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We report branches of explicit expressions for nonlinear modes in parity-time (PT )-symmetric potentials of
several types. For the single-well and double-well potentials the found solutions are two-parametric and appear to
be stable even when the PT symmetry of respective underlying linear models is broken. Based on the examples
of these solutions we describe an algorithm of excitation of a stable nonlinear mode in a model whose linear
limit is unstable. The method is based on the adiabatic change of the control parameter driving the mode along
a branch bifurcating from a stable linear mode. The suggested algorithm is confirmed by extensive numerical
simulations.
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I. INTRODUCTION

A common practical requirement for a nonlinear system to
have localized solutions is the stability of the zero background.
This requirement on the one hand ensures the absence of
growing small fluctuations far from the nonlinear mode. More
important, this means the stable existence of a system itself
without any excitations, i.e., in the “vacuum state,” in which the
system is prepared experimentally and against which nonlinear
modes are excited. In the conservative case this implies
the possibility for stable propagation of linear waves (real
eigenvalues of the linear Hamiltonian), while in dissipative
systems this means decay of all small-amplitude excitations
(the background is an attractor with a nonzero basin). In this
context parity-time (PT )-symmetric [1,2] systems represent
a special case which on the one hand obey gains and
losses and on the other hand may have pure real spectra in
some domains of the parameter spaces [2] (this situation is
referred to as an unbroken PT -symmetric phase [1]) allowing
for propagation of linear waves and possessing continuous
families of solutions. Therefore, linear potentials like the
parabolic [3], Scarff II [4], or PT -symmetric extension of
the Rosen-Morse II potential [5] obeying pure real spectra and
supporting localized modes received particular attention also
from the point of view of the existence of nonlinear families;
see Refs. [6–8] and [9], respectively.

Nonlinear modes can also be found in a region where
the linear PT symmetry is broken [7]. Moreover, families
of nonlinear modes can be stable [10,11] in those regions.
However, the mathematical existence of such nonlinear modes,
and even of stable ones, does not yet guarantee their practical
utility, because the manner of their excitation in a system that
is linearly unstable in its “vacuum” state remains questionable.
This leads us to the first goal of the present paper, which is
a suggestion on how stable nonlinear modes can be excited
in systems where the linear PT symmetry is broken. The
idea is based on the possibility of “switching on” nonlinearity
simultaneously with gain and dissipation. Such a possibility
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can be implemented, in particular, when the nonlinearity and
gain-and-loss strength are characterized by a single parameter
(let us call it ε) and disappear when this parameter becomes
zero (ε = 0). If at ε = 0 the system is Hamiltonian, it allows for
stable propagation of the linear modes, and the only stability
issue which has to be verified is the stability of the solution
branch ε > 0, bifurcating from ε = 0. Then, if the stability is
confirmed, one can consider the adiabatic growth of ε = ε(t)
in time as a way to excite a nonlinear mode, which persists in
a stable fashion even if the final value of ε corresponds to the
underlying linear system with a broken PT -symmetric phase.

To solve this problem mathematically, a suitable framework
is the use of potentials supporting some exact solutions. Such
complex potentials can be constructed, say, using “inverse
engineering” as suggested in Ref. [12] (here we also mention
other examples of particular exact solutions forPT -symmetric
potentials published in Refs. [7,13]). The method consists
in computing a complex potential starting with an a priori
given solution which, however, must satisfy some constraints
to ensure the existence of the potential. Generally speaking,
the potentials supporting particular exact solutions appear in
rather sophisticated forms, which may constitute a significant
difficulty for their practical implementation. Therefore, as a
complementary task of this paper we consider the generation of
the modes in potentials of relatively simple and experimentally
feasible forms, bearing in mind their applications in optics of
atomic gases [14] as well as in the PT -symmetric physics
of Bose-Einstein condensates [15–17], where PT -symmetric
potentials can be created and modified in situ.

