
PHYSICAL REVIEW A 92, 023829 (2015)
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Recently, A. Danan et al. [Phys. Rev. Lett. 111, 240402 (2013)] performed a much-discussed experiment in
which which-way information was obtained from the light in a nested Mach-Zehnder interferometer by weak
measurement. The presented analysis using the two-state vector formalism drew the conclusions that the photons
followed disconnected paths. We analyze this experiment using standard quantum optical methods and arrive at
analytical expressions that match the experimental results without the need for such disconnected photon paths.
We also propose a simple amendment to the experiment capable of displaying new phenomena, highlighting the
advantages of our description.
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I. INTRODUCTION

Recently, there was a proposal by Vaidman [1] to
obtain which-way information from a photon in a nested
Mach-Zehnder interferometer (MZI) by weak measurement.
This has been implemented by Danan et al. [2], who performed
the measurement by weakly marking each path by reflecting
the light off of a vibrating mirror (see Fig. 1) and measuring the
time-varying intensity difference across two halves of a quad-
cell detector placed at one of the outputs. This has generated
much interest in both theoretical [3,4] and experimental [5–11]
contexts due mainly to the controversial conclusion that the
photons follow disconnected paths in the interferometer.

The point of issue arises when maximum possible destruc-
tive interference towards mirror F is arranged. The assumption
that this is complete destructive interference, i.e., that light
reaching the detector D could have gone only via the lower
path in Fig. 1, led to the curious observation of the vibrational
frequencies of mirrors A and B along with that of C in the
spectrum of the signal and yet the absence of frequencies of
E and F . A further surprise that at first seems to support the
assumption of complete destructive interference in the inner
interferometer was the disappearance of all three frequencies
A, B, and C upon blocking the lower path containing only
mirror C, suggesting an interpretation that the photons did
not reach mirrors A and B via E and F but rather as a
disconnected part of their path via C. The explanation put
forward by Danan et al. is based on the two-state vector
formalism (TSVF) pioneered by Aharonov et al. [12], linking
the presence (or absence) of the peaks at A,B (E,F ) to the
simultaneous presence of (or the lack of) both forward- and
backward-propagating states from the source and the detector.

Once one acknowledges that there is a non-negligible
leakage from the inner MZI due to the fact that the two paths are
partially distinguished, i.e., that light from paths A and B does
have a means of reaching the detector, the mystery vanishes.
Salih [5] and Saldanha [6] both recognized the significance of
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the leakage. Salih argued that in the case that true complete de-
structive interference towards mirror F is arranged by marking
paths A and B with degenerate frequencies with the mirrors
vibrating with opposite phase no ground is given for the claims
of Danan et al. Saldanha has provided a phenomenological
description of the interference by showing numerically that
the leakage acts as a first-order correction to the beam profile
and that this leakage, when mixing with the light from arm
C, acts to displace the light beam in the transverse plane,
thereby imprinting it with the signatures of mirrors A and
B. Moreover, Danan et al., in the Supplemental Material
appended to their paper [2], have themselves shown that there
is a non-negligible leakage by blocking light from mirror F

and observing the peaks corresponding to mirrors A and B

disappear, although this was interpreted by them as evidence
for the lack of electronic noise in the setup. Bartkiewicz
et al. [11] have attempted to provide a minimal fully quantum
treatment working in only the frequency domain. However,
they have assumed that the effect of the vibrating mirrors is to
imprint the which-way information using mutually orthogonal
(i.e., perfectly distinguishable) states; hence their assumptions
as well as results disagree with those of the experiment they
are describing.

We put Saldanha’s description on a simple analytical
footing by modeling the effect of the mirrors as a first-
order Hermite-Gaussian perturbation to the light in the
interferometer. We derive an effective observable that shows
explicitly that the perturbed portion of the light (carrying
the which-way information) must mix with the unperturbed
part to give a nonvanishing signal. Within this context we
discuss the experimental results presented in [2]. Once the
formalism is properly set up, simple arguments based on
the trade-off between path distinguishability and visibility
of interference can be employed to understand the results
in all cases, particularly in the counterintuitive case of arm
C being blocked, for which a simple analysis in the TSVF
fails [7]. Further we show that by appropriate tuning of the
path lengths the signatures of certain mirrors may be hidden.
We work throughout this article in the standard quantum
optical formalism. The treatment may be transposed to the
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FIG. 1. The schematic of the experiment. The symbols labeled
A, B, C, E, F denote the vibrating mirrors, and D denotes a two-cell
detector. The two dashed lines denote blind input arms of beam
splitters, and the two dotted lines denote output arms, which are not
measured in the experiment.

classical domain by using a coherent state as an input or by
replacing annihilation and creation operators by complex field
amplitudes. The validity of our quantum treatment extends to
fermion interferometry such as that based on neutrons, as all
the relevant states and observables can also be constructed for
fermions.

