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We reconsider the problem of the spontaneous emission of light by an excited atomic state. We scrutinize the
survival probability of this excited state for very short times, in the so-called Zeno regime, for which we show
that the dynamics is dictated by a coherent, in-phase, response of the on-shell and off-shell vacuum modes. We
also develop a perturbative approach in order to interpolate between different temporal regimes: the Zeno, golden
rule (linear), and Wigner-Weisskopf (exponential) regimes. We compare results obtained with the Ê · x̂ and Â · p̂
interaction Hamiltonians, using successively the dipole approximation and the exact coupling.
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I. INTRODUCTION

We study the spontaneous emission of light by an atomic
dipole (two-level quantum system) at zero temperature in
which an electronic state is initially excited while all the
electromagnetic modes are taken to be in their vacuum
(zero-photon) state. In the standard treatment of this kind
of problem, one derives the Fermi’s golden rule [1], which
states that the probability that the dipole stays in its excited
state (the so-called survival probability) decreases linearly
with time. At longer times, the standard treatment is the
Wigner-Weisskopf approach [2], in the framework of which
the survival probability is predicted to decrease exponentially.
It is well known [3], on the other hand, that, under very general
circumstances, the survival probability of a quantum system
decays quadratically, and not linearly, with time at very short
times. This initial quadratic behavior is known as the quantum
Zeno regime.

We investigate in detail the behavior of an atomic dipole in
the Zeno regime. Our calculations predict a small but sudden
decrease of the survival probability, in conjunction with the
emission of off-resonant light. For the 2p − 1 s transition in
atomic hydrogen, within the rotating-wave approximation, we
found that electromagnetic modes with frequency up to a
thousand times larger than that of the atomic transition are
excited.

As we shall show, the transient Zeno regime is dominated
by the collective, in-phase, response of the electromagnetic
field modes. Very quickly, this collective response gets out of
phase (incoherent) so that nonresonant electromagnetic modes
become, in a way, inactive. It is only at this point that the linear
decay of the survival probability arises, as described by the
Fermi’s golden rule. This linear decay is essentially driven by
the resonant modes of the electromagnetic field.

It is worth noting that spontaneous decay in the Zeno regime
has already been addressed in [4] by Facchi et al. who discuss
in detail the Zeno and anti-Zeno behavior of a spontaneously
decaying atom placed in a high-finesse cavity (the atom-light
interaction form factor used is Lorentzian in their case) and also
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in [5] by Antoniou et al. who perform an analytic perturbation
expansion of the Zeno effect up to power 4 in time.

Our paper is organized as follows. In Sec. II, we summarize
the standard quantum electrodynamical (QED) description of
dipolar decay, including the Fermi’s golden rule. In Sec. III,
we describe a perturbative approach to the problem in which
the outgoing electromagnetic modes are discretized. In this ap-
proach, only nearly resonant (on-shell) modes are considered.
This approach makes it possible to simulate an exponential
decay of the survival probability in full agreement with the
Wigner-Weisskopf (WW) approximation. It also predicts a
Zeno effect which can be considered to be “standard”: for
short times, the parabolic dependence in time of the survival
probability results in a short “plateau” directly followed by
a linear time dependence (Fermi’s golden rule), naturally
merging at longer times into the exponential behavior.

In Secs. IV–VI, we generalize the perturbative approach
of Sec. III by taking account of the response of off-resonant
electromagnetic modes. For very short times, their collective
response results in a nonstandard Zeno effect which is the
essential result of our paper. We first study this effect in the case
for the Ê · x̂ atom-field coupling (Secs. IV and V), and then
for the Â · p̂ coupling (Sec. VI). In both cases, the collective
response of the off-resonant modes induces a small decrease
of the survival probability for short times, followed by the
usual Fermi and Wigner-Weisskopf regimes. The last section
is devoted to open questions and conclusions.

II. BASIC ELEMENTS ON THE DECAY OF A
QUANTUM DIPOLE

A. Hamiltonian of the atom-light interaction

We consider a two-level atom (ground state |g〉, excited
state |e〉) interacting with the electromagnetic field. The atom
sits either in free space or in an ideal metallic cavity. In both
cases, the field can be expanded in terms of normal modes
labeled by an index λ. The Hamiltonian reads as

Ĥ = ĤA + ĤR + ĤI , (1)

where

ĤA = Eg |g〉〈g | + Ee |e〉〈e | (2)

1050-2947/2015/92(2)/023825(17) 023825-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.023825


DEBIERRE, GOESSENS, BRAINIS, AND DURT PHYSICAL REVIEW A 92, 023825 (2015)

is the atomic Hamiltonian (Eg and Ee being the energies of
the ground and excited states),

ĤR =
∑

λ

�ωλ

(
â
†
λâλ + 1

2

)
(3)

is the Hamiltonian of the free radiation (âλ is the annihilation
operator for photons in the mode λ and ωλ the angular
frequency of these photons). Let us consider for the moment
that the atom-field interaction Hamiltonian reads as

ĤI = −d̂ · D̂(r0)

ε0
, (4)

which is valid in the electric dipole approximation. Here, d̂ is
the atomic dipole operator and D̂(r0) is the displacement field
at the atom location r0. We shall go beyond this approximation
later, but for the time being we prefer to formulate the
problem at this level of approximation, having in mind that the
techniques that we shall develop in the next sections can easily
be generalized to other choices of interaction Hamiltonians.
Within the two-level atom approximation, the dipole d can be
written as

d̂ = 1̂l d̂ 1̂l =
∑
i,j

| i〉〈i | d̂ |j 〉〈j |=
∑
i,j

dij | i〉〈j | , (5)

where (i,j ) ∈ {e,g}2 and dij = 〈i | d̂ |j 〉. Because of spheri-
cal symmetry, dgg = dee = 0 and dge = d∗

eg . Therefore, the
electric dipole operator can be written

d̂ = dge |g〉〈e | + d∗
ge |e〉〈g | . (6)

Since there are no free charges in the system, the displacement
field is purely transverse everywhere in space (in contrast to
the electric field which is not transverse at r0) and can be
expanded on the transverse modal functions vT

λ as

D̂(r)

ε0
= i
∑

λ

√
�ωλ

2ε0

[
âλ vT

λ (r) − â
†
λ vT ∗

λ (r)
]

(7)

if the modal functions are normalized such that∫
vT

λ (r) · vT ∗
λ′ (r) dr = δλλ′ . (8)

By plugging the expansions (6) and (7) into (4), we can write
the interaction Hamiltonian ĤI as the sum of two contributions
ĤR

I and ĤAR
I , where

ĤR
I = i�

∑
λ

[Gλ(r0) â
†
λ |g〉〈e | −G∗

λ(r0) âλ |e〉〈g |] (9)

contains the rotating interaction terms and

ĤAR
I = i�

∑
λ

[Fλ(r0) â
†
λ |e〉〈g | −F ∗

λ (r0) âλ |g〉〈e |] (10)

contains the counter-rotating interaction terms. The coupling
constants Gλ(r0) and Fλ(r0) are given by

Gλ(r0) =
√

ωλ

2�ε0
dge · vT ∗

λ (r0), (11a)

Fλ(r0) =
√

ωλ

2�ε0
d∗

ge · vT ∗
λ (r0). (11b)

The interaction terms appearing in ĤR
I (9) are easy to

interpret. The first term corresponds to the creation of a photon
while the atom jumps from its excited to its ground state.
The second term represents the reverse process, that is, photon
absorption.

The interaction Hamiltonian ĤAR
I (10) is sometimes

claimed not to conserve energy [6]. The first term repre-
sents the process of adding one photon to the field while
simultaneously promoting the atom from the ground to the
excited state; the second one represents the reverse process. In
the derivation of the Fermi’s golden rule as well as in the
Wigner-Weisskopf approach, it is common to neglect
the counter-rotating interaction terms ĤAR

I , which is called
the rotating-wave approximation (RWA) [7,8]. As our goal is
ultimately to estimate corrections to the WW predictions, we
shall from now on confine ourselves to the same regime and
thus stick to the rotating-wave approximation. This approx-
imation is particularly justified in studies of the short-time
behavior of the system, because to first order in perturbation
theory, the counter-rotating interaction Hamiltonian (10) does
not contribute, as discussed in the following Sec. II B. On the
other hand, we shall not neglect the emission of off-resonant
photons as is traditionally done.

B. Decay equations within the rotating-wave approximation

We now consider the problem of an atom that is initially in
its excited state |e〉 and decays to its ground state |g〉 due to
its coupling to the electromagnetic field. If the field is initially
unpopulated, the quantum state of the system at any time can
be written as

|ψ(t)〉 = ce(t) e− i
�

(Ee+Evac)t |e,0〉
+
∑

λ

cg,λ(t) e− i
� (Eg+�ωλ+Evac)t |g,1λ〉, (12)

where |e,0〉 means that the atom is in the excited state and the
field contains no photons and |g,1λ〉 means that the atom is
in the ground state and the field contains a single photon in
the mode λ. We also wrote Ee = �ωe and Eg = �ωg . In the
absence of any interaction (ĤI = 0), the coefficients ce and cg,λ

do not evolve and each term of the superposition oscillates at its
own eigenfrequency. In the so-called weak coupling regime,
the functions ce and cg,λ are expected to be slowly varying
in time. The vacuum energy Evac =∑λ �ωλ/2 produces a
phase shift oscillating at an infinite angular frequency Evac/�.
However, this phase shift can be factored out and appears as a
global phase that can be simply ignored.