The rest of the paper is organized as follows. In Sec. II,
we describe the general theory and approach to the nonlin-
ear Schrödinger equation with the PT -symmetric potentials
allowing for exact particular solutions. In Sec. III we dis-
cuss applications of the method to the parabolic potential
and in Secs. IV and V we consider linear and nonlinear
modes in both single-well and double-well potentials, re-
spectively. In particular, the problem of the nonlinear mode
excitations in the single-well and double-well PT -symmetric
potentials allowing for particular exact solutions is also
addressed in Secs. IV and V. Our results are summarized in
the Conclusion.
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II. GENERAL THEORY AND APPROACH

We consider the nonlinear Schrödinger (NLS) equation
with the PT -symmetric potential and space-modulated non-
linearity (abbreviated below as PT -NLSE)

i∂tψ = − 1
2∂2

xψ + Uε(x)ψ + Gε(x)|ψ |2ψ, (1)

where ∂t = ∂/∂t, ∂x = ∂/∂x, ψ = ψ(x,t) is the complex
envelope of the electrical field, Uε(x) = U ∗

ε (−x) (i.e.,
Re[Uε(x)] = Re[Uε(−x)], Im[Uε(x)] = −Im[Uε(−x)]) and
Gε(x) describe the complex-valued linear PT -symmetric
potential and real-valued inhomogeneous nonlinearity,
respectively, and an asterisk stands for complex conjugation.
For specific real-valued potential, i.e., if Uε(x) = U ∗

ε (x),
Eq. (1) reduces to the conservative NLS equation with
space-modulated linear and nonlinear coefficients. In that
case, particular exact solutions and corresponding dynamical
behaviors were extensively studied in the literature (see, e.g.,
Refs. [18–22]).

In order to implement the procedure described in the
Introduction we assume that

Uε(x) =
2∑

j=0

ε2jVj (x) + iεW (x), (2)

Gε(x) = ε2G(x), (3)

where Vj (x) (j = 0,1,2) are constituents of the real potential,
W (x) is the real gain-and-loss distribution, and ε � 0 is the
bifurcation parameter parametrizing a branch of the solutions;
we emphasize that generally speaking ε is not considered
small. To ensure the PT symmetry we consider Vj (x) =
Vj (−x) (j = 0,1,2) and W (x) = −W (−x). At ε = 0, Eq. (1)
becomes the linear Schrödinger equation. Our main interest
focuses on the case where W (x) �≡ 0 (i.e., when the linear
potential Uε(x) is non-Hermitian).

We concentrate on stationary solutions of PT -NLSE (1)
in the form ψ(x,t) = φ(x)e−iμt , where μ is a real spectral
parameter, and the complex-valued nonlinear eigenmode φ(x)
satisfies the stationary NLS equation

μφ = −1

2

d2φ

dx2
+ Uε(x)φ + Gε(x)|φ|2φ, (4)

subject to the zero boundary conditions limx→±∞ φ(x) = 0.
Now, following the strategy described in the Introduction

we assume that the solution of the linear eigenvalue problem

L0φ̃n(x) = μ̃nφ̃n(x), L0 = −1

2

d2

dx2
+ V0(x), (5)

where n = 0,1,2, . . . , is known. In Eq. (5) we assume also
that the spectrum is discrete (which is applied for all examples
considered in this paper) and distinguish the eigenfunctions
and eigenvalues of this linear problem by tildes. In order to
obtain a nonlinear branch of solutions φn which bifurcates
from φ̃n(x) we require limx→±∞ φ̃n(x) = 0. Thus, all φ̃n(x)
can be considered real without loss of generality. Since L0 is
Hermitian, all the eigenvalues μ̃n are also real, which indicates
the stability of the respective linear system (here we exclude
the situation where zero is an eigenvalue of L0).

Turning now to ε > 0 we observe that in the presence
of gain-and-loss distribution, stationary modes (if any) must

have nonzero (hydrodynamic) current, i.e., an x-dependent
argument. Respectively we consider the construction of the
PT -symmetric potential and nonlinearity for modes having
the form

φn(x) = φ̃n(x,ε) exp

(
iε

∫ x

−∞
vn(ξ )dξ

)
, (6)

where the real function vn(x) is the hydrodynamic velocity and
n stands here for the identification of the family bifurcating
from the nth linear eigenstate. Since this ansatz implies that
the modulus of the nonlinear modes persists equal to the linear
distribution, the possibility of constructing such modes is not
obvious. In order to address this issue we substitute Eq. (6) in
Eq. (4) and obtain relations linking the phase,

d

dx
(vn(x)|φ̃n(x,ε)|2) = 2W (x)|φ̃n(x,ε)|2, (7)

and the amplitude,

1
2v2

n(x) + G(x)|φ̃n(x,ε)|2 + V1(x) + ε2V2(x) = νn, (8)

where we introduce the shift of the eigenvalue νn determined
by μ − μ̃n = ε2νn.