Our work is structured as follows: In Sec. II we begin
by establishing the formalism to be used to describe the
interferometer. Despite drawing grounds for the employed
simplifications from the experimental setup [2], we emphasize
that this is not a part of the description of the interferometer
itself; experienced readers may review only the key points
and skip ahead to the following section. In Sec. III, we use
the formalism in a quantum path-sum approach to obtain
an analytical description of the detector output and discuss
the immediate observations made possible by our method.
In Sec. IV, we match our results to those measured in [2].
In Sec. V, we propose a small amendment to the system in
which novel phenomena can be observed. Finally, we conclude
our results.

II. PRODUCTION AND DETECTION OF SLIGHTLY
TILTED GAUSSIAN BEAMS

Let us consider a monochromatic paraxial beam going
along the z axis incident at a mirror inclined at an angle π/4 +
θ to its axis in the xz plane, as illustrated in Fig. 2. Inspired by
the experiment [2], we will consider only minuscule tilt angles
θ for which no point of the mirror’s surface is displaced more
than a fraction of a wavelength over the principal cross section
of the beam, as modeled by its beam waist w0. Mathematically,
we will assume the condition

w0θ � λ

45◦
θ2θ

zr

xr

z′

x′

z

x

FIG. 2. A tilted mirror and the original and reflected coordinate
systems. The system (xr ,yr ,zr ) corresponds to (x,y,z) reflected with
respect to the actual location of the mirror, while (x ′,y ′,z′) is reflected
with respect to 45◦. The y axis is not affected by the reflection
(y = y ′ = yr ) and is not plotted. Both the tilt angle θ and the beam
divergence are vastly exaggerated.

or

kw0θ � 2π, (1)

where λ is the wavelength and k = 2π/λ is the wave number.
For the typical values in the experiment, λ ≈ 700 nm, w0 ≈
1 mm, and θmax ≈ 300 nrad, the peak value of the left-hand
side of (1) is three orders of magnitude smaller than π .
In an optical table setting the s and p polarizations are
maintained throughout the setup, so for an unpolarized light
or a fixed input polarization a scalar wave description is fully
sufficient. Moreover, the reflected beam is simply an analytic
continuation of the incident beam in the reflected coordinate
system (xr,yr ,zr ) as per Fig. 2.

It will be more practical to work in the untilted coordinate
system (x ′,y ′,z′) where the reflected beam is rotated by
the angle 2θ . If the incident beam is paraxial with respect
to z and described by a scalar complex field u(x,y,z,t) =
ψ(x,y,z)eikz−iωt , the reflected beam is paraxial with respect
to z′ and similarly described by

ψ ′(x ′,y ′,z′) = e2ikθx ′−2ikθ2(z′−z′
M )ψ(x ′ − 2θ (z′ − z′

M ),y ′,z′),

(2)

where z′
M denotes the z coordinate of the point of intersec-

tion of the mirror with the beam axis. This transformation
represents a symmetry of the paraxial wave equation,

2ik
∂ψ(x,y,z)

∂z
= −

(
∂2

∂x2
+ ∂2

∂y2

)
ψ(x,y,z),

with respect to shear transforms [13]. At z′ = z′
M and with

condition (1) in mind, (2) can be written as

ψ ′(x ′,y ′,z′
M ) = ψ(x ′,y ′,z′

M ) + 2ikθx ′ψ(x ′,y ′,z′
M )

+O[(kw0θ )2]. (3)

Specifically, if the incident wave is a Gaussian of the form

ψ(x,y,z) = ψ00(x,y,z) =
√

2

πw2
0

zR

zR + iz
e
− k(x2+y2)

2(zR+iz) ,
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where w0 is the beam waist and zR = 1
2kw2

0 is the Rayleigh
range (a distance from the beam waist where the width expands
by a factor of

√
2), the second term on the right-hand side

of (3) represents a first-order Hermite-Gaussian wave front
superimposed on the former profile. Indeed, the corresponding
TEM10 wave is described by