By injecting (12) in the Schrödinger equation

i�
d

dt
|ψ(t)〉 = (ĤA + ĤR + ĤR

I

) |ψ(t)〉, (13)

we find the differential equations governing the evolution of
functions ce and cg,λ. They read as

ċe(t) = −
∑

λ

G∗
λ(r0) cg,λ(t) e−i(ωλ−ωeg )t , (14a)

ċg,λ(t) = Gλ(r0) ce(t) ei(ωλ−ωeg )t . (14b)
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Up to the RWA, these equations are exact and apply to both
emission in free space and cavity emission. They possess no
known exact solution [1].

We now turn to the validity of the RWA approximation.
We reinstate for a while the counter-rotating (10) part of
the interaction Hamiltonian. It is well-known [1,9] that to
first order, time-dependent perturbation theory gives us the
probability

|〈ϕ |ψ(t)〉|2 = t2

�2
|〈ϕ |ĤI |e,0〉|2 sinc2

[
(ωeg − ωλ)

t

2

]
(15)

that the state of the system evolves to an arbitrary eigenstate
|ϕ〉 of the free Hamiltonian ĤA + ĤR . We introduced the
notation ωeg ≡ ωe − ωg .

It is easily checked from (9), (10), and (12) that

〈e,0 |ĤI |e,0〉 = 0, (16a)

〈e,1λ0 |ĤI |e,0〉 = 0, (16b)

〈g,0 |ĤI |e,0〉 = 0, (16c)

〈g,1λ0 |ĤI |e,0〉 = i� Gλ0 (r0) (16d)

while all quantum states of the system with more than one
photon present are orthogonal to ĤI |e,0〉. We see from (16)
that the counter-rotating part of the interaction Hamiltonian
does not contribute to the short-time dynamics of the system.
We emphasize that this is due to our choice of the initial
state where the atom is in its excited state, with the field in
its vacuum state. For different initial states, we see that, as
found elsewhere [10,11], counter-rotating terms must be taken
into account [12]. For our choice of the initial state, though,
the RWA approximation is valid at short times, which are
the focus of our investigations here. Hence, we discard the
counter-rotating interaction Hamiltonian (10) in the rest of our
paper.

Wigner and Weisskopf [2] attempted to solve the decay
equations (14). They analyzed the case of spontaneous emis-
sion in free space using the ansatz

ce(t) ≈ e− �
2 t (17)

to explain the universally observed exponential decay of the
excited state population. This solution is not an exact solution,
but is widely considered to be a satisfactory approximation at
long times. Using this ansatz, Wigner and Weisskopf found
that � is well approximated by

� = ω3
eg|dge|2

3π�ε0c3
, (18)

which coincides with the value found by applying the Fermi’s
golden rule, as we now discuss.

C. Fermi’s golden rule from time-independent
perturbation theory

Consider the interaction Hamiltonian ĤI as a pertur-
bation. The Fermi’s golden rule is usually obtained from
time-dependent perturbation theory but here we show how
time-independent perturbation theory to the first order also
allows to retrieve the Fermi’s golden rule. This original
approach opens the way to a more general time-independent

perturbative treatment of the problem that will be developed
later. The eigenstates of the free Hamiltonian ĤA + ĤR are
|e,0〉 and |g,1λ〉, with respective eigenenergies Ee = �ωe and
Eg + �ωλ = �(ωg + ωλ). Perturbation theory [1] tells us that,
treating ĤI to first order, these eigenenergies are unmodified.
The normalized perturbed eigenstates are

|e,0〉(1) = 1√
N

[
|e,0〉 + i

∑
λ

Gλ(r0)

ωeg − ωλ

|g,1λ〉
]
, (19a)

|g,1λ〉(1) = 1√
Nλ

[
|g,1λ〉 + i

G∗
λ(r0)

ωeg − ωλ

|e,0〉
]
, (19b)

where

N = 1 +
∑

λ

|Gλ(r0)|2
(ωeg − ωλ)2

, (20a)

Nλ = 1 + |Gλ(r0)|2
(ωeg − ωλ)2

. (20b)

Note that the perturbed eigenstates (19) are orthogonal to
lowest order in the perturbation. Notice that, to lowest order,
we have

|e,0〉 = 1√
N

[
|e,0〉(1) − i

∑
λ

√
Nλ

N

Gλ(r0)

ωeg − ωλ

|g,1λ〉(1)

]
.

(21)

We can thus write the evolution of the system when the atom is
initially excited, with no photon in the field. Using the spectral
theorem for the total Hamiltonian Ĥ with its approximate
eigenstates (19) derived from time-independent perturbation
theory, we get

〈e,0 | e− i
�

Ĥ t |e,0〉

= e−iωeg t

N

[
1 +

∑
λ

|Gλ(r0)|2 ei(ωeg−ωλ)t

(ωeg − ωλ)2

]
. (22)

After a bit of algebra, this yields

|〈e,0 | e− i
�

Ĥ t |e,0〉|2

= 1 − 4

N2

∑
λ

|Gλ(r0)|2
(ωeg − ωλ)2

sin2

[
(ωeg − ωλ)

t

2

]
(23)

to lowest order. Let us define Pdecay as 1 minus the sur-

vival probability: Pdecay(t) ≡ 1 − |〈e,0 | e− i
�

Ĥ t |e,0〉|2. In free
space, the sum over free modes is an integral. The substitution
follows the procedure

1

V

∑
λ

→
2∑


=1

∫
d3k

(2π )3 , (24)

where 
 are the two polarizations, V is the initial quantization
volume, and the modal functions are given by

vT
λ (r) → vT


 (k,r) = eik·r
√

V
ε(
)(k). (25)
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The unit polarization vectors obey [13] the closure relation

2∑

=1

(
εi

(
)

)∗
(k)εj

(
)(k) = δij − kikj

k2
. (26)

With all this in mind, we compute the decay probability

Pdecay(t) = 4V c

2�ε0

2∑

=1

∫
d3k

(2π )3

|dge · ε∗
(
)(k)|2

V

× |k| sin2
[
(ωeg − c|k|) t

2

]
(ωeg − c|k|)2

= 2c

�ε0

∫
d3k

(2π )3

[
|dge|2 −

∣∣∣∣dge · k
|k|
∣∣∣∣
2
]

×|k| sin2
[
(ωeg − c|k|) t

2

]
(ωeg − c|k|)2

= t2 |dge|2
6π2ε0�c3

∫ ∞

0
dω ω3 sinc2

[
(ωeg − ω)

t

2

]
,

(27)

where we performed the angular integration by requiring that
the polar angle θ be zero when k points in the direction of dge.

In the limit of large times, that is, times larger than 1/ωeg ,
one finds the usual Fermi’s golden rule with the decay rate
� (18), that is, Pdecay(t) = �t . In this regime, the cardinal
sine in (27) becomes very peaked around the atomic transition
frequency. One can then consider that only frequencies close
to ωeg contribute to (27) and rewrite the integral in the latter
equation as ∫ ωeg+�

ωeg−�

dω ω3 sinc2

[
(ωeg − ω)

t

2

]
.

Then, making use of∫ ωeg+�

ωeg−�

dω ω3 sinc2

[
(ωeg − ω)

t

2

]

∼
t→+∞ ω3

eg

∫ +∞

−∞
dω sinc2

[
(ωeg − ω)

t

2

]
= ω3

eg

2π

t
,

(28)

the Fermi’s golden rule is established. This is only valid at
so-called intermediate times, larger than 1/ωeg , but smaller
than 1/�, so that the perturbative approach still makes sense.

Strictly speaking, taking the limit t → +∞ under the
integral on the right-hand side of (27), as is usually done
to obtain the Fermi’s golden rule, is not rigorous since that
integral diverges (for all times). For instance, for sufficiently
small times, the cardinal sine in (27) can be taken to be equal
to 1, and hence the integral behaves like

∫ +∞
0 dω ω3 = +∞.

To accommodate this, we introduce a cutoff on frequencies.
A crude but natural [14] cutoff frequency is the one corre-
sponding to the size of the atomic dipole we considered:
KC = 2eπ/|dge| with e the elementary charge. Note that in
a recent treatment of a similar problem [15], the Compton
frequency was used as a cutoff. We shall see later that when
one goes beyond the dipole approximation, a natural cutoff
appears from the computations and need not be implemented

artificially (it is of the same order of magnitude as KC). We
then have, for very small times,

Pdecay(t) = t2|dge|2
6π2ε0�c3

∫ c KC

0
dω ω3

= c

24π2ε0�
|dge|2 K4

C t2. (29)

A parabolic Zeno behavior is thusly obtained. To connect this
initial behavior with that, at longer times, predicted by the
Fermi’s golden rule and the Wigner-Weisskopf approximation,
we make appeal to numerical calculations. As a prerequisite,
we now investigate how results from Wigner and Weisskopf
are retrieved, in a discretized approach in which the two-level
atom is coupled with a finite number of quasiresonant modes
of the electromagnetic field.