The last equation has a free parameter ε which leaves much
freedom in constructing a solution. Although we do not require
ε to be small, we nevertheless restrict further consideration to
two basic cases as follows:

Case 1. The amplitude of φn(x) is independent on ε, i.e.,
φ̃n(x,ε) = φ̃n(x) and

1
2v2

n(x) + G(x)φ̃2
n(x) + V1(x) = νn, V2(x) ≡ 0. (9)

Case 2. The amplitude of φn(x) is proportional to ε, i.e.,
φ̃n(x,ε) = εφ̃n(x) and

1
2v2

n(x) + V1(x) = νn, G(x)φ̃2
n(x) + V2(x) = 0. (10)

The obtained system (7) with Eq. (8) [cf. Eq. (9) or Eq. (10)]
still contains freedom in the definition of the potentials and
the hydrodynamic velocity. Therefore, we impose further
constraints on the linear part Vj (x) for j � 1, W (x) and
nonlinear G(x) potentials, as well as the hydrodynamic
velocity vn(x), requiring them to be localized, i.e., Vj (x) → 0
for j � 1, W (x) → 0, G(x) → 0, and vn(x) → 0 at |x| → ∞.
Considering now Eq. (8) in the limit |x| → ∞ we readily
obtain that νn = 0. Thus, in this case a nonlinear mode has not
only the same form but also the same eigenvalue as its linear
counterpart at ε = 0 does.

Thus, we have obtained the profiles of the nonlinear modes
in an exact analytical form ψn(x,t) = φn(x)e−iμnt with φn(x)
being given by Eq. (6). Our next main task is to study the
stability of the nonlinear modes. We do this numerically by
two standard approaches. First, we address the linear stability
of a nonlinear mode ψn(x,t) = φn(x)e−iμnt , employing the
ansatz

ψn(x,t) = {φn(x) + �[f (x)e−iδt + g∗(x)eiδ∗t ]}e−iμnt , (11)

where � � 1, and f (x) and g(x) are the eigenfunctions of the
linear eigenvalue problem:

(
Lε Gε(x)φ2

n(x)

−Gε(x)φ∗2
n (x) −L∗

ε

)(
f

g

)
= δ

(
f

g

)
(12)
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with

Lε = − 1
2∂2

x + Uε(x) + 2Gε(x)|φn(x)|2 − μn. (13)

The solution is linearly unstable if δ has a nonzero imaginary
part; otherwise it is stable.

Second, we test the stability by direct propagation using
an exact solution ψn(x,t) = φn(x)e−iμnt with φn(x) given by
Eq. (6) with a noise perturbation of order 1% of the initial
amplitude |ψn(x,0)|, as the initial condition for Eq. (1).

III. PERTURBED PT -SYMMETRIC LINEAR
PARABOLIC POTENTIAL

Below we concentrate on the physically relevant case of the
parabolic (harmonic) potential V0(x) = ω2x2/2. Without loss
of generality, one can scale out the frequency ω, making it 1,
to yield

V0(x) = 1
2x2. (14)

The families of the nonlinear modes of this potential at
W (x) = x, Vj (x) ≡ 0 (j = 1,2) and constant nonlinearity
G(x) ≡ const were considered in Ref. [6].

Now the profile of linear modes related to Eq. (5) is
described by the Gauss-Hermite functions

φ̃n(x) = Hn(x)e−x2/2, (15)

where Hn(x) = (−1)nex2
(dne−x2

)/(dxn) is the Hermite poly-
nomial with n = 0,1,2, . . . , and the eigenvalue is

μ = μ̃n = n + 1
2 , (16)

in which we have νn = 0.
We also concentrate on the specific Gaussian form of the

nonlinearity

G(x) = 2σe−αx2
(17)

with the characteristic width 1/
√

α with α > 0 and constant
σ (in particular, the nonlinearity is a constant for α = 0).
This is a natural choice, for example, for the Bose-Einstein
applications, where nonlinearity can be controlled through the
optical Feshbach resonance, with G(x) describing the profile
of the laser beam (see, e.g., Ref. [23]).

Thus, the solution of the problem is reduced to two steps as
follows. First, given the gain-and-loss distribution W (x) from
Eq. (7) one obtains the hydrodynamic velocity:

vn(x) = 2

|φ̃n(x,ε)|2
∫ x

−∞
W (ξ )|φ̃n(ξ,ε)|2dξ. (18)

Second, the “correction” to the conservative part of the Hamil-
tonian is computed from Eqs. (9) and (10), with G(x), vn(x),
and φ̃n(x) given by Eqs. (17), (18), and (15).