ψ10(x,y,z) =
√

2

πw2
0

(
zR

zR + iz

)2 2x

w0
e
− k(x2+y2)

2(zR+iz)

= 2x

w0

zR

zR + iz
ψ00(x,y,z),

so after the reflection (3), it holds that

ψ ′(x ′,y ′,z′) = ψ00(x ′,y ′,z′) + ikw0θ
zR + izM

zR

ψ10(x ′,y ′,z′)

+O[(kw0θ )2]. (4)

Note that except for the immediate neighborhood of the
mirror we do not need to distinguish between (x,y,z) and
(x ′,y ′,z′): for the incident (reflected) part of the beam, the
original (primed) coordinate system is implicitly used. The
change occurs at z = z′ = zM .

The above results are valid for a monochromatic case
with an error of O[(w0/λ)−4] due to the paraxial wave
approximation used. Under a narrow bandwidth assumption,
their validity can be extended to quasimonochromatic waves,
affecting only the propagation factor eikz−iωt . The resulting
error terms are of the order O[(�ω/ω0)(w0/λ)−2] and for
a typical optical laser source of coherence length ∼1 m are
strongly dominated by the former. In other words, we can
assume that for a sufficiently narrow vicinity of ω0 the spatial
mode structure does not change significantly. This allows us to
define annihilation and creation operators indexed by the m,n

indices of TEM waves and frequency, satisfying

[âmn(ω),â†
m′n′(ω′)] = δmm′δnn′δ(ω − ω′),

such that the field operator in the scalar description and under
the two approximations taken becomes

Â(x,y,z,t) =
√

�

4πε0ω0c

+∞∑
m,n=0

ψmn(x,y,z)

×
∫ +∞

0
dωe−iω(t−z/c)âmn(ω) + H.c.

Following the construction in [14], we further define

âmn(t) := 1√
2π

∫
R

dωe−iωt âmn(ω)

and write the longitudinal component of the Poynting vector
as

Ŝ(x,y,z,t) = �ω0

+∞∑
m,n,m′,n′=0

ψ∗
mn(x,y,z)ψm′n′ (x,y,z)

× â†
mn

(
t − z

c

)
âm′n′

(
t − z

c

)
.

This clearly represents the energy of one photon at the central
frequency (owing to the narrow-bandwidth approximation

used) multiplied by the flux of particles at retarded time. In the
case of fermionic particles the derivation will be different, but
the flux can be used without modifications. For a stationary
beam, the expectation value of the flux is constant in time. This
is possible regardless of the type of particle.

Let us now consider a quad-cell detector placed farther
along the beam at z = zD . The idealized model measures
the total intensity difference between two half planes in the
direction of the displacement:

�̂I (t) =
∫ +∞

0
dx

∫
R

dy Ŝ(x,y,zD,t)

−
∫ 0

−∞
dx

∫
R

dy Ŝ(x,y,zD,t).

If, according to (4), the modes TEM00 and TEM10 are
sufficient to describe the state of the beam at any instant,
we can restrict the operator to the relevant subspace to get an
effective observable. Doing so and carrying out the explicit
integration, this gives

�̂I e(t) = I0[e−iζ (zD )â
†
00(t ′)â10(t ′) + H.c.], (5)

where

I0 = �ω0

√
2

π
, t ′ = t − z

c
,

and where

ζ (zD) = arctan
zD

zR

is the Gouy phase. (We note that if the detector is not
geometrically ideal, as assumed above, only the prefactor I0

changes to reflect the geometry as long as it is symmetric
with respect to the axis of the undisplaced beam). From this
formula, we see that it is of great importance that both the
carrier Gaussian wave and the Hermite-Gaussian correction
are incident at the detector plane simultaneously for a nonzero
signal to be obtained. Moreover, the response is linear in both
the amplitudes, which will be crucial in the following.

Let us examine the expectation value of the observable (5)
for a single-particle state with the spatial structure (4). Let f (t)
be some L2 function representing the temporal shape of the
pulse (slowly varying, to comply with the narrow bandwidth
assumption). Thus we write

|ψ〉 =
∫
R

dtf (t)

[
â
†
00(t) + ikw0θ

zR + izM

zR

â
†
10(t)

]
|0〉. (6)

Then for t ′ = t − z/c,

〈ψ |â†
00(t ′)â10(t ′)|ψ〉 = ikw0θ

zR + izM

zR

|f (t ′)|2

and hence

〈ψ |�̂I (t)|ψ〉 = 〈ψ |�̂I e(t)|ψ〉
= 2kw0θI0

zD − zM√
z2
R + z2

D

|f (t ′)|2. (7)