III. EXPONENTIAL DECAY FOR A TWO-LEVEL ATOM
COUPLED WITH QUASIRESONANT FIELD MODES

A. A discrete approach to spontaneous emission

Instead of a continuum of field modes, we will now
consider a finite amount thereof. We will thus pass from a
continuous regime where Fermi’s golden rule can be applied
to a discrete regime where the sum in (12) is both discrete
and finite. The Hilbert space is accordingly assumed to be
finite dimensional, which opens the way to a considerably
simplified numerical treatment based on matrix equations.
With this discretization, our treatment becomes similar to that
of Swain [16,17], who performed the first numerical study
of spontaneous emission. Contrarily to Swain, though, we
only regard the electromagnetic modes as discrete for the
sake of practicality, and we shall endeavor to construct our
discrete ensemble of modes so that it reproduces the behavior
of the continuous infinity of free-space modes as faithfully as
possible.

The problem that we face is twofold: for each energy there
is a continuous infinity of field modes which corresponds to all
possible spatial directions of emission of a photon; moreover
we must consider a range of energies running from 0 to �cKC .
Usually, only resonant (on-shell) photons are considered, and
the multiplicity of outgoing photonic modes is hidden in the
density of states (DOS) formulation of the Fermi’s golden
rule [1]. We shall adopt here another strategy, in which we
integrate over the continuum of spatial directions of emission
(and over various polarizations) without resorting to any kind
of approximation.

In order to explain the principle of our method, let us first
consider a situation in which two electromagnetic modes of
equal energy only are present. The total (interaction + free)
and free Hamiltonians then read as

H =
⎡
⎣�ω0 −i�G∗

1 −i�G∗
2

i�G1 �ω 0
i�G2 0 �ω

⎤
⎦,

(30)

H0 =
⎡
⎣�ω0 0 0

0 �ω 0
0 0 �ω

⎤
⎦.
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The corresponding Schrödinger equation is

i�
d

dt

⎡
⎣x0(t)

x1(t)
x2(t)

⎤
⎦ = H0

⎡
⎣x0(t)

x1(t)
x2(t)

⎤
⎦+ i�

⎡
⎣−G∗

1x1(t) − G∗
2x2(t)

G1x0(t)
G2x0(t)

⎤
⎦.

(31)

Let us now define the states |A〉 and |B〉 through

|A〉 = i√
|G1|2 + |G2|2

⎡
⎣ 0

G1

G2

⎤
⎦, (32)

|B〉 = i√
|G1|2 + |G2|2

⎡
⎣ 0

G∗
2−G∗

1

⎤
⎦. (33)

In the new orthonormal basis spanned by the states (1 0 0)T ,|A〉
and |B〉, the Schrödinger equation now reads as

i
d

dt

⎡
⎣x0(t)

xA(t)
xB(t)

⎤
⎦ =

⎡
⎣Geff xA(t) + ω0 x0(t)

Geff x0(t) + ω xA(t)
ω xB(t)

⎤
⎦, (34)

where we introduced the effective coupling constant Geff =√
|G1|2 + |G2|2. Obviously, the interaction only involves the

state |A〉, while the orthogonal state |B〉 ignores the coupling
with the “excited-atom” state (1 0 0)T . This is still true even
if an arbitrary number of modes (say N ) are coupled to the
excited state: the states orthogonal to

|A〉 = 1√
|G1|2 + |G2|2 + · · · + |GN |2

⎡
⎢⎢⎢⎣

0
G1

G2

· · ·
GN

⎤
⎥⎥⎥⎦ (35)

are not coupled to the excited state in the case where we
consider modes with a same energy ω. We are thus free
to replace the whole set of modes by an effective state |A〉
characterized by an effective coupling constant which obeys

Geff =
√

|G1|2 + |G2|2 + · · · + |GN |2, (36)

that can be considered equivalent to the summation rule of the
� factors over various decay channels which is traditionally
used in the context of the Fermi’s golden rule in QED and
particle physics as well. However, in order to numerically
integrate over slices of various energies, we have to discretize
the energy, in order to implement an approximation scheme
that we can tackle numerically.

Making use of Eqs. (9), (11), (24), and (36), it is easy to
check that a slice of energy comprised between � c kλ and
� c kλ+1 is characterized by an effective coupling constant
equal to

G
(λ)
eff =

[
2∑


=1

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

×
∫ kλ+1

kλ

k2 dk

(2π )3
|G
 (k,r0)|2

] 1
2

. (37)

As shown in Appendix 2a where the effective Hamiltonian
is rewritten in terms of (averaged) ladder operators, if we

successively perform the integration over the angles and over
energies, we find

G
(λ)
eff = 1

2

√
�c

6ε0
|dge|

(
k4
λ+1 − k4

λ

) 1
2 . (38)

We also fixed (see Appendix 2a) the energy of the effective
mode assigned to an energy slice by imposing that it be equal
to the average energy over the slice, weighted by the DOS.
This yields, for an energy slice bounded by kλ and kλ+1,
the effective energy ω

(λ)
eff = (4/5)�c(k5

λ+1 − k5
λ)/(k4

λ+1 − k4
λ).

From now on, we drop the eff subscripts from these quantities.
The Hamiltonian of the system is as before of the form

[b]Ĥ = �ωeg|e,0〉〈e,0| +
∑

λ

�ωλ|g,1λ〉〈g,1λ|

+ i�
∑

λ

[Gλ(r0)|g,1λ〉〈e,0| − G∗
λ(r0)|e,0〉〈g,1λ|],

(39)

excepted that here again summations run over a finite
amount of modes. We describe the dynamics of this system
by solving the Schrödinger equation

Ĥ |ψ(t)〉 = i�
d

dt
|ψ(t)〉, (40)

which can be set in matrix form as

d

dt

⎡
⎢⎢⎣

ce(t)
cg,1(t)

...
cg,Ncb (t)

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎣

−iωeg −G∗(ω1) . . . −G∗(ωNcb

)
G(ω1) −iω1

...
. . . 0

G
(
ωNcb

)
0 −iωNcb

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎣

ce(t)
cg,1(t)

...
cg,Ncb (t)

⎤
⎥⎥⎦. (41)

The eigenvalues (≡κλ) and eigenvectors (≡|κλ〉) of Ĥ are
estimated numerically and thereafter are used to solve for ce(t)
and cg,λ(t): ⎡

⎢⎢⎣
ce(t)
cg,1(t)

...
cg,Ncb (t)

⎤
⎥⎥⎦ =

N+1∑
λ=1

αj |κj 〉e−iκj t . (42)

To describe a situation in which the atom is initially excited,
in a zero-temperature environment, we consider the initial
conditions

ce(t = 0) = 1, cg,λ(t = 0) = 0. (43)

B. Numerical results

We now consider Ncb electromagnetic modes forming a
frequency comb around ωeg . The frequency spacing between
two successive modes is taken to be much smaller than ωeg .
If one wants to generate the dynamics of the Fermi regime,
one must make sure that the total frequency range �ω of these
electromagnetic field modes satisfies

�ω � � (44)
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FIG. 1. (Color online) Plot of |cg,λ(t)|2 for various modes for
a system with Ncb = 100 resonant modes with frequencies within
�ω = 16 � of ωeg . Note that at short times the behavior is quadratic
for all modes: this reflects the initial, coherent response of the
electromagnetic vacuum.

with � given by (18), which can be seen as a manifestation of
the time-energy uncertainty �E�t ≥ �/2.

If �ω is taken to be much smaller than advised by (44), then
some modes which are significantly excited by their interaction
with the atom are wrongly ignored. If �ω is taken to be much
larger, then off-resonant modes are needlessly included in the
treatment [18]. One can indeed distinguish the “active” from
the “inactive” modes by looking at the |cg,λ(t)|2 curves of
Fig. 1.

In practice, we varied the comb width �ω in order to
look for the change in behavior when �ω approached a
value close to �. As to the probability amplitudes |cg,λ(t)|2
of the field modes, one would expect from the expression for
|cg,λ(t)|2 [see (27)] to see a quadratic curve at short times.
Notice that this initial behavior should be entirely independent
of frequency. These expectations are nicely met in Fig. 1.
Figure 2 shows how one gets closer to the Fermi regime,
which constitutes the beginning of the exponential decay,
by widening the electromagnetic frequency comb. If, on the
other hand, the frequency comb is very narrow the resulting
dynamics shows [18] an oscillatory behavior in accordance

FIG. 2. (Color online) Transition towards exponential decay by
fulfilling better and better the condition �ω � �.

FIG. 3. (Color online) Decay of the survival probability |ce(t)|2
for calculations with Ncb = 20 (dotted blue line), Ncb = 40 (dotted-
dashed red line), and Ncb = 100 (dashed green line) against the
theoretical expected behavior exp (−�t) (solid black line). The curves
for N = 20, 40, and 100 are virtually indistinguishable for t < 2.5/�

(remember 1/� = 1.60 × 10−9 s).

with the narrow form-factor limit considered in [19], where
the situation studied is that of an atom emitting light in a
high-finesse cavity. In the narrow form-factor limit, this is a
good model for the cavity QED experiments carried out by
Haroche and his collaborators [20].