In the meantime, formula (18) imposes the additional
constraint on the choice of the imaginary potential W (x),
which must ensure the existence of the integral in Eq. (18).
This problem can be overcome if one again uses inverse
engineering, i.e., considers the hydrodynamic velocity given
and finds W (x) from Eq. (7).

IV. A SINGLE-WELL POTENTIAL

A. PT -symmetry phases of the linear problem

The simplest single-well potential is obtained by setting
Vj (x) ≡ 0 (j = 1,2), which corresponds to case 1 in Eq. (9)
[in case 2 in Eq. (10) one has G(x)φ̃2

n(x) ≡ 0, which is the
trivial solution]. Recalling that μ̃n is given by Eq. (16) (i.e.,
νn = 0) and considering φ̃n(x) given by Eq. (15) we readily
conclude that such a choice is possible only for attractive
(focusing) nonlinearities σ < 0 (without loss of generality we
set σ = −1) for which the hydrodynamic velocity reads

vn(x) = 2Hn(x)e−(α+1)x2/2. (19)

Now from Eq. (7) we can find the gain-and-loss distributions
(i.e., the imaginary part of the potential)

Wn(x) = [6nHn−1(x) − (α + 3)xHn(x)]e−(α+1)x2/2. (20)

In order for Wn(x) to be an odd function, i.e., to support PT
symmetry, we require n to be an even number: n = 0,2,4, . . ..
The functions Wn(x) with odd n are even and do not satisfy
the condition of PT symmetry. We do not consider them here
but observe that for odd n Eq. (4) still obeys exactly localized
solutions of the form (6) with V0(x), φ̃n(x), G(x), vn(x),
and Wn(x) given by Eqs. (14), (15), (17), (19), and (20),
respectively.

We also observe that all the members of the Wn(x) family
of potentials (i.e., the potentials corresponding to different n)
are two-parametric, i.e., they are determined by the amplitude
[it is given by ε when substituted in Uε(x)] and by the internal
parameter α.

In order to establish domains of the unbroken PT -
symmetry phase of the linear PT -symmetric potential Uε for
different n we address the spectral problem

L̂n(x) = λn(x), L̂n = L0 + iεWn(x), (21)

where L0 is given by Eq. (5), and λn and (x) are eigenvalues
and eigenfunctions, respectively. Since the discrete spectrum
of a PT -symmetric potential is either real or appears in
complex conjugated pairs, we conclude there exists a nonzero
domain of the parameter ε for which the PT symmetry
remains unbroken.

The simplest potentials with nonzero complex parts are
given by n = 0,

Uε(x) = x2

2
− iε(α + 3)xe−(α+1)x2/2, (22)

and n = 2,

Uε(x) = x2

2
− 2iεx[2(α + 3)x2 − (α + 15)]e− (α+1)x2/2. (23)

In Fig. 1 we show the domains of broken and unbroken phases
on the (α,ε) plane. Both curves in the figure grow with α,
which can be understood from the fact that the growth of α

corresponds to the shrinking of the gain-and-loss domains.
In both cases, illustrated in Fig. 2, spontaneous symmetry

breaking occurs due to collision of the two lowest states as α

decreases (which corresponds to the increase of the width of
the gain-and-loss domains). All upper eigenstates (we checked
numerically for the six lowest states) remain real. This can be
understood from the fact that for the levels with large n the
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FIG. 1. (Color online) Solid (red) and dashed (blue) curves in-
dicate the lines of phase transitions for the PT -symmetric po-
tentials (22) and (23) with n = 0, 2. The unbroken (broken) PT -
symmetric phase is in the domain below (above) the phase-breaking
lines. Squares (red) and circles (blue) indicate the lines of linear
stability of solitons (24) with n = 0, 2. The stable (unstable) soliton
is in the domain below (above) the linear stable lines.

imaginary part of the potential represents a weak perturbation
while the lowest levels are the most strongly deformed ones.
We also notice that the instability is oscillatory (i.e., the two
emergent complex eigenvalues have a nonzero real part).

B. Nonlinear modes in a single-well potential

Now we turn to the nonlinear modes in the PT -symmetric
potentials (22) and (23). The expression for the nonlinear
modes is obtained from Eqs. (6) and (19):

φn(x) = Hn(x)e−x2/2 exp

(
2iε

∫ x

−∞
Hn(ξ )e−(α+1)ξ 2/2dξ

)
.

