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Exact measurement of the second-order correlation function g(2)(t) of a light source is essential when
investigating the photon statistics and the light generation process of the source. For a stationary single-mode
light source, the Mandel Q factor is directly related to g(2)(0). For a large mean photon number in the mode, the
deviation of g(2)(0) from unity is so small that even a tiny error in measuring g(2)(0) would result in an inaccurate
Mandel Q. In this work, we address the detector-dead-time effect on g(2)(0) of stationary sub-Poissonian light.
It is then found that detector dead time can induce a serious error in g(2)(0) and thus in Mandel Q in those cases
even in a two-detector configuration. Utilizing the cavity-QED microlaser, a well-established sub-Poissonian
light source, we measured g(2)(0) with two different types of photodetectors with different dead times. We also
introduced prolonged dead time by intentionally deleting the photodetection events following a preceding one
within a specified time interval. We found that the observed Q of the cavity-QED microlaser was underestimated
by 19% with respect to the dead-time-free Q when its mean photon number was about 600. We derived an
analytic formula which well explains the behavior of the g(2)(0) as a function of the dead time.
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I. INTRODUCTION

The second-order correlation (SOC) function g(2)(t) of
radiation is a key quantity characterizing photon statistics as
well as elucidating the underlying light-generation mecha-
nism. This correlation function is often interpreted as being
proportional to the probability of measuring a photon at time
zero and then measuring another photon at time t . Since the
first observation of SOC of light from a star by Hanbury Brown
and Twiss (HBT) [1], the measurement techniques for SOC
have progressed a great deal as high-efficiency photodetectors
and fast electronics have been developed.

Significant improvements were made by employing a
time-to-digital converter or a time digitizer, which provides
a digital representation of the time intervals between a start
photodetection event at one detector and multiple stop events
at the other detector. From these time intervals a histogram of
the time delay between the start and stop events is obtained.
This method is called the single-start multistop time-to-digital
conversion (SMTDC) [2–4]. In later experiments, a more
efficient method which uses all of the arrival-time records in
both the start and stop detectors was developed. This method
is called the multistart multistop time-to-digital conversion
(MMTDC). In MMTDC, all of the arrival times at both
detectors are recorded for a time window T0 much longer than
the correlation time τc of a radiation source. With software or
by using a hardware correlator, we then obtain the correlation
of all detected photon pairs or, more specifically, a histogram
of time intervals between all possible detected photon pairs.
The number of detection events during T0 on a start detector
in MMTDC is given by N0 = η�T0, where η is the quantum
efficiency of the detector and � is the incident photon flux.

*Present address: Max Planck Institute of Quantum Optics, Hans-
Kopfermann-Strasse 1, D-85748 Garching, Germany.
†kwan@phya.snu.ac.kr

Therefore, MMTDC is more efficient than SMTDC, which
uses only one start photon event, by a factor of N0 � 1.
Owing to this high efficiency, MMTDC has been successfully
employed in the first observation of nonclassical radiation
[5] and quantum frequency pulling [6] in the cavity-QED
microlaser and the spectrum of a single atom localized in
an optical lattice [7].

For accurate measurement of SOC, the effects of detector
characteristics such as detection efficiency and dead time have
also been investigated, where the latter is a time period in
which a photodetector becomes blind after photodetection.
Although the SOC function g(2)(t) of light is independent
of detector efficiency, it is apparent that in a single-detector
configuration detector dead time τd can seriously affect the
measurement of g(2)(t). Because of the detector dead time,
g(2)(t) is significantly reduced for |t | < τd near the origin.
As a result, we lose the information on g(2)(0), an important
parameter directly related to the photon statistics of a stationary
radiation source, as discussed below. No effective way to
recover the lost information completely has been found for
a single-detector configuration despite many studies on this
issue [8,9].