We used, for our numerical calculations, the experimental
values for the 2p − 1 s transition in atomic hydrogen, namely,
ωeg = 1.55 × 1016 s−1,|dge| = 6.31 × 10−30 Cm, and 1/� =
1.60 × 10−9 s [21]. The mode discretization described above
and in the Appendix is quite robust in terms of its dependence
on Ncb, as illustrated by Fig. 3, where we compared the survival
probability |ce(t)|2 found from numerical calculations to the
standard result of Wigner-Weisskopf perturbation theory.

The survival probability displays a “revival” due to the
discretization of the outgoing modes, which results in a
finite recurrence time trecur. However, a number of Ncb = 100
quasiresonant modes are enough to send this recurrence time
to around 10/� (see Fig. 3), which is more than enough
for what we want to study here. Even with Ncb = 20, the
discrepancy with the WW theory in the region of interest
(say, 0 < t < 2.5/� ≈ 4 × 10−8 s) is not noticeable. Note
that the condition for the “weak coupling limit” � � ωeg

is de facto met for the system we considered. We can also
detect on Fig. 2 (see curve with �ω = 16 �) the initial
Zeno regime after which the curve indeed approximates the
Wigner-Weisskopf exponential. We shall consider later the
role played by high-frequency, off-resonant modes in the Zeno
zone.

Our results agree with the Fermi’s golden rule in the interval
ω−1

eg < t < � but also with the Wigner-Weisskopf perturbation
theory for longer times. For Ncb = 100 quasiresonant modes,
we plotted in Figs. 4 and 5 the time evolution of |cg,λ(t)|2
for two modes, one rather close to the resonant transition
frequency (Fig. 4), and the other one extremely close to
resonance (Fig. 5). Wigner-Weisskopf theory predicts [9]

cg,λ(t) = e−iωλt Gλ(r0)
e−i(ωeg−ωλ)t e−�t/2 − 1

ωλ − ωeg + i�/2
, (45)
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FIG. 4. (Color online) Evolution, for a system with Ncb = 100
quasiresonant modes of the field, of the probability that the 100th
mode of the field is occupied (solid red line), plotted against the
expected Wigner-Weisskopf behavior (45) (dotted blue line) and the
asymptotic limit (46) of the latter expression (dashed black line).

which tends to

|cg,λ(t)|2 �t→+∞−→ |Gλ(r0)|2
(ωλ − ωeg)2 + (�/2)2

(46)

as t → +∞. These expectations are nicely met too in Figs. 4
and 5 where the asymptotic limits (46) are explicitly drawn.

We investigate in several steps the influence of off-resonant
electromagnetic modes on the decay of the survival probability.
First (Sec. IV), we use the Ê · x̂ interaction Hamiltonian in the
dipole approximation of Sec. II A and discard all frequencies
above the cutoff frequency cKC of Sec. II C, while in Sec. V we
make use of the exact matrix elements for the Ê · x̂ interaction
Hamiltonian.

Then (Sec. VI), we repeat the same process with the Â ·
p̂ interaction Hamiltonian. In Sec. VI A, we use the dipole-
approximated coupling derived similarly to that of Sec. II A
and discard all frequencies above the cutoff frequency cKC of

FIG. 5. (Color online) Evolution, for a system with Ncb = 100
quasiresonant modes of the field, of the probability that the (very
resonant) 50th mode of the field is occupied (solid red line), plotted
against the expected Wigner-Weisskopf behavior (45) (dotted blue
line) and the asymptotic limit (46) of the latter expression (dashed
black line).

Sec. II C, while in Sec. VI B we make use of the exact matrix
elements for the Â · p̂ interaction Hamiltonian found in [22].

IV. Ê · x̂ COUPLING IN THE DIPOLE APPROXIMATION

We focus here on the dipole approximation. Remember
that the integral (27) diverges at all times, which requires us
to introduce a cutoff frequency, as was done in Sec. II C. If we
follow this prescription, the integral (27) becomes

Pdecay(t) = t2|dge|2
6π2ε0�c3

∫ c KC

0
dω ω3 sinc2

[
(ωeg − ω)

t

2

]
.

(47)

This expression of the decay probability is compared with
the result of the usual Wigner-Weisskopf approximation on
Fig. 6. One notices, at very short times (the so-called Zeno
regime), a strong drop during the quadratic decay of the
truncated cardinal sine integral (47). At longer times, the inte-
gral (47) follows the linear decay predicted by Fermi’s golden
rule, with an offset, and fails to reproduce the predictions of
the Wigner-Weisskopf approximation beyond t > 1/�, which
is expected from this first-order approach. As we shall show,
this discrepancy can be suppressed by going beyond first-order
perturbation theory to describe quasiresonant electromagnetic
modes.

Our goal here is to connect the two regimes (Zeno for short
times and WW for long times) observed on Fig. 6. For interme-
diate times, where the Fermi’s golden rule is valid, we know
that first-order perturbation prevails. Besides, it is notoriously
known that perturbation theory is not accurate when we con-
sider nonperturbed states with very close energies. In order to
develop a perturbative approach, we treated the quasiresonant
modes first by diagonalizing the Hamiltonian as done in
Sec. III, before incorporating the off-resonant modes of the
electromagnetic field through time-independent perturbation
theory. Let us denote by Ĥ0 the Hamiltonian which describes

FIG. 6. (Color online) Linear-log plot of the survival probability
|ce(t)|2 from Wigner-Weisskopf theory (dashed black line) and
the truncated cardinal sine integral (47) (dotted orange line) with
|ce(t)|2 = 1 − Pdecay(t). The two main time regimes (strong emission
at very short times and exponential decay later) can be visualized
on this single graphic. Remember 1/ωC = 2.09 × 10−20 s, 1/ωeg =
6.45 × 10−17 s, 1/� = 1.60 × 10−9 s.

023825-7



DEBIERRE, GOESSENS, BRAINIS, AND DURT PHYSICAL REVIEW A 92, 023825 (2015)

the atom, the field, and the interaction between the atom
and the quasiresonant modes of the electromagnetic field,
and Ĥhigh the Hamiltonian which describes the interaction
between the atom and the other (off-resonant) modes. Namely,

Ĥ0 = �ωeg|e,0〉〈e,0| +
Ncb+Noff shell∑

λ=1

�ωλ|g,1λ〉〈g,1λ|

+ i�

Ncb∑
λ=1

[Gλ(r0)|g,1λ〉〈e,0| − G∗
λ(r0)|e,0〉〈g,1λ|]

(48a)

and

Ĥhigh = i�

Ncb+Noff shell∑
λ=Ncb+1

[Gλ(r0)|g,1λ〉〈e,0|

−G∗
λ(r0)|e,0〉〈g,1λ|], (48b)

where Ncb is, as previously, the number of quasiresonant
modes and Noff shell is the number of off-resonant modes. The
effective frequencies ωλ and couplings Gλ(r0) are defined
in Appendix 2a. We wrote |g,1λ〉 = |g〉 ⊗ |1λ〉 where |g〉 is
the atomic ground state while the single-photon–single-mode
states |1λ〉 are obtained by the action of the creation operators
(âλ

avg)† (A9) on the electromagnetic vacuum |0〉. Now, assume

that we diagonalized Ĥ0. Since the off-resonant modes are
uncoupled, the spectral decomposition of Ĥ0 reads as

Ĥ0 =
Ncb∑
i=0

�ωi
eg |ψi〉〈ψi | +

Ncb+Noff shell∑
λ=Ncb+1

�ωλ |g,1λ〉〈g,1λ |

(49a)

with

|ψi〉 = εi
0 |e,0〉 +

Ncb∑
λ=1

εi
λ |g,1λ〉 ≡

Ncb∑
λ=0

εi
λ |λ〉, (49b)

where we introduced the new notations |e,0〉 = |0〉 and
|g,1λ〉 = |λ〉. It is useful to notice that (49b) can be inverted by

|λ〉 =
Ncb∑
λ=0

(
ε

j

λ

)∗|ψj 〉. (50)

The εi
λ coefficients in (49b) were obtained numerically

in the previous Sec. III by diagonalizing the matrix (30).
Expanding the relations 〈λ |ζ 〉 = δλζ and 〈ψk |ψj 〉 = δjk

yields, respectively, the useful relations

Ncb∑
i=0

(
εi
λ

)∗
εi
ζ = δλζ , (51a)

Ncb∑
λ=0

(
εk
i

)∗
ε

j

λ = δjk. (51b)

Treating Ĥhigh to first order in perturbation we get the
normalized perturbed eigenstates

|ψi〉(1) = 1√
Ni

⎡
⎣|ψi〉 + iεi

0

Ncb+Noff shell∑
λ=Ncb+1

Gλ(r0)(
ωi

0 − ωλ

) |g,1λ〉
⎤
⎦,

(52a)

|g,1λ〉(1) = 1√
Nλ

[
|g,1λ〉 + i

G∗
λ(r0)(

ωeg − ωλ

) |e,0〉
]

(52b)

with

Ni = 1 + ∣∣εi
0

∣∣2 Ncb+Noff shell∑
λ=Ncb

|Gλ(r0)|2(
ωi

0 − ωλ

)2 , (53a)

Nλ = 1 + |Gλ(r0)|2
(ωeg − ωλ)2

. (53b)

Note that to first order in Gλ(r0)/[(ωeg − ωλ)], these perturbed
states are orthogonal. This means that, still to first order in
these parameters, the perturbed spectral decomposition of Ĥ =
Ĥ0 + Ĥhigh and the corresponding evolution operator are valid.