(24)

FIG. 2. (Color online) (a, c) Real and (b, d) imaginary parts of the
eigenvalues λn [see Eq. (21)] as functions of α for the potential (22) at
n = 0, ε = 0.6 (top row) and for the potential (23) at n = 2, ε = 0.18
(bottom row).

FIG. 3. (Color online) One-hump nonlinear modes given by
Eq. (24) with n = 0 and α = 1 for (a) ε = 0.45 (real spectrum
of the operator L̂0, i.e., unbroken linear PT symmetry) and
(b) ε = 0.7 (broken linear PT symmetry). (c) Stable and
(d) periodically varying propagation of the nonlinear modes described
by Eq. (24) and corresponding to the weakly perturbed initial
conditions shown in (a) and (b), respectively.

Two examples of the modes are illustrated in Fig. 3 and
their linear stability analysis is presented Fig. 1. The feature
most relevant to the present consideration is displayed by the
domains between the solid line and squares for n = 0 and
between the dashed line and circles for n = 2. In these domains
the nonlinear modes [given by Eq. (24) with n = 0 and n = 2]
are stable, while the respective linear PT -symmetric phases
are broken; i.e., the linear stability of the nonlinear modes is
extended beyond the unbroken linear PT -symmetric phase.
Below we explore these domains in order to “draw” the mode
along the branch bifurcating from the linearly stable mode.
Before that, however, we show the check of stability by means
of the direct propagation of the initially stationary state in
Eq. (24) with a noise perturbation of order 1%. In Fig. 3(c)
we show stable propagation of the soliton for the parameters
belonging to the domain of the unbroken linearPT -symmetric
phase of the operator L̂0 [defined in Eq. (21)] and to the linearly
stable nonlinear mode. In Fig. 3(d) we illustrate the evolution
of the mode where the linear PT -symmetric phase is broken
and the nonlinear mode is linearly stable. In this last case we
observe the oscillatory (breather-like behavior).

Similarly, Figs. 4(a) and 4(c) display the initial states
and stable intensity evolution of a two-hump solitary wave
[described by Eq. (24) with n = 2] for the parameters which
guarantee both the real spectrum of the operator L̂2 (unbroken
PT -symmetric phase) as well as the linear stability of the
nonlinear mode. In the meantime, Figs. 4(b) and 4(d) show a
two-hump soliton for the parameters corresponding to broken
linear PT symmetry but still stable in the nonlinear mode.
In both numerical simulations we observed robustness of the
nonlinear modes with respect to weak initial noise.

Now we turn to the excitation of nonlinear modes by means
of a slow change of the control parameter ε(t) which is
now considered as a function of time. More specifically we
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FIG. 4. (Color online) Two-hump nonlinear modes given by
Eq. (24) with n = 2 and α = 2 for (a) ε = 0.02 (real spectrum of the
operator L̂2, i.e., unbroken linear PT symmetry) and (b) ε = 0.12
(broken linear PT symmetry). Both nonlinear modes are linearly
stable (see Fig. 1), which is illustrated in (c) and (d) where the
direct numerical simulations of Eq. (24) are performed with weakly
perturbed initial profiles (a) and (b).

consider simultaneous adiabatic switching on the gain-and-
loss distribution and the nonlinearity, modeled by [cf. Eq. (1)]

i∂tψ = − 1
2∂2

xψ + [V0(x) + iε(t)Wn(x)]ψ

+ ε2(t)G(x)|ψ |2ψ, (25)

where the single-well potential V (x), nonlinearity G(x), and
gain-and-loss distribution W (x) are given by Eqs. (14), (17),
and (20), respectively, and

ε(t) =
{

0.2 sin
(

πt
1200

) + 0.45, 0 � t < 600

0.65, 600 � t � 1200.
(26)

This choice of the final value of ε is justified by the fact that
the whole “trajectory” ε(t), shown in Fig. 5(a), belongs to the
parameter domain where the nonlinear mode is stable.

FIG. 5. (Color online) (a) Time dependence of the parameter
ε(t) (solid line) given by Eq. (26). The squares and solid line
(corresponding to the squares and dashed line in Fig. 1) indicate
the PT -symmetry-breaking phase transition in the linear case and
loss of the stability of the nonlinear modes, respectively. (b) Intensity
evolution of a nonlinear mode governed by Eq. (25) with the initial
condition ψ0(x,t = 0) = φ0(x) given by Eq. (24) at ε = 0.45 for
the single-well potential V0(x) (14) and gain-and-loss distribution
W0(x) (20). Other parameters are n = 0 and α = 1.