It is often argued that the dead-time deficiency may
be completely removed in a two-detector configuration for
stationary light sources. This is based on the simple reasoning
that two successive photons within the detector dead time
can be resolved if those two photons are detected on separate
detectors: the first photon is detected on a start detector, and the
second photon is on a separate stop detector. Contrary to this
simple argument, however, it has been shown that dead-time
effect still exists even in a two-detector configuration [10,11]
because of the nonlinearity between the incident photon flux
and the actual photon counts at each detector. For nonstationary
light sources detector dead time also distorts SOC functions, as
discussed by Choi et al. [12] for a two-detector configuration.
All of these studies considered classical light, and thus,
their results cannot be applied to nonclassical light such as
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sub-Poissonian light [13]. A more general approach is needed
in order to address the dead-time effect on SOC measurement
of arbitrary light sources.

In this paper, we investigate how the dead-time effect
distorts the SOC of stationary sub-Poissonian light in a
two-detector configuration. In this case, the dead-time effect
appears as a reduction in the detected flux due to the missed
photons during τd compared to the mean waiting time τw,
the mean time interval between successive photodetection
events. As a result, non-negligible distortion occurs in the
SOC function g(2)(t) for |t | < τd . The distortion deepens as the
incident photon flux � increases, and consequently, the mean
waiting time τw = 1/(η�) is reduced to approaching τd . Such
a distortion is critical, especially for a nonclassical light source
with a large internal mean photon number 〈n〉. For stationary
single-mode light, the relation g(2)(0) = 1 + Q/〈n〉 [14] holds
with the Mandel Q parameter bounded between −1 and 0 for
nonclassical light. For a large mean photon number 〈n〉 � 1,
we then have |1 − g(2)(0)| � 1, so even a small distortion by
the detector dead time can cause a large error in determining
Q. In this work, we first derive a formula quantifying the
distortion in g(2)(0) induced by the dead time and then verify its
validity in actual experiments with the cavity-QED microlaser
[5] generating a stationary nonclassical radiation. We show
that by using the formula we can recover g(2)(0) and thus the
Mandel Q unaffected by the detector dead time.

This paper is organized as follows. In Sec. II, we discuss
the dead-time effect on mean photon flux measurement. We
then extend our discussion to SOC measurement and derive a
formula to correct the distortion introduced by the dead time
in g(2)(0) in Sec. III. Our experimental setup and simulation
methods for checking the validity of our formula are discussed
in Sec. IV. We present experimental and simulation results
consistent with our theoretical description in Sec. V, followed
by concluding remarks in Sec. VI.

II. DEAD-TIME EFFECT ON PHOTODETECTION FLUX

The two-detector configuration eliminates the distortion
due to the missed successive photons on the same detector
by considering only two successive photon-counting events
on separate start and stop detectors. However, there still exists
another source of distortion coming from the reduction in the
counted photon flux due to the dead time.

A. Light with Poisson photon statistics

Let us first consider a waiting-time distribution w(t) for a
detector with a quantum efficiency η but without dead time. If
the photon statistics of light is Poissonian-like coherent light,
the waiting-time distribution is given by a single exponential
function: w(t) = φe−φt , with φ = η�, the dead-time-free
photodetection flux for the incident light. The mean waiting
time τw is then given by τw = φ−1. In the presence of detector
dead time, the waiting-time distribution is modified in such
a way that it vanishes for 0 < t < τd with the part after
t = τd still the same exponential as w(t). When normalized,
the modified waiting-time distribution w′(t) is nothing but
w(t − τd ). It is then straightforward to show that the new mean

waiting time τ ′
w is given by

τ ′
w = τd + τw. (1)

In the presence of the detector dead time, the photodetection
flux φ′ = 1/τ ′

w for the incident light appears to be less than the
dead-time-free photodetection flux φ by the following relation:

φ′ = 1

τw + τd

= φ

1 + φτd

(2)

This formula was already derived in previous works [15,16].
It has been used to investigate the dead-time effect on the
intensity statistics of a scattered light field measured with a
finite collection aperture [17,18]. We can then interpret the
quantity φ′/φ as the “capture probability” and 1 − (φ′/φ) as
the “miss probability” in photodetection due to the dead time.