This result illustrates the fact that right after the mirror
(zD ≈ zM ), the Hermitian-Gaussian component modifies only
the local phase of the wave profile but the intensity remains
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parity symmetric, resulting in zero 〈�̂I 〉. The farther the
detector is placed from the mirror, the longer the optical
length both the waves propagate freely, resulting in their
superposition forming a displaced Gaussian profile, as argued
by Saldanha [6], and producing a nonzero differential signal.
With constant I0, zM , and zD , the differential signal is
proportional to θ (within the small-angle approximation). At
large distances the differential intensity saturates at the limit
value of 2I0kw0θ .

In the following, we will take the liberty of leaving out the
time argument and the second spatial index (which is always
zero) of â for the sake of brevity, as well as the time argument
of �̂I , e.g.,

�̂I = I0(e−iζ (zD )â
†
0â1 + H.c.). (8)

The result (7) indicates that any time dependence of the input
state will serve only as a prefactor (in retarded time) in the
output state within the global assumptions.

One more important observation is that (7) does not
significantly depend on small variations in path length (of
the order of λ). This allows us to denote in the following the
position of the detector by a single zD coordinate even in the
case of interference of several distinct paths including small
differences in optical path length to obtain relative phases.

III. CONTRIBUTION OF THE DISTINCT PATHS

In Fig. 1, we can identify three possible paths from the
input to the detector, determined by a reflection off mirrors
E, A, and F or E, B, and F or only C. We will denote the
three paths by A, B, and C. The reflectivities of the four beam
splitters at the diagonal of Fig. 1 are chosen such that each of
these paths enters the path sum with an equal weight of 1/3.
This is done in [2] by means of polarizers and polarizing
beam splitters but in a way that is indistinguishable from
polarization-independent beam splitters with a fixed input
polarization at the measurement stage. The phases of the
reflection and transmission coefficients will be accounted for
later.

Mirrors A,B,C,E, and F oscillate at frequencies ωA to ωF ,
which are assumed to be all mutually different but many orders
of magnitude smaller than ω0. (In [2] the former are of the order
of hundreds of hertz, as compared to the optical frequency of
ω0.) In this case there is no need to take into account any
time-frequency uncertainty or finite-propagation-time effects,
and the time dependence of the angles θM (t) can be simply
reflected in an explicit time dependence of the optical state
incident at the detector.

We build upon (6) to describe the effect of reflections
off of several tilted mirrors, whose angles θ allow for slow
time variation. We will consider the tilts of all the mirrors,
denoted θA(t) through θF (t), to be bounded by a common θ

at all times. Clearly, the Gaussian term remains after each
reflection with the same amplitude (up to a correction of the
order O[(kw0θ )2]) and represents a “carrier wave” common
to the whole optical path. Trivially, each of the mirrors adds a
first-order Hermitian-Gaussian component with an amplitude

ikw0θM (t)
zR + izM

zR

(9)

relative to the carrier wave, where θM (t) is the tilt of the mirror
M ∈ {A,B,C,E,F } and zM represents the optical distance
from the source, where the beam is collimated. (It is important
to add that the rectangular configuration of the interferometer
defines the “x” direction and thus the orientation of Hermitian-
Gaussian modes in every path segment unambiguously). In
fact, summing these contributions is sufficient to describe
the effect of several consecutive mirrors. Of course, each
of the successive mirrors will also apply a transformation to
the side terms added by the previous reflections, but these will
be second order in kw0θ and can be neglected.

Furthermore, in [2] the mirrors are located at similar
positions zM � zR , whereas for the detector it holds that
zD � zR . In order to illustrate the core of our argument
without the burden of unnecessary detail, we will reflect this
in the following by leaving out terms of the form zM/zR ,
M ∈ {A,B,C,E,F }, so that the term (zR + izM )/zR in Eq. (9)
reduces to 1. The analysis is equally tractable without this
simplification.

