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Gamma-ray laser based on the collective decay of positronium atoms in a Bose-Einstein condensate
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We consider, in general, the collective two-photon annihilation decay of positronium atoms arising from the
second quantized formalism. It is shown that two-photon annihilation of positronium atoms in a Bose-Einstein
condensate (BEC) is unstable. Due to the BEC coherence, an absolute instability in such system takes place,
i.e., the number of photons created as a result of positronium decay grows in every point within a BEC. The
latter leads to an exponential buildup of a macroscopic population into the certain modes. Cooperative effects
start for densities much smaller than the Dicke limit of spontaneous super radiation. For laserlike action, i.e., for
directional radiation, we consider the BEC with elongated shape when the spontaneously emitted entangled and
oppositely directed photon pairs are amplified, leading to an exponential buildup of a macroscopic population
into the end-fire modes. We also consider the roles of confinement and interaction among positronium atoms in
the amplification process.
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I. INTRODUCTION

Positronium (Ps), a bound state of an electron and a positron
[1], being a unique physical system, has attracted enormous
interest since the origination of quantum electrodynamics
(QED). Being a pure leptonic atom, Ps is of interest for
revealing QED effects with great precision [2]. Besides, Ps is
a matter-antimatter compound and may play a central role for
achieving a fundamental understanding of diverse phenomena
in many branches of contemporary physics, ranging from
the elementary particle physics [3] to astrophysics [4–6], as
well as condensed-matter physics [7–11]. In the dilute limit,
the Ps atoms behave as weakly interacting bosons and may
form a Bose-Einstein condensate (BEC) [7]. The successful
realization of BEC in the trapped alkali atoms [12,13], which
are several thousand times heavier than a Ps, provides an
enormous stimulus for the research in this direction [8–11]
because the critical BEC temperature of a Ps gas is much
higher than that of an alkali atom gas with the same number
density, which is a crucial advantage from an experimental
point of view. For instance, for a Ps density 1019 cm−3, the
critical temperature would be Tc � 70 K. Nevertheless, to
realize a BEC of Ps atoms, two problems should be overcome.
First, one should find effective sources of slow positrons. For
practical use in BEC studies, positrons need to be cooled
down to a few electron volts by means of a moderator and
then trapped. The traditional sources for positrons, such as
the β+ decay of radioactive isotopes [14] and the Surko trap
method [15], seem to be a promising route. Second, one should
form bound states of the electron positron and cool the system
in a time scale much smaller than the lifetime of a Ps. The
singlet (11S0) state of a Ps, i.e., the so-called parapositronium
(p-Ps), mainly decays into the two photons with the lifetime
of τp � 125 ps, while the triplet (13S1) state of a Ps, i.e.,
the so-called orthopositronium (o-Ps), mainly decays into the
three photons with a relatively long lifetime of τo � 142 ns
[16,17]. The recent advances in this direction show that the
positrons implanted into a porous silica film may efficiently
form Ps atoms [8–11] or molecules [18]. Regarding the fast
cooling of Ps atoms, the current technique allows a laser
cooling in the time scales smaller than the o-Ps lifetime [19].

In Ref. [20], the possibility to produce a BEC made of
Ps atoms in a porous silica material containing nanometric
cavities was investigated. The numerical simulations showed
that the condensation process is compatible with the o-Ps
lifetime. Besides, the lifetime of Ps strongly depends on the
external conditions. In particular, one can achieve considerable
enhancement of the lifetime of the Ps in the laser fields [21–24]
or in the magnetic fields [25].