B. Light with non-Poissonian statistics

If the light source exhibits sub- or super-Poisson photon
statistics, the waiting-time distribution is not given by a
simple exponential function, and thus, Eq. (2) is no longer
valid in general. For instance, let us consider light ex-
hibiting sub-Poisson photon statistics with its SOC function
given by g(2)(t) = 1 − e−t/τc , with τc being the correlation
time. Ververk and Orrit [19] showed that the waiting-time
distribution is approximately double exponential, given by
w0(t) � φ0(e−φ0t − e−t/τc ) for an ideal detector of η = 1. Note
φ = φ0/(1 + φ0τc). The relation between φ′ and φ would then
be quite different from Eq. (2).

In general, the capture probability can be written in terms
of the detector dead time as(

φ′

φ

)−1

= 1 +
∞∑

n=1

anx
n, (3)

where x = φτd and the coefficient an is given by

an = 1

n!

dn(φ/φ′)
dxn

∣∣∣∣
x=0

, (4)

depending on the specific waiting-time distribution of the
system under consideration. For the above waiting-time
distribution w0(t), the lowest nonvanishing coefficient is a2 =
1/(2φτc) under the condition τd < τc.

If the mean internal photon number 〈n〉 of a source is much
larger than |Q| regardless of its photon statistics, the SOC
function is close to that of coherent light, i.e., |1 − g(2)(t)| � 1,
and the corresponding waiting-time distribution is approx-
imately single exponential. An example is the cavity-QED
microlaser, where 〈n〉 ∼ 102 − 103 and −1 < Q < 1. We can
then use Eq. (2) to consider a detector dead time on the
photodetection flux. The precise condition for the validity
of this approximation is |1 − g(2)(0)| � 1, as shown in the
Appendix.

Ververk and Orrit assumed the Markov property in photon
emission and thus neglected the higher-order correlation
effects in deriving the above waiting-time distribution. In this
paper, we also assume the Markov property for the cavity-QED
microlaser since its internal state is almost unchanged after
a photon emission process when the laser is operated at a
large mean photon number. As a result, in the cavity-QED
microlaser the higher-order correlations are not much different
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from the SOC, unlike in thermal light sources [20]. This
assumption allows us to neglect the correlation between the
capture events taking place at individual detectors in Sec. III.

III. DEAD-TIME EFFECT ON SECOND-ORDER
CORRELATION MEASUREMENT

In a two-detector configuration, the intensity correlation
〈Ist (t)Isp(t + t ′)〉 is understood as a joint probability of
photodetection at time t on a start detector and at time t + t ′ on
a stop detector. The intensity operator for the start (stop) port is
denoted Ist (Isp). For stationary light, the correlation does not
depend on t , and thus, it can be replaced with a fixed time. If
we define N (t) as the actual number of photon pairs composed
of one photon incident on the start detector and another on the
stop detector with a time delay t , the normalized SOC function
g(2)(t) in this configuration can be expressed as

g(2)(t) = 〈Ist (0)Isp(t)〉
〈Ist (0)〉〈Isp(t)〉 = N (t)

N (∞)
= N (t)

N (∞)
, (5)

where N (t) is the number of photodetection pairs with a time
delay t in the absence of detector dead time, so N (t) = η2N (t).
Equation (5) shows that SOC does not depend on the detector
efficiency.

From now on, let us concentrate on g(2)(0), a parameter
directly related to the Mandel Q of the internal field of the
source. In evaluating g(2)(0) with Eq. (5), the numerator N (0)
is obtained by counting events like the circled one on the left
in Fig. 1, whereas the denominator N (∞) is obtained from the
events like the one circled on the right. Our interest is then in
how the detector dead time affects such counting events. We
restrict ourselves to the case of |1 − g(2)(t)| � 1, i.e., the case
where the waiting-time distribution is near single exponential,
and thus, we can still use Eq. (2).