The initially excited state |ϕ(t = 0)〉 = |e,0〉 can be ex-
panded over the perturbed eigenstates, making use of (51)
and (52):

|ϕ(t = 0)〉 = 1√
N

[ Ncb∑
λ=0

√
Ni(ε

i
0)∗|ψi〉(1)

−
Ncb+Noff shell∑
λ=Ncb+1

√
Nλ

Gλ(r0)

(ωeg − ωλ)
|g,1λ〉(1)

]

= 1√
N

[
1 +

Ncb+Noff shell∑
λ=Ncb+1

|Gλ(r0)|2
(ωeg − ωλ)2

]
|e,0〉 (54)

and thus

√
N = 1 +

Ncb+Noff shell∑
λ=Ncb+1

|Gλ(r0)|2
(ωeg − ωλ)2

. (55)

Then, we can compute the survival probability at time t . For
that we let the evolution operator Û (t) act on |ϕ(t = 0)〉, which
yields

|ϕ(t)〉 = 1√
N

[ Ncb∑
i=0

√
Ni

(
εi

0

)∗
e−iωi

0t |ψi〉(1)

− i

Ncb+Noff shell∑
λ=Ncb+1

√
Nλ

Gλ(r0)

(ωeg − ωλ)
e−iωλt |g,1λ〉(1)

]
.

(56)
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FIG. 7. (Color online) Decay of the survival probability |ce(t)|2
with the dipole-approximated Ê · x̂ coupling from numerical calcula-
tions (solid blue line), Wigner-Weisskopf theory (dashed black line),
and the truncated cardinal sine integral (47) (dotted orange line) with
|ce(t)|2 = 1 − Pdecay(t). The logarithmic scale for time is used so
that the two main time regimes (strong emission at very short times
and exponential decay later), as well as the transition between them,
can be visualized on this single graphic. Quasiresonant modes are
discretized with Ncb = 100 and off-resonant modes are discretized
with Noff shell = 100. Remember 1/ωC = 2.09 × 10−20 s, 1/ωeg =
6.45 × 10−17 s, and 1/� = 1.60 × 10−9 s.

The survival probability is then deduced with the help of (52):

Psurv(t) = |〈e,0 |ϕ(t)〉|2

= 1

N

∣∣∣∣∣∣
Ncb∑
i=0

∣∣εi
0

∣∣2e−iωi
0t +

Ncb+Noff shell∑
λ=Ncb+1

|Gλ(r0)|2
(ωeg − ωλ)2

e−iωλt

∣∣∣∣∣∣
2

.

(57)

To compute this quantity, we resort to numerical calculations.
The main goal here is to link the initial behavior of the survival
probability as given by the cardinal sine integral (27) to the
experimentally observed exponential decay at large times. The
expression (57) of the survival probability is compared in Fig. 7
with the usual Wigner-Weisskopf exponential exp (−�t) and
the truncated cardinal sine integral (47).

We see on Fig. 7 that our method allows the numerical
results to espouse, at short times, the predictions of first-order
perturbation theory, and, at large times, the usual Wigner-
Weisskopf exponential. As we shall show in the next Sec. V,
however, the fast drop at short times seen in Figs. 6 and 7 is
not physical.

V. EXACT Ê · x̂ COUPLING

A. Results

When going beyond the dipole approximation, one can
derive a more exact expression for the matrix element:

Gλ(r0) = 1

4

√
ωλ

2�ε0
dge · vT ∗

λ (r0)

⎧⎨
⎩ 1[

1 + ( ωλ

ωX

)2]2 + 3

2

⎡
⎣ 1

1 + ( ωλ

ωX

)2 + arctan
(

ωλ

ωX

)
ωλ

ωX

⎤
⎦
⎫⎬
⎭ (58)

with natural cutoff frequency ωX = (3c)/(2a0), a result which, as far as we know, is original. This is done in the next Sec. V B.
This time, first-order perturbation theory yields the following cardinal sine integral:

Pdecay(t) = t2|dge|2
96π2ε0�c3

∫ +∞

0
dω ω3 sinc2

[
(ωeg − ω)

t

2

]⎧⎨
⎩ 1[

1 + ( ω
ωX

)2]2 + 3

2

⎡
⎣ 1

1 + ( ω
ωX

)2 + arctan
(

ω
ωX

)
ω
ωX

⎤
⎦
⎫⎬
⎭

2

. (59)

The same perturbation method as that exposed in the previous
Sec. IV is used. The frequencies ωλ and couplings Gλ(r0) are
defined in Appendix 2b. Results with this coupling are shown
in Fig. 8.

As noted above, the fast drop in the survival probability
is an artifact of the truncated dipole approximation. Note that
our perturbation method again gives precise results at short,
intermediate, and long times (see Fig. 8).

B. Derivation of the interaction matrix element

We now prove (58). In the Power-Zienau-Woolley picture of
quantum electrodynamics, the interaction Hamiltonian reads
as [23]

ĤI = 1

ε0

∫
dx P̂(x) · �̂(x). (60)

The electric polarization field reads as, in the case of atomic
hydrogen,

P̂(x) = −er̂
∫ 1

0
du δ(x − ur̂), (61)

where r̂ is the electron position operator and e the elementary
electric charge (charge of a proton), and the canonically
conjugate momentum to the vector potential is given by

�̂(x) = i
2∑


=1

∫
d3k

(2π )3

√
�c|k|
2ε0

[â(
)(k)eik·rε(
)(k) − H.c.].

(62)

Finally, the interaction Hamiltonian can be cast in the follow-
ing form:

ĤI = i e

√
�

2ε0c
r̂ ·

2∑

=1

∫
d3k

(2π )3

√
|k|

×
[
â(
)(k)ε(
)(k)

+∞∑
n=0

(ik · r̂)n

(n + 1)!
− H.c.

]
. (63)

To compute the matrix element of this interaction Hamiltonian
between the 1 s and 2p levels, the hard part is to compute
〈1 s | (ik · r̂)nr̂ |2p m2〉 where m2 is the magnetic quantum

023825-9



DEBIERRE, GOESSENS, BRAINIS, AND DURT PHYSICAL REVIEW A 92, 023825 (2015)

FIG. 8. (Color online) Decay of the survival probability |ce(t)|2
with the exact Ê · x̂ coupling from numerical calculations (solid blue
line), Wigner-Weisskopf theory (dashed black line), and the cardinal
sine integral (59) (dotted orange line) with |ce(t)|2 = 1 − Pdecay(t).
At long times, numerical calculations are indistinguishable from
Wigner-Weisskopf decay. A logarithmic scale for time is used.
Quasiresonant modes are discretized with Ncb = 100 and off-resonant
modes are discretized with Noff shell = 100. Remember 1/ωX =
1.18 × 10−19 s, 1/ωeg = 6.45 × 10−17 s, and 1/� = 1.60 × 10−9 s.

number for the 2p sublevel considered. We follow the first
steps given in [22] for the derivation of the corresponding
interaction matrix element in the Â · p̂ coupling.

Remember the expressions for the wave functions of the 1 s
and 2p m2 sublevels:

ψ1 s(x) =
exp
(− |x|

a0

)
√

πa3
0

, (64a)

ψ2p m2 (x) =
exp
(− |x|

2a0

)
8
√

πa3
0

√
2

a0
x · ξm2 . (64b)

The ξm2 are given by

ξ 0 = ez, (65a)

ξ±1 = ∓ex ± iey√
2

. (65b)

The three states (64b) span the 2p subspace for the electron,
such that any state on the 2p sublevel is a linear superposition
of these three states. Choosing a coordinate system for which
k/|k| is the third basis vector, we compute

〈1 s|(ik · r̂)nr̂|2p m2〉 =
∫

dx(ik · x)nx ψ∗
1 s(x)ψ2p m2 (x)

=
√

2

8π

(i|k|)n
a4

0

∫ 2π

0
dϕ

∫ π

0
dθ sin θ cosn θ

∫ +∞

0
dx exp

(
−3

2

x

a0

)
xn
(
x · ξm2

)
x. (66)

In our basis where k/|k| is the third basis vector, we have

(
x · ξm2

)
x = (ξ (1)

m2
sin θ cos ϕ + ξ (2)

m2
sin θ sin ϕ + ξ (3)

m2
cos θ

) |x|2
⎡
⎣sin θ cos ϕ

sin θ sin ϕ

cos θ

⎤
⎦. (67)

The ξ (i)
m2

stand for the components of ξm2 in that basis. After carrying out the easy integrations over ϕ and changing variables
(η ≡ cos θ ), we get

〈1 s | (ik · r̂)nr̂ |2p m2〉 = (i|k|)n
4
√

2a4
0

∫ 1

−1
dη

⎡
⎢⎣

ξ (1)
m2

(1 − η2)

ξ (2)
m2

(1 − η2)

2ξ (3)
m2

η2

⎤
⎥⎦ ηn

∫ +∞

0
dx x4+n exp

(
−3

2

x

a0

)
. (68)

Since, according to (63), the dot product of (68) with the polarization vectors ε(
)(k) is to be taken, its component along k/|k|
can be discarded [24]. One can thus simply compute the scalar quantity

〈1 s|(ik · r̂)nr̂|2p m2〉⊥ = (i|k|)n
4
√

2a4
0

ξm2 · ε(
)(k)
∫ 1

−1
dη(1 − η2)ηn

∫ +∞

0
dx x4+n exp

(
−3

2

x

a0

)

= 1

2
√

2

1

a4
0

(i|k|)n 1 + (−1)n

(1 + n)(3 + n)

(
3

2a0

)−(n+5)

(n + 4)! ξm2 · ε(
)(k). (69)

Then, we compute the sum over all values of n, according to the expression found in (63):

〈1 s|
∞∑

n=0

(ik · r̂)n

(n + 1)!
r̂|2p m2〉⊥ = ξm2 · ε(
)(k)

2
√

2a4
0

(
3

2a0

)−5 ∞∑
n=0

(i|k|)n 1 + (−1)n

(1 + n)(3 + n)

(
3

2a0

)−n (n + 4)!