FIG. 6. (Color online) (a) Time dependence of the parameter ε(t)
(solid line) given by Eq. (27). The circles and dashed line are
explained in Fig. 1. (b) Intensity evolution of a two-hump nonlinear
mode of Eq. (25) with n = 2, and α = 2 subject to the initial condition
ψ2(x,t = 0) = φ2(x) given by Eq. (24) at ε = 0.02 for the single-well
potential V0(x) (14) and gain-and-loss distribution W2(x) (20). The
dashed line shows the finally established amplitude of the mode which
is different.

Figure 5(b) exhibits the evolution of the solution ψ(x,t)
governed by Eqs. (25) and (26) subject to the initial condition
given by Eq. (24) with n = 0, i.e., for the single-well potential
V0(x), nonlinearity G(x), and gain-and-loss distribution W0(x)
given by Eqs. (14), (17), and (20), respectively. One observes
remarkably stable propagation with the increasing amplitude
of nonlinear modes, which is driven from a nonlinear mode at
the system parameters of the unbroken linear PT -symmetric
phase, to the stable nonlinear mode at the parameters where
the linear PT -symmetric phase is broken [i.e., while ε(t) is
growing there occurs the linearPT -symmetry phase transition
and linear modes become unstable].

Next we consider the excitation of the mode (24) with n = 2
described by Eq. (25) with the control parameter adiabatically
changing according to the law [see Fig. 6(a)]

ε(t) =
{

0.1 sin
(

πt
1200

) + 0.02, 0 � t < 600,

0.12, 600 � t � 1200.
(27)

The single-well potential V0(x), nonlinearity G(x), and gain-
and-loss distribution W2(x) are given by Eqs. (14), (17),
and (20), respectively.

Like in the previous case we observe a stable evolution of
the nonlinear mode “prepared” in a system with an unbroken
PT -symmetric phase and drawn to the system with a broken
PT -symmetric phase. The amplitude of the nonlinear mode
grows with ε(t) and remains unchanged after the control
parameter reaches its final value [see Fig. 6(b)].

V. A DOUBLE-WELL POTENTIAL

A. PT -symmetry phases of the linear problem

Now we consider a multiwell potential with V1(x)V2(x) �≡0,
which corresponds to case 2 in Eq. (10). Recalling that μ̃n is
given by Eq. (16) and considering φ̃n(x) given by Eq. (15) we
conclude that now the hydrodynamic velocity takes the form

vn(x) = Hn(x)e−x2/2 (28)

(i.e., it is now fixed having no free parameters).
From Eqs. (7) and (10) it follows that the gain-and-

loss distributions (i.e., imaginary potentials which are odd
functions) numbered by an even number n, i.e., ensuring
PT symmetry of the potential, and generated by the velocity
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field (28) are given by

Wn(x) = [
3nHn−1(x) − 3

2xHn(x)
]
e−x2/2. (29)

The real parts of the respective linear potential read

V1n(x) = − 1
2H 2

n (x)e−x2
, (30)

V2n(x) = −2σH 2
n (x)e−(α+1)x2

. (31)

All the members of the Wn(x) family of potentials are two-
parametric; they are determined by the amplitude given by ε in
Uε(x), and by the internal parameter α introduced in Eq. (31).

Unlike in case 1 considered in the previous section,
for the case of a multiwell potential the parameter σ [see
Eqs. (17) and (31)] need not be nonpositive and can acquire
positive values; i.e., the nonlinearity can be either attractive or
repulsive. Since, however, in this section we are interested in
double-well potentials, we concentrate on the “deformation”
of the linear potential

Uε(x) = x2

2
+ ε2V10(x) + ε4V20(x) + iεW0(x), (32)

where

V10(x) = − 1
2e−x2

, V20(x) = −2σe−(α+1)x2
, (33a)

W0(x) = − 3
2xe−x2/2, (33b)

(this corresponds to the chemical potential μ = μ̃0 = 1/2)
and we require σ < −1/(4ε2), the latter constraint ensuring
the required double-well shape.