Let us first consider a time delay t much larger than the
correlation time. In this case, we can neglect the correlation
between photons in each pair. Because of the detector dead
time, each photon-counting event is then less probable by the
capture probability φ′/φ = (1 + φτd )−1, so the denominator
N (∞) should be replaced by

N (∞) → N (∞)

(1 + φst τd )(1 + φspτd )
, (6)

where φst (φsp) is the dead-time-free photodetection flux on
the start (stop) detector.

For zero time delay, on the other hand, the photo flux on
each detector is further modified by a factor g(2)(0). This is
because the probability of having a photon on one detector
with another photon on the other detector at the same time is
proportional to g(2)(0). Including this effect, the photodetection

FIG. 1. (Color online) Illustration of photodetection events in a
HBT-type two-detector configuration. The number of photon pairs
with zero time delay (circled on the left) and that with a very long
time delay (circled on the right) are needed in evaluating g(2)(0).

flux φ is replaced by g(2)(0)φ for each detector. The numerator
N (0) should then be replaced by

N (0) → N (0)

[1 + g(2)(0)φst τd ][1 + g(2)(0)φspτd ]
. (7)

As a result, the observed SOC g′(2)(0) will be

g′(2)(0) = g(2)(0)
1 + φst τd

1 + g(2)(0)φst τd

1 + φspτd

1 + g(2)(0)φspτd

. (8)

When the photodetection flux on each detector is as low as
φτd � 1, Eq. (8) is further approximated as

g′(2)(0) � g(2)(0){1 + [1 − g(2)(0)](φst + φsp)τd}, (9)

or, in terms of Mandel Q,

Q′ � Q[1 − g(2)(0)(φst + φsp)τd ]. (10)

This approximation shows that the dead-time effect becomes
important as the photodetection flux increases for a given dead
time.

For an arbitrary waiting-time distribution, the capture
probability of photodetection under detector dead time can
be written like that in Eq. (3). If the light source exhibits
the Markov property, at least approximately, Eq. (10) is then
replaced with

Q′ � Q
{
1 − ang

(2)(0)
(
φn

st + φn
sp

)
τn
d

}
, (11)

where an, given by Eq. (4), is the coefficient of the lowest
nonvanishing order in Eq. (3).

IV. EXPERIMENT AND DEAD-TIME SIMULATION

A. Counter electronics

The counter electronics used in the present experiment is
an improved version of the one used by Choi et al. [5,12]. In
the former system, two counter-timing boards were separately
installed in two personal computers (PCs) in order to avoid
interchannel crosstalk. Another PC was used to trigger those
counter-timing boards and to control the overall measurement
sequence. In this configuration, each counter-timing board,
once triggered, records photodetection times based on its own
internal clock, and thus, the clocks in those counting channels
were not synchronized.

Clock synchronization is realized in the present setup by
employing a counter board (National Instruments NI-7813R)
equipped with a field-programmable gate array (FPGA).
By programming the FPGA we have implemented multiple
counting channels without crosstalk in a single board. Those
counting channels are perfectly synchronized at a clock speed
of 125 MHz when internally triggered. The resulting time
resolution is 8 ns, improved from 12.5 ns in the former system.

Moreover, with the present setup using an FPGA we
have eliminated the counter-board-related dead-time effect
observed in the previous setup. When a photodetection event
occurs, the counter board in the previous setup saves the event
time measured in clock period in an onboard register first,
and then it is transferred to the computer memory through
direct memory access (DMA). A problem arises when the next
photodetection event occurs before this transfer is completed:
the new event is simply ignored. As a result, the SOC in
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FIG. 2. Counter-board-related dead-time effect in the observed
g(2)(t) in a single-detector configuration. (a) With the previous
counter-timing board with an onboard register. (b) With the new
FPGA counter board with an onboard FIFO memory. Poissonian
background light was used as a light source. The partial dips in
the range of 100 ns < |t | < 250 ns are due to the data transfer loss
between the counter-timing board and a control computer.