(n + 1)!

= 2
√

2

(
2

3

)5

a0 ξm2 · ε(
)(k)
∞∑

n=0

(
2

3
|k|a0

)2n

(−1)n
(n + 1)(n + 2)

(2n + 1)
. (70)
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It then comes in handy to notice that

(n + 1)(n + 2)

(2n + 1)
= 1

2

[
(n + 1) + 3

2

(
1 + 1

2n + 1

)]
(71)

to rewrite (70) as

〈1 s|
∞∑

n=0

(ik · r̂)n

(n + 1)!
r̂|2p m2〉⊥ =

√
2

(
2

3

)5

a0 ξm2 · ε(
)(k)

{
1[

1 + ( 2
3a0|k|)2]2 + 3

2

[
1

1 + ( 2
3a0|k|)2 + arctan

(
2
3a0|k|)

2
3a0|k|

]}
.

(72)

Using (63) and the following relations [21]

dge = e a0
2

15
2

35
ξm2 , (73a)

ωeg = 3

8

�

me

1

a2
0

, (73b)

we then retrieve (58).

VI. Â · p̂ COUPLING

A. Dipole approximation

In the dipole approximation, the matrix element of the
interaction Hamiltonian Â · p̂ is [22]

Gλ(r0) = ωeg√
2�ε0ωλ

dge · vT ∗
λ (r0). (74)

This time, first-order perturbation theory yields the following
cardinal sine integral:

Pdecay(t) = t2|dge|2
6π2ε0�c3

ω2
eg

×
∫ c KC

0
dω ω sinc2

[
(ωeg − ω)

t

2

]
. (75)

The same perturbation method as that exposed in Sec. IV is
used. The frequencies ωλ and couplings Gλ(r0) are defined in
Appendix 2c. Results with this coupling are shown in Figs. 9
(short times) and 10 (long times). A comparison of Figs. 9
and 7 shows that, even in the dipole approximation, the Zeno
effect obtained is very much reduced in the Â · p̂ coupling
compared to what it is in the Ê · x̂ coupling.

B. Exact Â · p̂ coupling

When going beyond the dipole approximation, one can
derive a more exact expression for the matrix element,
namely [22],

Gλ(r0) = ωeg√
2�ε0ωλ

dge · vT ∗
λ (r0)

1[
1 + ( ωλ

ωX

)2]2 (76)

with natural cutoff frequency ωX = (3c)/(2a0). A mode
discretization is similar to that used in Sec. IV, and the
important results given in Appendix 2d. This time, first-

order perturbation theory yields the following cardinal sine
integral:

Pdecay(t) = t2|dge|2
6π2ε0�c3

ω2
eg

∫ ∞

0
dω

ω[
1 + ( ω

ωX

)2]4
× sinc2

[
(ωeg − ω)

t

2

]
. (77)

The same perturbation method as that exposed in Sec. IV is
used, with the following modifications. The frequencies ωλ

and couplings Gλ(r0) are defined in Appendix 2d. Results
with this coupling are shown in Figs. 11 (short times) and 12
(long times). Figures 8–12 show that the strong decay of the
survival probability observed on Fig. 7 for very short times
is an incorrect prediction. This highlights the fact that, if the
dipole approximation is to be used at all, this should be done
with much care. Note that for short times our perturbative
approach fits the analytical results derived in [4], by a
“tour de force” which allowed the authors of [4] to estimate
departures from exponential decay for short but also very long
times in an exact fashion.

It is worth noting that while Facchi and Pascazio consid-
ered [4] the ratio between the Zeno time τZ and the lifetime τE

FIG. 9. (Color online) Decay of the survival probability |ce(t)|2
with the dipole-approximated Â · p̂ coupling from numerical calcula-
tions (solid blue line), Wigner-Weisskopf theory (dashed black line),
and the truncated cardinal sine integral (75) (dotted orange line)
with |ce(t)|2 = 1 − Pdecay(t). A logarithmic scale for time is used.
Quasiresonant modes are discretized with Ncb = 100 and off-resonant
modes are discretized with Noff shell = 100. Remember 1/ωC =
2.09 × 10−20 s, 1/ωeg = 6.45 × 10−17 s, and 1/� = 1.60 × 10−9 s.
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FIG. 10. (Color online) Decay of the survival probability |ce(t)|2
with the dipole-approximated Â · p̂ coupling from numerical calcula-
tions (solid blue line), Wigner-Weisskopf theory (dashed black line),
and the truncated cardinal sine integral (75) (dotted orange line)
with |ce(t)|2 = 1 − Pdecay(t). At long times, numerical calculations
are indistinguishable from Wigner-Weisskopf decay. A logarithmic
scale for time is used. Quasiresonant modes are discretized with
Ncb = 100 and off-resonant modes are discretized with Noff shell =
100. Remember 1/ωC = 2.09 × 10−20 s, 1/ωeg = 6.45 × 10−17 s,
and 1/� = 1.60 × 10−9 s.

of the excited level, where Psurv(t) ∼
t→0

1 − (t/τZ)2 and tE ≡
1/�, as the relevant parameter concerning the experimental
observability of the Zeno region, we argue that the relevant
ratio is that between the “cutoff time” τX and the Zeno time
τZ . The cutoff time is simply defined as τX = 1/ωX with ωX

the cutoff frequency of the atom-field interaction. Indeed, the
response of the electromagnetic modes is no longer coherent
after a time of order τX (as can be seen for instance on Fig. 6

FIG. 11. (Color online) Decay of the survival probability |ce(t)|2
with the exact Â · p̂ coupling from numerical calculations (solid blue
line), Wigner-Weisskopf theory (dashed black line), and the cardinal
sine integral (77) (dotted orange line) with |ce(t)|2 = 1 − Pdecay(t).
Numerical calculations are indistinguishable from (77). A logarithmic
scale for time is used. Quasiresonant modes are discretized with
Ncb = 100 and off-resonant modes are discretized with Noff shell =
100. Remember 1/ωX = 1.18 × 10−19 s, 1/ωeg = 6.45 × 10−17 s,
and 1/� = 1.60 × 10−9 s.

FIG. 12. (Color online) Decay of the survival probability |ce(t)|2
with the exact Â · p̂ coupling from numerical calculations (solid blue
line), Wigner-Weisskopf theory (dashed black line), and the cardinal
sine integral (77) (dotted orange line) with |ce(t)|2 = 1 − Pdecay(t).
At long times, numerical calculations are indistinguishable from
Wigner-Weisskopf decay. A logarithmic scale for time is used.
Quasiresonant modes are discretized with Ncb = 100 and off-resonant
modes are discretized with Noff shell = 100. Remember 1/ωX =
1.18 × 10−19 s, 1/ωeg = 6.45 × 10−17 s, and 1/� = 1.60 × 10−9 s.

where the cutoff frequency is ωC). This means that after τX,
one exits the Zeno regime in which the survival probability
decays quadratically. With this in mind, we take an interest
in the scaling properties of the ratio τX/τZ . For hydrogenlike
atoms with Z protons, the Zeno time scales, as noted in [4],
like Z−2. For such systems, since the Bohr radius scales like
Z−1, the cutoff frequency scales like Z, and the cutoff time
like Z−1, so that the ratio τX/τZ scales like Z, while Facchi
and Pascasio’s parameter (τZ/τE) scales like Z2. There is a
general method to obtain the Zeno time τZ: in the Taylor
series of the survival probability around t = 0, the coefficient,
which, up a factor, is [22] the expectation value of the squared
Hamiltonian Ĥ 2 of the system in the initial state, that multiplies
t2 is the squared inverse of the Zeno time. The next term in this
series is generally proportional to t4. Then, the most consistent
way to evaluate what we called the cutoff time τX is [5] to
compare the t2 and t4 terms in the Taylor series: when the
t4 term becomes non-negligible compared to the t2 term, the
decay is no longer quadratic and we exit the Zeno regime.
With this method, the authors of [5] found a cutoff time (they
call it differently) of τX = 5.8 × 10−19 s, in good agreement
with our numerical result (see Fig. 11). Elsewhere, another
study [19] of the Zeno regime (this time of an emitting atom in
a high-finesse cavity) has focused on the transition between the
Zeno and anti-Zeno behavior, leading the authors to carefully
inspect the role played by the Zeno time.