Notice that at α = 0 the nonlinearity is a constant [see
Eq. (17)] while the real part of the potential Uε(x) preserves
a double-well shape. Nonlinear modes in this case were
recently reported in Refs. [17,24] (also, nonlinear modes in
a slightly different double-well potential with the imaginary
part (33b) were investigated in Ref. [25]). When α increases,
the amplitude of the potential barrier between the humps
decreases.

As above we start by defining the domains of the unbroken
and broken PT -symmetric phase of the underlying linear
problem with n = 0. Respectively, we consider the linear
spectral problem [cf. Eq. (21)]

L̃ = λ, L̃ = L0 + ε2V10(x) + ε4V20(x) + iεW0(x), (34)

where L0 is given by Eq. (5), and λ and  = (x) are the
eigenvalue and eigenfunction, respectively. For the present
case it is important that the nonlinearity can also be varied in
time and its value affects the stability of the mode. Indeed, in
Fig. 7(a) we show the domains of broken and unbroken phases
at ε = 0.8 on the (α,σ ) plane. The parametric dependence
of the lowest eigenvalues is shown in Figs. 7(b) and 7(c).
Like in the case of the one-hump potential we observe that
the unbroken phase corresponds to relatively large α and the
spontaneous symmetry breaking occurs as α decreases (which
corresponds to the increase of the width of the gain-and-loss
domains) due to the collision of the two lowest eigenvalues.
However, now the broken phase corresponds to a limited
interval of α and we observe the reentered unbroken phase
as α approaches zero. We also notice that the instability is
oscillatory: the emergent complex eigenvalues have a nonzero
real part.

B. Nonlinear modes in a double-well potential

Now we turn to the nonlinear modes in the PT -symmetric
double-well potential (32), whose explicit expression is ob-
tained from Eqs. (6) and (28):

φn(x) = εHn(x)e−x2/2 exp

(
iε

∫ x

−∞
Hn(ξ )e−ξ 2/2dξ

)
. (35)

The results of the linear stability analysis of solution (35)
are shown in Fig. 7(a). The feature most relevant for our
consideration consists in the domain, now with respect to σ ,
where the linear PT symmetry is broken, while the nonlinear
mode remains stable (in analogy with the case of the one-well
potential).

The stability of the nonlinear mode (35) with n = 0 is also
confirmed by the direct propagation with the perturbation of
the initial profile, as illustrated in Fig. 8. In Fig. 8(b) we show
stable propagation of the soliton for the parameters belonging
to the domain of the unbroken linear PT -symmetric phase
of the operator L̃ [defined in Eq. (34)], and to the linearly
stable nonlinear mode. In Fig. 8(c) we illustrate the evolution
of the mode where the linear PT -symmetric phase is broken;
however, the nonlinear mode is linearly stable.

Now we turn to the excitation of nonlinear modes in
the double-well potential. Since the potential V20(x) and
nonlinearity G(x) both contain σ , this parameter σ can be
exploited for management (i.e., for excitation, in our case) of

FIG. 7. (Color online) (a) The line of the PT -symmetry phase transition for the PT -symmetric potentials (32). The unbroken (broken)
PT -symmetric phase is in the domain above (below) the phase-breaking lines. Triangles indicate the border of the linear stability domain of
the mode (35) with n = 0. Stable (unstable) solitons are in the domains above (below) the respective border lines. (b) Real and (c) imaginary
parts of the eigenvalue λ [see Eq. (34)] as functions of α for the potential (32) at σ = −0.73. In all panels ε = 0.8.
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FIG. 8. (Color online) (a) The same nonlinear modes given by Eq. (35) with n = 0, α = 4, ε = 0.8 for both σ = −0.65 (real spectrum of
the operator L̃, i.e., unbroken linear PT symmetry) and σ = −1.25 (broken linear PT symmetry). Both nonlinear modes are linearly stable
[see Fig. 7(a)] which are illustrated in (b) and (c) where the direct numerical simulations of Eq. (35) are performed with a weakly perturbed
initial profile (a) for different parameters σ = −0.65 and σ = −1.25, respectively.

the nonlinear modes. To this end we consider σ to be a function
of t and address the adiabatic switch-on of the potential and the
nonlinearity, governed by the model (1) which now is rewritten
in the form

i∂tψ = − 1
2∂2

xψ + [V0(x) + ε2V10(x) + ε4V20(x; σ (t))

+ iεW0(x)]ψ + ε2G(x; σ (t))|ψ |2ψ. (36)

Here the double-well potential V10(x) and gain-and-loss distri-
bution W0(x) are given by Eqs. (33a) and (33b), respectively,
and V20(x; σ (t)) and G(x; σ (t)) stand for V20(x) and G(x)
given by Eqs. (33a) and (17) with σ replaced by σ (t).