a single-channel configuration exhibits a partial dead-time
effect, as shown in Fig. 2(a), where the SOC function obtained
for coherent light is plotted. The narrow perfect dip in the range
of |t | < 50 ns is due to the detector dead time, whereas the wide
partial dip in the range of 100 ns < |t | < 250 ns arises from the
above data loss at the counter board. We call this the counter
dead-time effect. In the present setup using an FPGA, the
onboard first-in-first-out (FIFO) memory acts as a large buffer
in the DMA transfer and thus can eliminate the above counter
dead-time effect. Its performance in a single-channel SOC
function measurement is shown in Fig. 2(b), where only the
detector dead-time effect is noticed in the range of |t | < 20 ns,
without any partial dips due to the counter dead time. Clear
isolation of the detector-dead-time effect as in Fig. 2(b) in fact
enables us to correct the SOC function against the detector
dead time in Sec. V.

B. Single-photon-counting detectors

Two different models of single-photon-counting modules
(SPCMs) are used in our experiment. One has a dead time of

FIG. 3. (Color online) The shape of a pulse (black line) from
a SPCM-F and that of a pulse [blue (gray) line] processed by a
homemade pulse stretcher. In the pulse stretcher, the original pulse
and its delayed pulse are added in time with a small gain by using an
OR gate. A delay of a few nanoseconds is due to the intrinsic time
delay of the gate chip.

50 ns (Perkin Elmer SPCM-AQR-12), and it will be referred
to as SPCM-S (slow). The other has a shorter dead time of
21 ns (Excelitas SPCM-AQRH-12), and it will be referred to
as SPCM-F (fast). They have the same characteristics except
for the dead time and output voltage specification. The output
voltage pulse of SPCM-F is not compatible with our counter
board (NI-7813R). A homemade pulse stretcher made of fast
logic gates is used between them: the output pulse width of
7 ns in SPCM-F is extended to 12.5 ns with an enhanced peak
height for the counter board, as shown in Fig. 3.

C. Experiment

Our experimental schematic is depicted in Fig. 4. The basic
physical principles and apparatus to generate sub-Poisson light
with the cavity-QED microlaser is the same as in the previous
work by Choi et al. [5]. In order to facilitate the switching
between the two types of detectors with different dead times,
flippable mirrors are used to provide a choice of detectors
while preserving the other experimental conditions.

FIG. 4. (Color online) Experimental schematic. The cavity-QED
microlaser is pumped by a beam of barium atoms prepared in
the excited state [5]. The SOC of the output is measured in a
two-detector configuration. Flippable mirrors (FMs) are used to select
a desired SPCM pair, SPCM-F or SPCM-S, while keeping the other
experimental conditions unchanged.
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FIG. 5. (Color online) Overdeletion problem and its effect on the
waiting-time distribution. In (a) The red (dark gray) circles represent
photodetection events in sequence, whereas the pink (light gray)
circles indicate missed events due to an intrinsic or a prolonged
dead time. (i) Dead-time-free case. (ii) Case with an intrinsic dead
time, whose length is indicated by a solid arrow. The third event is
missed due to the intrinsic dead time. (iii) Case with a prolonged dead
time. The part prolonged from the intrinsic dead time is marked by
a dashed arrow. The second event within the prolonged dead time is
deleted. (iv) Case with an intrinsic dead time as long as the prolonged
dead time in (iii). Different from case (iii), the third event is detected.
Therefore, overdeletion occurs in case (iii) compared to the case of a
real dead time. (b) Waiting-time distribution with an 80-ns prolonged
dead time from a 28-ns intrinsic dead time. A small distortion, which
is magnified in the inset, occurs around 80 ns, but it is so small that
the waiting-time distribution can still be approximated by a single
exponential function.

The SPCM manufacturers provide empirical counting
correction factors in the instruction manual [21] up to a
photodetection flux of 2.5 × 107 counts/s, or 25 megacounts/s
(Mcps). These correction factors start to deviate from that in
Eq. (2) at a photon flux of 4 Mcps for unexplained reasons.
In order to avoid this inconsistency at high photon flux, we
attenuate the photon flux to keep the photodetection flux under
3 Mcps, where the manufacturers’ correction factors agree well
with Eq. (2).

