capable of
displaying this feature even for n0 > 1. We have constructed
specific examples of such superposed locally periodic
potentials.

As a final note, we wish to stress that our results lifts a
serious limitation on the practical implementation of unidi-
rectional invisibility in optical settings because it allows for

the use of high-gain optical materials, which have n0 > 1, to
develop unidirectionally invisible devices.
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