VII. CONCLUSION AND OPEN QUESTIONS

We scrutinized the onset of the exponential decay of a
quantum dipole in the Zeno regime. We focused on the role
played by excitations of the off-shell electromagnetic modes
that are usually neglected. Our main result is that, before an
exponential behavior is manifest and even before the linear in
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FIG. 13. (Color online) Decay of the survival probability |ce(t)|2
for the exact Ê · x̂ coupling if one takes into account either only
resonant electromagnetic modes (dashed green line), only off-
resonant modes (solid violet line), and all modes (dotted orange
line). Remember 1/ωX = 1.18 × 10−19 s, 1/ωeg = 6.45 × 10−17 s,
and 1/� = 1.60 × 10−9 s.

time decrease of the survival probability characteristic of the
Fermi’s golden rule appears, a sudden decrease occurs for very
short times, quadratic in time, which is directly related to the
so-called quantum Zeno effect.

As can be seen in Fig. 13 [where the on-shell and off-
shell contributions to the decay of the survival probability
as expressed by the integral (59) are plotted separately], the
off-shell modes play a crucial role in the Zeno regime. They
are activated very quickly but after a time of the order of
the inverse of the cutoff frequency they do no longer respond
coherently and their contribution to the decay vanishes. The
linear behavior predicted by the Fermi’s golden rule occurs
much later and is due to on-shell contributions only.

As a by-product of our analysis, we developed a pertur-
bative scheme that interpolates between the Zeno (parabolic)
regime and the WW (exponential) regime, passing through the
Fermi (linear) regime. In the case of the 2p − 1 s transition we
cover a very large interval of time (from 10−19 to 10−9 s). Our
results fit with the exact solution of Facchi and Pascasio [4]
if we treat the Â · p̂ coupling without approximation, but our
perturbative approach also makes it possible to treat the exact
Ê · x̂ coupling as well as the Â · p̂ and Ê · x̂ coupling in the
dipolar approximation.

It is natural to ask whether the Zeno effect predicted in our
paper is likely to be observed experimentally. The effect that
we predict, in the case of the 1 s − 2p transition is, indeed,
very small and does not occur during a measurable time period
(typically, of the order of an attosecond). This explains why
our counterintuitive predictions have not yet been verified
experimentally. This verification, however, is not impossible
in principle, but requires the following:

(1) To measure the change of population of the emitters
carefully.

(2) To investigate other unstable quantum systems (mag-
netic dipoles [15,25], solid state or NMR qubits, Rydberg
states [20], and so on). The reason is that the duration and
intensity of the Zeno effect is strongly dependent on the

off-shell coupling parameters while the WW and Fermi’s
golden rule regimes are dominated by the on-shell coupling.
Up to now, we limited ourselves to the study of a single transi-
tion (the 1 s − 2p transition for atomic hydrogen) but we are
convinced that there exist in Nature other transitions (quantum
jumps) where the particular type of Zeno effect predicted by us
(collective response of the off-shell modes at zero temperature)
is enhanced. Magnetic dipolar transitions [15,25] for instance
are characterized by very long lifetimes (in some cases, a
million times longer than the 1 s − 2p transition), which
suggests that the Zeno time could approach the picosecond,
a temporal regime which can be probed by sophisticated
pump-probe techniques such as the so-called ultrafast transient
absorption spectroscopy in which very quick responses (of the
order of 200 fs) are reachable experimentally.

Another interesting question concerns causality. It is known
that, in accordance with Hegerfeldt’s theorem, even if we stick
to the WW approximation, a nonzero component of the single-
photon wave function will be present outside from the light
cone expanding centered in space-time on the atom at time
t = 0 [26–28]. The reason therefore is that only positive spatial
frequencies are present in the spectrum of this wave function,
so that, in virtue of Paley-Wiener theorem, the domain of
the wave function cannot be bounded. We investigated the
departures from causality in the WW regime in another paper
and found that they are extremely small [29].

One could wonder whether more significant violations of
Einsteinian causality might be present in the Zeno regime. In
order to tackle this question, it is necessary to have at one’s
disposal extremely accurate estimates of the wave function of
the emitted photon. This is possible in our approach which
provides an accurate estimate of the solution ce(t) of the
equations of motion (14) that interpolates between the Zeno
time and the lifetime of the dipole. This suffices in order to
compute the field emitted by the atom. Indeed, the formal
solution of (14b) reads as

cg,λ(t) = Gλ(r0)
∫ t

0
ce(t ′) ei(ωλ−ωeg)t ′dt ′. (78)

The information about the single-photon field (and in particular
of its Glauber wave function) emitted by the atom is entirely
encoded in the coefficients cg,λ(t). We expect therefore to
be able to study in depth possible violations of Einsteinian
causality for very short times. Of course, we performed several
approximations in our approach (RWA for instance) and it
remains an open question to know whether violations of
causality are due to the approximations, as suggested in [8],
or whether they are unavoidable features of QED. These
questions are complex but at least our approach makes it
possible to tackle the problem in an original manner.

ACKNOWLEDGMENTS

V. Debierre acknowledges support from CNRS (INSIS
doctoral grant). T. Durt acknowledges support from the COST
1006 and COST 1403 actions. E. Brainis acknowledges the
Belgian Science Policy Office (IAP 7.35 photonics@be) and
the Horizon2020 program (MSCA-ETN phonsi) for funding
this research.

023825-13



DEBIERRE, GOESSENS, BRAINIS, AND DURT PHYSICAL REVIEW A 92, 023825 (2015)

APPENDIX: MODE DISCRETIZATION:
ENERGY SLICE LADDER OPERATORS

1. Position of the problem

In this Appendix, we show how to discretize the continuous
modes of free space through the introduction of creation
and annihilation photon operators for energy slices. We are
interested in the spontaneous emission of light in a vacuum and
hence our starting point will feature a continuous infinity of
modes. Hence, we first want to adapt the equations of Sec. II A
to this situation. In Sec. II C, we gave part of the prescription for
switching from a discrete sum over arbitrary modes to a contin-
uous sum over the free-space modes. This was done by writing

1

V

∑
λ

→
2∑


=1

∫
d3k

(2π )3 , (A1)

where 
 are the two possible photon polarizations, V is
the initial quantization volume, and the modal functions are
given, in the Coulomb gauge, by

vT
λ (r) → vT


 (k,r) = eik·r
√

V
ε(
)(k). (A2)

It will come in handy here to choose linear polarization
vectors as a basis. These are given by

ε(1)(k) = cos θ cos ϕex + cos θ sin ϕey − sin θez,

ε(2)(k) = − sin ϕex + cos ϕey, (A3)

where θ and φ are the spherical coordinates of the wave vector
k with respect to an arbitrary Cartesian frame (here, we will
take ez in the direction of dge). A prescription for going over
to the continuous case for ladder operators needs to be added.
It consists in the substitution

[âλ,â
†
λ′ ] = δλλ′ → [â
(k),â†

ζ (q)] = (2π )3δ(k − q)δ
ζ . (A4)

Now, we want to be able to perform numerical computations,
and hence have to discretize this continuum in some way.

2. Results

a. Detailed treatment in the case of the dipolar Ê · x̂ coupling

We then rewrite the rotating interaction Hamiltonian (9)
with the use of (A1), (A2), and, in the second step, (A3) as

ĤR
I = − i

(2π )3

2∑

=1

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

√
�c

2ε0

∫ ∞

0
dk k

5
2 [â
(k,θ,ϕ)ε(
)(θ,ϕ) · d∗

ge|e〉〈g| − H.c.]

= − i

(2π )3

√
�c

2ε0
|dge|

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
dk k

5
2 (− sin θ )[â1(k,θ,ϕ) |e〉〈g | −â

†
1(k,θ,ϕ) |g〉〈e |], (A5)

where we took dge as the reference axis for the polar coordinate θ , and used the fact that, for the 2p − 1s transition in atomic
hydrogen, the dipole matrix element is real [21]. With the prescription to obtain an effective coupling given below (34) in mind,
we introduce the spherically averaged creation operators

∫ 2π

0
dϕ

∫ π

0
dθ sin2 θ â1(k,θ,ϕ) ≡ âsph(k)

(∫ 2π

0
dϕ

∫ π

0
dθ sin3 θ

) 1
2

= 2

√
2π

3
âsph(k). (A6)

In the leftmost member of (A6), sin2 θ is the product of a first sine coming from the differential solid angle element, with another
one coming from the coupling [see (A5); according to our prescription, the coupling of one particular mode (here, with angular
orientation (θ,ϕ)] should be squared to obtain, after summing over a given ensemble of modes and taking the square root, the
effective coupling constant of that ensemble, hence the third power of sin θ in the central term of (A6). With these new operators,
the interaction Hamiltonian (A5) can be rewritten

ĤR
I = 2i

(2π )3

√
�cπ

3ε0
|dge|

∫ ∞

0
dk k

5
2 [âsph(k) |e〉〈g | − â

†
sph(k) |g〉〈e |]. (A7)

It can be checked from (A4) and (A6) that the spherically integrated ladder operators obey the following commutation relation:

[âsph(k),â†
sph(q)] = (2π )3

kq
δ(k − q). (A8)

We further define

i(2π )−
3
2

∫ kλ+1

kλ

dk k
5
2 âsph(k) ≡ âλ

avg

(∫ kλ+1

kλ

dk k3

) 1
2

=
(

k4
λ+1 − k4

λ

4

) 1
2

âλ
avg (A9)

to rewrite (A7) as

ĤR
I = 2

(2π )
3
2

√
�cπ

3ε0
|dge|

∑
λ

(
k4
λ+1 − k4

λ

4

) 1
2 [

âλ
avg |e〉〈g | +(âλ

avg

)† |g〉〈e |], (A10)
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where âλ
avg ≡ â

kλkλ+1
avg defined through (A9) and the intervals [kλ,kλ+1] are taken to have empty intersections and [0, +∞[ as their

union. It can be checked from (A8) and (A9) that the energy slice ladder operators obey the following commutation relation:[
âλ

avg,â
ζ†
avg

] = δλζ . (A11)

From this we can compute the matrix elements of the interaction Hamiltonian between the excited state |e,0〉 and the energy
slice field state (âλ

avg)† |g,0〉, which reads as

〈e,0|ĤR
I

(
âλ

avg

)†|g,0〉 = 1

2π

√
�c

6ε0
|dge|

(
k4
λ+1 − k4

λ

) 1
2 . (A12)

For a complete description we also need to compute the matrix elements of the free-field Hamiltonian for these energy slice field
states. The electromagnetic field Hamiltonian (3) is rewritten, in free space,

ĤR = �c

(2π )3

2∑

=1

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
dk k3 â†


(k,θ,ϕ)â
(k,θ,ϕ). (A13)

As seen from (A3), electromagnetic modes polarized orthogonally to the atomic dipole vector dge are not coupled to the atom
and thus evolve freely. It is thus only useful to consider

〈g,0 | âλ
avg ĤR âζ†

avg |g,0〉. (A14)

To that end, it is best to first compute the commutator

[
â1(q,θ,ϕ),

(
âλ

avg

)†] = −(2π )
3
2

i(
k4
λ+1 − k4

λ

) 1
2

(
3

2π

) 1
2

sin θ
√

q [�(q − kλ) − �(q − kλ+1)], (A15)

where kλ and kλ+1 are the bounds of the ith interval (energy slice). This can be seen to be true from (A4), (A6), and (A9).
Noticing that since kλ+1 > kλ, we have

[�(q − kλ) − �(q − kλ+1)]2 = �(q − kλ) + �(q − kλ+1) − 2�(q − kλ)�(q − kλ+1)

= �(q − kλ) + �(q − kλ+1) − 2�(q − kλ+1) = �(q − kλ) − �(q − kλ+1), (A16)

we compute (A14) as follows:

〈g,0|âλ
avg ĤR âζ†

avg|g,0〉 = 3�c

2π
δλζ

∫ 2π

0
dϕ

∫ π

0
dθ sin3 θ

∫ ∞

0
dk

k4

k4
λ+1 − k4

λ

[�(q − kλ) − �(q − kλ+1)]

= 3�c

2π
δλζ

∫ 2π

0
dϕ

∫ π

0
dθ sin3 θ

∫ kλ+1

kλ

dk
k4

k4
λ+1 − k4

λ

= 4�c δλζ

∫ kλ+1

kλ

dk
k4

k4
λ+1 − k4

λ

= 4

5
�c δλζ

k5
λ+1 − k5

λ

k4
λ+1 − k4

λ

. (A17)

Notice that if one writes kλ+1 − kλ ≡ �kλ, and lets �kλ → 0, then (A17) tends towards �c kλ � �c kλ+1. The matrix
elements (A12) and (A17) are the ones we use for our numerical calculations. In the body of the article, we denote them
as 〈e,0 |ĤR

I (âλ
avg)† |g,0〉 ≡ −i�G∗

λ(r0) for the coupling matrix [see (9) in the text] element and 〈g,0 | âλ
avg ĤR (âλ

avg)† |g,0〉 ≡ �ωλ

for the diagonal field energy matrix elements.

b. Results for the exact Ê · x̂ coupling

For the exact Ê · x̂ coupling (76) we define

F (k) = k
1
2

4

⎧⎨
⎩ 1[

1 + ( k
kX

)2]2 + 3

2

⎡
⎣ 1

1 + ( k
kX

)2 + arctan
(

k
kX

)
k
kX

⎤
⎦
⎫⎬
⎭ (A18)

and obtain

〈e,0|ĤR
I

(
âλ

avg

)†|g,0〉 = 1

2π

√
�c

3ε0
|dge| ωeg[I (4)(kλ+1) − I (4)(kλ)]−

1
2 , (A19)

where

I (4)(kλ+1) − I (4)(kλ) ≡
∫ kλ+1

kλ

dk k2 F 2(k) (A20)
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with âλ
avg ≡ â

kλkλ+1
avg defined through

i(2π )−
3
2

∫ kλ+1

kλ

dk k2 F (k) âsph(k) ≡ âλ
avg

[∫ kλ+1

kλ

dk k2 F 2(k)

] 1
2

. (A21)

We also find that

〈g,0 | âλ
avg ĤR âζ†

avg |g,0〉 = �c δλζ

I (5)(kλ+1) − I (5)(kλ)

I (4)(kλ+1) − I (4)(kλ)
, (A22)

where

I (5)(kλ+1) − I (5)(kλ) ≡
∫ kλ+1

kλ

dk k3F 2(k). (A23)

As far as we know, the integrals (A20) and (A23) cannot be solved by hand and we compute them numerically. The matrix
elements (A19) and (A22) are the ones we use for our numerical calculations. In the body of the article we denote them as
〈e,0|ĤR

I (âλ
avg)†|g,0〉 ≡ −i�G∗

λ(r0) for the coupling matrix element and 〈g,0|âλ
avg ĤR (âλ

avg)†|g,0〉 ≡ �ωλ for the diagonal field
energy matrix elements.

c. Results for the dipolar Â · p̂ coupling

For the Â · p̂ coupling in the dipole approximation (74) we obtain

〈e,0|ĤR
I

(
âλ

avg

)†|g,0〉 = 1

2π

√
�c

3ε0

∣∣dge

∣∣ ωeg

(
k2
λ+1 − k2

λ

2

)− 1
2

(A24)

with âλ
avg ≡ â

kλkλ+1
avg defined through

i(2π )−
3
2

∫ kλ+1

kλ

dk k
3
2 âsph(k) ≡ âλ

avg

(∫ kλ+1

kλ

dk k

) 1
2

(A25)

and

〈g,0|âλ
avg ĤR âζ†

avg|g,0〉 = 2

3
�c δλζ

k3
λ+1 − k3

λ

k2
λ+1 − k2

λ

. (A26)

The matrix elements (A24) and (A26) are the ones we use for our numerical calculations. In the body of the article, we denote
them as 〈e,0|ĤR

I (âλ
avg)†|g,0〉 ≡ −i�G∗

λ(r0) for the coupling matrix element and 〈g,0|âλ
avg ĤR (âλ

avg)†|g,0〉 ≡ �ωλ for the diagonal
field energy matrix elements.

d. Results for the exact Â · p̂ coupling

Finally, for the exact Â · p̂ coupling (76) we obtain

〈e,0|ĤR
I

(
âλ

avg

)†|g,0〉 = 1

2π

√
�c

3ε0
|dge| ωeg[I (2)(kλ+1) − I (2)(kλ)]−

1
2 , (A27)

where

I (2)(k) ≡ −k2
X

6

1[
1 + ( k

kX

)2]3 (A28)

with âλ
avg ≡ â

kλkλ+1
avg defined through

i(2π )−
3
2

∫ kλ+1

kλ

dk
k

3
2[

1 + ( k
kX

)2]2 âsph(k) ≡ âλ
avg

⎧⎨
⎩
∫ kλ+1

kλ

dk
k[

1 + ( k
kX

)2]4
⎫⎬
⎭

1
2

. (A29)

We also find

〈g,0|âλ
avg ĤR âζ†

avg|g,0〉 = �c δλζ

I (3)(kλ+1) − I (3)(kλ)

I (2)(kλ+1) − I (2)(kλ)
, (A30)
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where

I (3)(kλ+1) − I (3)(kλ) =
∫ kλ+1

kλ

dk
k2[

1 + ( k
kX

)2]4
= k3

X

48

[
kλkX

(
k2
X − 3k2

λ

)(
k2
λ + 3k2

X

)
(
k2
λ + k2

X

)3 kλ+1kX

(
k2
X − 3k2

λ+1

)(
k2
λ+1 + 3k2

X

)
(
k2
λ+1 + k2

X

)3
− 3 arctan

(
kλ

kX

)
+ 3 arctan

(
kλ+1

kX

)]
. (A31)

The matrix elements (A27) and (A30) are the ones we use for our numerical calculations. In the body of the article, we denote
them as 〈e,0|ĤR

I (âλ
avg)†|g,0〉 ≡ −i�G∗

λ(r0) for the coupling matrix element and 〈g,0|âλ
avg ĤR (âλ

avg)†|g,0〉 ≡ �ωλ for the diagonal
field energy matrix elements.
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