We have also measured the detector dead times from
the actual waiting-time distributions. With a combination of
two SPCM-Fs and the FPGA counting board, the dead time
extracted from the waiting-time distribution was 28 ns. For
SPCM-S, the observed dead time was 56 ns. The detection bin
time was 8 ns for both cases.

We neglect the effect of after-pulsing in our measurement
because the probability of after-pulsing is only 0.3% per real
photodetection according to the detector manual. Furthermore,
after-pulses at separate detectors are perfectly uncorrelated,
and thus, they contribute a Poissonian background in SOC
measurement. Another Poissonian background associated with
the detector dark counts is less than 0.1% of the actual photon
flux in our experiment, so it does not affect our correlation
measurement either. We provide a short discussion on the dead-
time effect for non-negligible detector dark counts in Sec. V.

D. Simulating prolonged detector dead times

In order to investigate the detector dead-time effect sys-
tematically in experiment, having as many detectors with the
same characteristics but with different dead times as possible
is desired. In reality, we have a limited number of detectors.

We have two SPCM-Fs with a mean dead time of 28 ns and
two SPCM-Ss with a 56-ns dead time.

To overcome this limitation, we have simulated additional
dead times for a given detector by deleting the subsequent
photodetection records within an extended period beyond
the actual dead time after any photodetection event. Those
extended periods serve as prolonged dead times.

However, the effect of a prolonged dead time is not exactly
the same as that of a real dead time with an equal magnitude.
This is because with a prolonged dead time some photodetec-
tion events are lost which would be detected with a real dead
time with the same magnitude, as illustrated in Fig. 5(a). This
overdeletion of counts leads to a distortion in the waiting-time
distribution function near the prolonged dead time, as indicated
in Fig. 5(b). Nonetheless, the distortion is not large enough
to affect the overall shape of the waiting-time distribution,
indicating the overdeletion rarely occurs. Therefore, we can
utilize the prolonged dead times for systematic investigation
of the dead-time effect in the next section.

V. RESULTS AND DISCUSSIONS

A. Dead-time dependence of SOC at zero time delay

We have measured g′(2)(0) (in the presence of the dead-time
effect) of the cavity-QED microlaser output by using the setup
depicted in Fig. 4 with two different sets of detectors. The
results are shown in Fig. 6(a), where the red star indicates
the result with SPCM-Fs and the purple square corresponds
to the result with SPCM-Ss. The observed photodetection flux
on each detector was 2.6 Mcps for SPCM-F and 3.3 Mcps for
SPCM-S. Also plotted in Fig. 6(a) as black dots are the results
obtained with prolonged dead times as discussed in Sec. IV C
for SPCM-Fs with a 28-ns dead time. The solid curve is a
theoretical fit by Eq. (8), which agrees well with the results with
actual and prolonged dead times. The only fitting parameter is
g(2)(0), which appears as a vertical axis offset corresponding
to zero dead time. The dead-time-free fluxes needed in Eq. (8)
are obtained from the observed photodetection fluxes by using
Eq. (2).

The smallest g′(2)(0) − 1 measured with SPCM-F is
−710 ± 60 ppm, corresponding to a Mandel Q of −0.43 ±
0.04, whereas the dead-time-corrected g(2)(0) − 1 obtained
from the fitting is −850 ± 60 ppm, and thus, the actual Mandel
Q of the microlaser output is −0.51 ± 0.04. It is noteworthy
that the smallest dead-time effect with our best detector still
amounts to a considerable distortion (0.51/0.43 − 1 = 19%)
in the Mandel Q measurement. The dead-time correction
using Eq. (8) is thus essential for accurate photon statistics
measurement.