Another issue is the interaction of Ps atoms with the mutual
spin-conversion reactions. In Ref. [26], the obtained s-wave
scattering lengths were as � 8.44aB for the singlet-singlet and
at � 3aB for the triplet-triplet states (aB is the Bohr radius).
The positive scattering length means that a stable BEC of
the o-Ps atoms is physically possible. The large value of the
o-Ps,o-Ps to the p-Ps,p-Ps cross section, ∼7.4πa2

B , suggests
for BEC the use of spin-polarized positrons, as proposed in
Ref. [7]. The two-component BEC of the o-Ps and p-Ps atoms
has been considered in Ref. [27] and it was shown that for an
initially unpolarized condensate in an isotropic cavity, there is
a threshold density of BEC at which the spin mixing between
the o-Ps and p-Ps atoms occurs. For a stimulated o-Ps to p-Ps
transition, they suggest a specific choice of an external field.

Regarding the other sources of positrons, it is worthwhile to
note the experiments [28] and further theoretical investigations
[29] showing that one can achieve the production of positrons
with the density of 1020 cm−3 at the laser-solid interactions.
In the astrophysical conditions, there are many sources of
positrons and even Ps atoms. Electron-positron plasmas are
an inherent feature of the winds from the pulsars and black
holes [30,31]. Besides, Ps atoms are connected with the cosmic
electron-positron annihilation radiation first detected from the
Galactic Center direction during the 1970s. Since these times,
the International Gamma-Ray Astrophysics Laboratory has
greatly refined these measurements [4–6] and has shown that
the line center is ∼511 keV with the annihilation rate ∼3 ×
1042 electron-positron pairs per second. The data analysis
suggests that annihilations through Ps formation dominate
(on average 90%), resulting in a narrow 511 keV line [5,6].
However, it follows that the origin of these positrons and the
formation of Ps atoms in astrophysical conditions remain a
mystery.
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Because of the ongoing progress in physics for the produc-
tion and manipulation of positronium atoms, one can expect
the realization of BEC of Ps atoms in the near future. The
latter is a very challenging project and could lead to various
fundamental applications. In particular, it is of great interest to
investigate the process of collective annihilation decay of Ps
atoms from the BEC state, as a coherent ensemble of lasing
atoms, towards the generation of intense coherent γ rays in
the MeV domain of energies. The creation of a γ -ray laser
has been the subject of extreme interest since the realization
of the first lasers. The annihilation of electron-positron pairs
has been considered as one of the basic processes for the
intense γ -ray sources. The induced annihilation of a pair was
already considered by Dirac [32]. For the observed γ -ray
lines from the astrophysical objects, the radiation through the
spontaneous [33] and stimulated annihilation [34,35] of an
electron-positron plasma was considered. Then the ideas of Ps
BEC and subsequent annihilation in the context of a γ -ray laser
were considered in Refs. [19,36–38]. In these papers, the lasing
gain coefficient has been obtained from the rate equations. The
latter is applicable to lasing systems with drivers (initial seed)
and resonators and cannot be extrapolated to the exponential
gain regime [39]. Meanwhile, because there are no drivers
or mirrors operable at γ -ray frequencies, one should realize
single pass lasers operating in the so-called self-amplified
spontaneous-emission regime. A mechanism of a γ -ray laser
at the collective annihilation of Ps atoms in a BEC state
in the self-amplified spontaneous-emission regime has been
proposed in Ref. [40]. It has been shown that at the coupling
of two macroscopic coherent ensembles of bosons—the BEC
of Ps atoms and photons—there is an instability at which,
starting from the vacuum state of the photonic field, the
expectation value of the photon’s mode occupation grows
exponentially for a narrow interval of frequencies around
the 511 keV line. In the present paper, a more detailed
and thorough study of the γ -ray generation at the collective
annihilation of Ps atoms in a BEC state in the self-amplified
spontaneous-emission regime is presented. Here we utilize
the more general Hamiltonian including the stimulated o-Ps
to p-Ps transition. For the elongated shape of the BEC, it
shows a laserlike action, i.e., directional radiation when the
spontaneously emitted entangled and the oppositely directed
photon pairs are amplified, leading to an exponential buildup
of a macroscopic population into the end-fire modes. We also
investigate the influence of an external potential and interaction
between the Ps atoms on the γ -ray self-amplification process.