In this setting we find that path A transforms an initial state
â
†
0|0〉 to

{â†
0 + i[δE(t) + δA(t) + δF (t)]â†

1}|0〉 + O(δ2),

where the notation

δM (t) = kw0θM (t), δ = kw0θ

has been introduced. Similarly, paths B and C result in
contributions of the form

{â†
0 + i[δE(t) + δB(t) + δF (t)]â†

1}|0〉 + O(δ2),

[â†
0 + iδC(t)â†

1]|0〉 + O(δ2),

respectively. The above three lines contribute to a path sum
after multiplication by the weight factor 1/3 and relative
phase factors eiφA , eiφB , and eiφC , which include path-length
differences as well as the phases of the reflection and
transmission coefficients of the beam splitters encountered
along the paths. The resulting state can be written as

|ψout(t)〉 = 1

3

⎛⎝α0â
†
0 +

∑
M∈{A,B,C,E,F }

αM (t)â†
1

⎞⎠|0〉 + O(δ2),

(10)

where
α0 = eiφA + eiφB + eiφC ,

αM (t) = eiφM iδM (t), M ∈ {A,B,C},
αM (t) = (eiφA + eiφB )iδM (t), M ∈ {E,F }.

(11)

From this general form of the output state we can make
several observations:

(i) The Gaussian term â
†
0|0〉 has the same coefficient (to the

first order) as if all the mirrors were stationary with zero tilt
angles θM ; therefore it represents the part of the state with full
visibility of interference but no distinction between the paths.

(ii) All of the which-way information [i.e., values dependent
on θM (t)] is contained in the coefficient of the Hermite-
Gaussian component â

†
1|0〉 and prevented from further influ-

encing the carrier wave by the orthogonality of the two modes.
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(iii) The amplitude of â
†
1|0〉 is linear in all angles θM (t).

The constant of proportionality will always be nonzero for
αA(t), αB(t), and αC(t), unless the corresponding path is
blocked. However, αE(t) and αF (t) in the â

†
1|0〉 component

are undergoing interference of the same quality as paths A and
B do in the â

†
0|0〉 component.

The last point is a direct consequence of the fact that the
terms containing δA(t), δB(t), and δC(t) come from exactly
one of the three paths each, while the terms containing δE(t)
or δF (t) appear in both paths A and B and therefore interfere
the same way as the carrier Gaussian wave in these two
paths. In other words, the former three terms represent a fully
decisive which-way information, which then cannot undergo
further interference. The latter two terms represent a partial
which-way information, which rules out path C but retains the
visibility of the interference of the remaining two paths.

We propose this simple explanation as a fully traditional
alternative to the explanation given in the conclusions section
of [2] and, moreover, one that can be readily foreseen from
the fact that which-way marking at mirrors E and F does not
distinguish between two interfering paths.

IV. ANALYSIS OF THE RELEVANT CASES

Quantifying our results, direct application of (8) yields the
differential signal as

〈ψout(t)|�̂I |ψout(t)〉 = 2I0

9

∑
M

Re[e−iζ (zD )α∗
0αM (t)]. (12)

Inserting for the values of αM results in meaningful
simplification only in the case where phases φA, φB , and
φC are equal or differ by integer multiples of π . By setting
eiφA = eiφC = ei� and eiφB = ±ei� in (11) one can see that
α∗

0αM is purely imaginary under this restriction and |α0| takes
the value 2 ± 1 for the constructive (+) and destructive (−)
interferences arranged in the inner MZI. The expectation value
of the differential intensity is then

〈ψout(t)|�̂I |ψout(t)〉
= 2I0

9
sin ζ (zD)|α0|{δA(t) ± δB(t) + δC(t)

+ (|α0| − 1)[δE(t) + δF (t)]} + O(δ2). (13)

This result agrees perfectly with the experimental results
in [2] in the studied cases with path C opened. In particular,
if all three paths are aligned for constructive interference,
then eiφA = eiφB = eiφC and |α0| = 3. This results in equal
sensitivities to displacements from mirrors A,B, and C and
double sensitivities to displacements from mirrors E and F ,
which in turn agrees with the 1 : 4 ratios of the peaks in
the power spectrum of the intensity. If path B is brought
completely out of phase with path A and consequently with C,
then |α0| = 1, which explains the same factors in front of peaks
A,B, and C as in the above case as well as the disappearance
of any peaks at E and F in the spectral analysis of the signal.

To complete our comparison with [2], we show the
correspondence of (13) to the experimental results in which
paths F and C are individually blocked. In the case of
path F or C being blocked eiφA,B or eiφC must be replaced

by zero, respectively, in (11). By examining (11) and (12)
the consequences of these conditions may readily be seen.
Blocking path F results in a single peak at C as the only
nonvanishing coefficients in the output state are αC(t) and,
crucially, α0, showing that any light carrying information
about the inner MZI has been prevented from reaching the
detector. Blocking path C results in the vanishing of αC(t)
and in |α0| taking the value | exp(iφA) + exp(iφB)|. In the
case when constructive interference is arranged in the inner
MZI all peaks along paths A and B show up as the carrier
wave reaches the detector via these paths and so do all the
perturbations caused by the mirrors along these paths. When
destructive interference is arranged, however, α0 vanishes and,
with the carrier wave absent, so does the entire signal.