In Fig. 6(b), we examine the dependence of g′(2)(0) on
photodetection flux. The solid and open circles refer to g′(2)(0)
values measured with SPCM-Ss at different photodetection
fluxes. Neutral density filters were used to reduce photodetec-
tion fluxes while keeping their ratio γ on the start and stop
detectors unchanged (γ = 1.24 ± 0.02). Likewise, the solid
and open squares indicate measurements under a different
experimental condition of the cavity-QED microlaser while
the photodetection fluxes on the start and stop detectors are
reduced in the same way. Both pairs of data points are well
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FIG. 6. (Color online) Dead-time effect on the SOC function of
the cavity-QED microlaser. (a) Dependence of the observed SOC
on intrinsic and prolonged dead times. The red star is the observed
g′(2)(0) with SPCM-Fs of a 28-ns dead time, whereas the purple square
is that with SPCM-Ss of a 56-ns dead time. Black dots are the results
obtained with prolonged dead times applied to the photodetection
records corresponding to the data marked by the red star. The blue
line is a theoretical fit given by Eq. (8) under the condition that it
should go through the red dot. Typical fitting errors for simulated
data with prolonged dead times are normally 10% of |g(2)(0) − 1|.
(b) Dependence of the observed SOC on the photodetection flux. A
pair of g′(2)(0) measurements (solid and open circles) was performed
with different total photodetection fluxes while the ratio γ of the
photodetection fluxes on start and stop detectors remained almost
the same (γ � 1.24). Another pair of g′(2)(0) data points (solid and
open squares) was similarly obtained under a different experimental
condition of the cavity-QED microlaser. Both pairs are well fit by
a theoretical curve given by Eq. (8) with γ = φst /φsp = 1.24. Error
bars represent the fitting errors in obtaining g′(2)(0) values from the
SOC data.

fit by a theoretical curve given by Eq. (8) with the constraint
γ = φst/φsp = 1.24.

The observed dependence g′(2)(0) on the photodetection
flux may appear contradictory to the general view that the
SOC function does not depend on a random miss of incident
photons. An example is detector efficiency. It should be noted,
however, that the missing of incident photons due to the
detector dead time is not a random miss at all. The miss occurs

FIG. 7. (Color online) Dead-time effect on the correlation time
measurement of the cavity-QED microlaser. The correlation time
was obtained by fitting the SOC with Eq. (A2) for a given dead
time. Black circles were obtained with prolonged dead times. The red
star and violet square were obtained with real dead times of SPCM-
F and SPCM-S, respectively. Error bars indicate fitting errors. The
horizontal dotted line is a constant fit (285 ± 5 ns) of the correlation
times.

only immediately after a successful photodetection event. In
other words, the missing event is correlated with the success
event with the detector dead time as the correlation time. So
there is no contradiction.

B. Temporal dependence of SOC

One may wonder how the detector dead time would distort
the temporal dependence of SOC. To address this issue,
we investigated how the correlation time is modified under
the dead-time effect for the cavity-QED microlaser. The
temporal dependence of g(2)(t) of the cavity-QED microlaser
is determined by only the correlation time. We varied the dead
time from 28 to 150 ns and observed no remarkable change in
the correlation time, as shown in Fig. 7. It is beyond the scope
of the present work to find g(2)(t) under the dead-time effect
for arbitrary light sources.

C. Signal-to-noise-ratio consideration

One way to avoid the dead-time effects discussed so far
is to keep the photodetection flux low enough to make the
mean waiting time a great deal larger than the dead time,
τw ≫ τd . The distortion in SOC will then be negligible, as
shown in Eq. (9). This approach does not work, however, when
the measurement time T0 for SOC is practically limited. For
instance, a photon source may have a finite operating time, and
thus, T0 is limited. In order to resolve the feature in g(2)(t) near
the origin of the Mandel Q measurement, the signal-to-noise
ratio has to be larger than |1 − g(2)(0)|−1. For a bin time tb �
τc, we then have to satisfy

√
(T0/τw)2/(T0/tb)|1 − g(2)(0)| > 1

or τw <
√

T0tb|1 − g(2)(0)|. This requirement sets an upper
bound for τw. If this upper bound is not much larger than the
detector dead time, we cannot avoid the dead-time effect and
thus have to rely on our correction formula. In the original
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HBT experiment, the photon fluxes from a distant star were
extremely low. Consequently, the waiting time τw was much
larger than the detector dead time, and thus, its effect was
negligibly small.