The paper is organized as follows. In Sec. II, the main
Hamiltonian is constructed. In Sec. III, two-photon decay
of a Ps atom is analyzed. In Sec. IV, we consider the
intrinsic instability of recoilless collective two-photon decay
and present the setup for a γ -ray laser. In Sec. V, we
consider the influence of confinement and interaction between
the positronium atoms on the considered process. Finally,
conclusions are given in Sec. VI.

II. BASIC HAMILTONIAN

We begin our study with construction of the Hamiltonian
which governs the quantum dynamics of the considered
process. Here and below, except where it is stated otherwise,

FIG. 1. (Color online) The energy levels of interest. The upper
two levels represent hyperfine splitting of the ground state of Ps. The
applied electromagnetic field drives the o-Ps =⇒ p-Ps transition.
The annihilation decay of the p-Ps into two entangled photons of the
same helicity is shown.

we employ natural units (c = � = 1). Since o-Ps has a
relatively long lifetime, in a laboratory-based experiment it
will be more suitable to obtain a Bose-Einstein condensate for
o-Ps. As was proposed in Ref. [7], the use of spin-polarized
positrons will eventually lead to a gas of spin-polarized Ps,
which does not undergo the mutual spin-conversion reaction.
Thus, in the ensemble of Ps atoms, rapid annihilation of the
singlet states and collisions among the various triplet substates
will cause the Ps atoms to become completely polarized
into a pure m = 1 triplet state. Then, to trigger two-photon
annihilation, one should induce the triplet-to-singlet transition.
The latter can be realized via the ground-state hyperfine
transition either by the resonant sub-THz radiation (0.2 THz)
or strong off-resonant electromagnetic field. Thus, in Fig. 1, the
energy levels of interest are schematically shown. The upper
two levels represent hyperfine splitting of the ground state of
a Ps atom. The applied electromagnetic wave field drives the
o-Ps =⇒ p-Ps transition. Then annihilation decay of the p-Ps
into the two entangled photons of the same helicity are shown.

To obtain dynamic equations, we will utilize the second
quantized formalism. For this purpose, let us introduce the cre-
ation and annihilation operators for p-Ps and o-Ps. The opera-
tor describing the creation of p-Ps in the internal ground state
with the total center-of-mass momentum p can be written as

�̂+
p = 1√

2V

∫
d�p′ϕ

(
p′ − p

2

)
[̂a+

p′,s+ b̂+
p−p′,s−

− â+
p′,s− b̂+

p−p′,s+ ], (1)

where ϕ(p) is the Fourier transform of the ground-state wave
function,

ϕ(p) =
8
√

πa3
0(

1 + p2a2
0

)2 , (2)

a0 = 2/(mα0) is the Bohr radius for Ps, m is the electron
mass, and α0 is the fine-structure constant. For the
phase-space integration, we have introduced the notation
d�q = Vd3q/(2π )3 (V is the quantization volume). In
Eq. (1), â+

p,s and b̂+
p,s are the creation operators for electrons

and positrons, respectively. The quantum number s describes
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the spin state of the particles. The operators â+
p,s and b̂+

p,s

satisfy the fermionic anticommutation rules

{̂ap,s ,̂a
+
p′,s ′ } = (2π )3

V δ(p − p′)δss ′ . (3)

The commutator for the p-Ps operator is

�̂p�̂
+
p′ − �̂+

p′�̂p � (2π )3

V δ(p − p′) − O

(
a3

0
N0

V

)
. (4)

This is a bosonic commutation relation for a relatively small
number of p-Ps atoms N , i.e., at N/V << a−3

0 ∼ 1024 cm−3.
However, at high densities, one should take into account the
deviations from the bosonic nature. The operator describing the
creation of o-Ps in the pure m = 1 triplet state can be written as

�̂+
p = 1√

2V

∫
d�p′ϕ

(
p′ − p

2

)
â+

p′,s+ b̂+
p−p′,s+ . (5)