According the general idea described above, now we choose
the adiabatic change of σ (t) in such a way that it ensures
that the system evolves from the domain of the unbroken
PT symmetry of the underlying linear model to a broken
phase where, however, the nonlinear mode is linearly stable.
More specifically, in the numerical simulations we exploit the
dependence

σ (t) =
{−0.6 sin

(
πt

1200

) − 0.65, 0 � t < 600,

−1.25, 600 � t � 1200.
(37)

The dependence σ (t) is illustrated in Fig. 9(a).
Figure 9(b) exhibits the excitation of a nonlinear mode

described by Eq. (36) for the double-well potential, i.e., V0(x),
V10(x), V20(x; σ (t)), nonlinearity G(x; σ (t)) and gain-and-loss
distribution W0(x) determined by Eq. (37) for the varying

FIG. 9. (Color online) (a) Time dependence of the parameter σ (t)
given by Eq. (37) (solid line). Dashed line and triangles indicate
boundaries of the stability of the nonlinear mode and the unbroken
PT -symmetric phase (in both cases above the respective curve). (b)
Intensity evolution of the nonlinear mode of Eq. (36) with the initial
condition given by Eq. (35) for the double-well potential with n = 0,
α = 4, and ε = 0.8.

parameter σ (t). The initial condition in these simulations has
taken the form of (35) with n = 0. In the figure we again
observe the stable evolution of the nonlinear mode between the
initial and final shapes of the potential (notice that the change
of the mode amplitude is relatively small and not clearly visible
on the scale of the figure).

VI. DISCUSSION AND CONCLUSIONS

In the present paper we reported several new branches
of nonlinear modes described by the nonlinear Schrödinger
equation with the PT -symmetric single-well and double-well
potentials and Hermite-Gaussian distributions of the gains
and losses. The reported solutions are two-parametric, each
of the parameters defining a branch of the solutions. All the
considered branches bifurcate from the modes of the respective
linear potentials. A peculiarity of the reported modes consists
in their stability properties: their stability in the parameter
space extends beyond the domains of the stability of the
respective limits, i.e., beyond the domain of the unbroken
PT -symmetric phase of the underlying linear problem. This
suggests a possibility of how a stable nonlinear mode can be
excited in aPT -symmetric system with brokenPT symmetry.
The method is based on drawing the mode by adiabatic
change of one of the control parameters along the branch
from the domain where linear stability is verified and the
PT -symmetric phase is unbroken, i.e., where the mode can
be excited by one of the conventional methods, to the domain
where the PT symmetry is broken but the nonlinear stability
still persists. Notices that when PT symmetry is broken, the
ground and the first excited states are indistinguishable in
Figs. 2 and 7.

While the described approach is straightforward mathe-
matically it leaves an open problem on managing gains and
losses by a single parameter, while in many cases the physical
phenomena responsible for gains and losses have different
natures. Speaking more generally, to implement the suggested
scheme in practice one need not hold an integrable model
but one does need to preserve balance between the gains
and losses. This last goal can be achieved in at least one of
the following ways. First, considering PT -symmetric profiles
created in mixtures of atomic gases [14], one can modify both
active and lossy domains by a single parameter, which is the
intensity or wavelength of the control field, or alternatively by
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varying in space the properties of cladding of the atomic cell.
The latter affects the whole spectrum of the underlying linear
problem, i.e., both real and imaginary parts of the refractive
index. On the other hand, when considering PT -symmetric
double-well potentials in Bose-Einstein condensate problems,
to ensure the balance between varying gains and losses one has
to perform simultaneous loading of atoms to one of the wells
(either using an atomic laser [26] or tunneling from a neighbor
potential well, as suggested in Ref. [16]) and eliminating atoms
(using, for example, ionization by an external beam [27] or
leakage of atoms through tunneling [16]).

Finally, returning to the considered exact model, the method
was tested using the found exact solutions in the form

of one- and two-hump modes supported by the one-well
PT -symmetric potential and by the repulsive nonlinearity, as
well as for the modes in a double-well potential and attractive
nonlinearity. In all the cases we observed the stable evolution
of nonlinear modes, thus supporting the practical feasibility of
the approach.
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