D. Effect of non-negligible Poissonian background

In the presence of a non-negligible Poissonian background
including dark counts the waiting-time distribution is modi-
fied, according to Ref. [19], to

wB(t) = (φ + B)e−(φ+B)t , (12)

with B being the background flux for the cavity QED micro-
laser whose waiting-time distribution is well approximated by
a single exponential. Since the Markov property still remains
under the background in this case, the SOC g′(2)(t) under the
dead-time effect will have the same form as Eq. (8) with φ

replaced with (φ + B):

g′(2)
B (0) = g

(2)
B (0)

1 + (φst + Bst )τd

1 + g
(2)
B (0)(φst + Bst )τd

× 1 + (φsp + Bsp)τd

1 + g
(2)
B (0)(φsp + Bsp)τd

, (13)

where g
(2)
B (τ ) is the SOC affected by the background, given by

g
(2)
B (τ ) = 1 + g(2)(τ ) − 1

(1 + Bst/φst )(1 + Bsp/φsp)
. (14)

Equation (13) is valid regardless of the size of B as long
as the radiation source has both the Markov property and
a single-exponential waiting-time distribution. Under this
condition, the only limiting factor on the allowed size of
B is the signal-to-noise consideration: since B serves as a
background noise, we should have φ > B. The above-modified
correction formula including a Poissonian background is not
applicable to a single-photon source since its statistics changes
to non-Markovian in the presence of a Poissonian background.
For pulsed light, detector dead time would affect SOC in a
different way, as previously studied in Ref. [22].

VI. CONCLUSION

We have investigated the effect of detector dead time on
the SOC g(2)(t) of a stationary sub-Poissonian light source in
a two-detector configuration. We employed the cavity-QED
microlaser for a sub-Poissonian light source and measured

g(2)(0) with two different types of photodetectors with different
dead times. The observed Q of the cavity-QED microlaser
was underestimated as much as 19% with respect to the
dead-time-free Q, even when we used single-photon-counting
modules with the shortest dead time available. We also
simulated prolonged dead times by intentionally deleting
the photodetection events following a preceding one. The
observed values of g(2)(0) for various real and prolonged
dead times were explained well by our analytic formula.
Dead-time-free g(2)(0) and thus Mandel Q of a stationary
light source can be obtained with our correction formula. The
present work is limited to the case exhibiting the Markov
property and thus negligible higher-order correlations. By
considering a photon emission process with a non-Markovian
property, one may obtain a more general formula for the
detector-dead-time effect on g(2)(0).
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APPENDIX: CONDITIONS FOR APPROXIMATING THE
WAITING-TIME DISTRIBUTION AS A

SINGLE EXPONENTIAL

Let us consider the Laplace transforms W (s) and G(s) of
a waiting-time distribution w(t) and a SOC function g(2)(t),
respectively. According to Ref. [19], they are related as

W (s) = φG(s)/[1 + φG(s)]. (A1)

For a cavity-QED microlaser operating at a high mean photon
number, g(2)(t) can be written as

g(2)(t) = 1 − βe−t/τc . (A2)

Then G(s) is readily given by

G(s) = 1

s
+ 1 − β

s + a
, (A3)

where a = 1/τc. Inserting this expression in Eq. (A1) and
taking inverse Laplace transform, we obtain the waiting-time
distribution of the microlaser as

w(t) = φL−1

[
(1 − β)s + a

s2 + [a + φ(1 − β)]s + φa

]
. (A4)

The above waiting-time distribution can be approximated by
a single exponential φe−φt if β � 1, which can be expressed
as |1 − g(2)(0)| � 1.
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