V. TUNABILITY OF THE PEAK HEIGHTS

From (8), we can see that if the relative phase of
the Gaussian and Hermitian-Gaussian components could, in
principle, be modified independently, the differential signal
could be artificially strengthened or damped. For example,
if the phase of the â

†
1|0〉 component of (6) was modified

by an extra amount of ζ (zD) − ζ (zM ), the differential signal
would vanish. Similarly, if the relative phase of the Hermitian-
Gaussian component was modified by ζ (zD) − ζ (zM ) − π

2 , the
expectation value of �̂I would become the limit value, as if
the detector were placed at infinity. In the case of a single
tilted or vibrating mirror this is hypothetical because the two
components are phase locked. However, although unexplored
in [2], the experiment readily provides means of achieving
exactly this. All one needs to do is break the condition of the
paths being aligned in phase (or completely out of phase). This
can be best illustrated by having path C unblocked, having
paths A and B with opposite phases, and allowing an extra
phase shift by statically displacing mirror C. (In [2] only mirror
B was displaced to control relative phases of the paths). In this
setting, only the term with δC(t) stays phase locked to the
Gaussian, but the relative phase of paths A and B can be freely
controlled. The values of the coefficients in (10) can then be
written as

α0 = eiφC ,

αM (t) = eiφM iδM (t), M ∈ {A,B,C},
αE(t) = αF (t) = 0,

and the detector signal, by inserting the above values into (12),
can be written as

〈ψout(t)|�̂I |ψout(t)〉
= 2I0

9
{sin[φC − φA + ζ (zD)][δA(t) − δB(t)]

+ sin ζ (zD)δC(t)}. (14)

Thus the strengths of the peaks at A and B relative to that
of the peak at C can be tuned by simply moving mirror C, as
plotted in Fig. 3. In particular, by matching the phase difference
of φA − φC to the Gouy phase ζ (zD) [more precisely, to the
Gouy phase difference ζ (zD) − ζ (zA,B) had the approximation
zA,B � zR not been taken] and keeping φB − φA = π fixed,
the peaks at A and B (or either of them individually for
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FIG. 3. (Color online) The relative amplitudes of oscillations at
frequencies ωA and ωB (red solid line) compared to that at ωC (blue
dashed line) in the power spectrum of (14) as a function of the static
phase difference φA − φC . The value of ζ (zD) was chosen arbitrarily
to illustrate the point.

zA = zB) may disappear completely. It would be absurd, of
course, to conclude that the presence of the photons in the
inner interferometer or one of its arms depends on the phase
of mirror C or that the paths taken by photons are not only
disconnected but also sensitive to nonlocal conditions.

VI. CONCLUSIONS

We have modeled the experiment presented in [2] using only
waves propagating forward in time and the interference of the
possible paths. This allowed us to attribute the disappearance
of peaks E and F in transitioning from maximum to minimum
possible interference towards mirror F to simple interference
of paths in the inner Mach-Zehnder interferometer as mirrors

E and F do not distinguish between paths A and B. We have
also shown that the simultaneous disappearance of all three
remaining peaks when blocking path C while maintaining
destructive interference between the other two paths follows
from the need for the perturbed wave â

†
1|0〉 to mix with

the unperturbed carrier wave â
†
0|0〉. The necessary presence

of â
†
0|0〉 for a nonvanishing signal means that interference

between all the unblocked paths is a crucial part of the weak
which-way measurement.

As a novel contribution to the discussion of this experi-
mental setup we found the crucial dependence of the relative
heights of the peaks in [2] on the three phases φA,B,C associated
with the three path lengths. In particular we have shown that
some of these may be made to vanish by tuning the three path
lengths. This shows by explicit construction that interpreting
the lack of trace of a given mirror in the signal to mean that
the photon has not interacted with that mirror is erroneous. It
is this type of reasoning that led to the disconnected photon
paths in [2]. We have found a hitherto unexplored tuning of
the interferometer in which, without blocking any of the paths,
the trace of only mirror C is present in the output signal.
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