The total Hamiltonian consists of four parts,

Ĥ = ĤPs + Ĥph + Ĥo→p + Ĥ2γ . (6)

Here the first part is the Hamiltonian of free Ps atoms of two
species,

ĤPs =
∫

d�pE�(p)�̂+
p �̂p +

∫
d�pE�(p)�̂+

p �̂p, (7)

where

E�(p) =
√

(2m + ES0 )2 + p2,

(8)
E�(p) =

√
(2m + ES1 )2 + p2,

are the total energies of the p-Ps and o-Ps with the momentum
p of the center-of-mass motion, and ES0 , ES1 are the binding
energies, respectively. The origin of the energy difference
between the ground states of the o-Ps and p-Ps (hyperfine
splitting) is the spin-spin interaction [16]. In the lowest order
of α0, the latter is

ES1 − ES0 ≡ εhfs = 7
12mα4

0 � 0.85 meV. (9)

The second term in Eq. (6) is the Hamiltonian of the free
photons,

Ĥph =
∑

ζ

∫
d�kω(k)̂c+

k,ζ ĉk,ζ , (10)

where ĉk,ζ (̂c+
k,ζ ) is the annihilation (creation) operator of the

photon with the momentum

k = ω(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). (11)

FIG. 2. (Color online) Feynman diagrams for the two-photon
decay of a p-Ps.

As the two independent basis vectors of the polarization, we
have chosen

ε(ζ ) = 1√
2
{ζ cos ϑ cos ϕ + i sin ϕ,ζ cos ϑ sin ϕ

−i cos ϕ, − ζ sin ϑ}, (12)

which corresponds to the certain helicity (ζ = ±1) of photons,

ε(ζ )ε∗(ζ ′) = δζζ ′ ; kε(ζ ) = 0.

The third part in Eq. (6) is the Hamiltonian that is responsible
for the triplet-to-singlet transition,

Ĥo→p =
∫

d�p[�(t)�̂+
p �̂p + �∗(t)�̂+

p �̂p]. (13)

Here it is assumed that the o-Ps =⇒p-Ps transition is recoilless
(the generalization of obtained results for the transition with
momentum transfer is straightforward) and

�(t) = �0e
iωf t ; �0 = 1

2μBB0, (14)

where �0 is the amplitude of the spin-magnetic field in-
teraction, μB = e/2m = 5.8×10−5 eV × T−1 is the Bohr
magneton, B0 is the amplitude of the applied magnetic field,
and ωf is the frequency of the applied wave field. The last
term in Eq. (6),

Ĥ2γ =
∑
ζ,ζ ′

∫
d�k

∫
d�p[Mζ,ζ ′ (k,p)̂c+

k,ζ ĉ
+
p−k,ζ ′�̂p

+M∗
ζ,ζ ′ (k,p)�̂+

p ĉp−k,ζ ′ ĉk,ζ ], (15)

is the Hamiltonian of the two-photon decay of a p-Ps. The
amplitude Mζ,ζ ′ (k,p) for the annihilation of a p-Ps into the
two photons is given by the Feynman diagrams in Fig. 2. The
latter can be derived from the amplitude for annihilation of a
free electron-positron pair with the momenta p− and p − p−
into the two photons with the polarizations ε(ζ ), ε(ζ ′) and
momenta k, k′ = p − k [17]. Taking into account definition
(1), we obtain

Mζ,ζ ′ (k,p) = πα0

V3/2

∫
d�p−ϕ

(
p− − p

2

)√
2ωω′ε(p − p−)ε(p−)

×
{
v̄(s+)(p − p−)

[
/ε∗

(ζ ′)
1

/p− − /k − m
/ε∗

(ζ ) + /ε∗
(ζ )

1

/p− − /k′ − m
/ε∗

(ζ ′)

]
u(s−)(p−) − (s+ ⇔ s−)

}
, (16)

where /a ≡ aμγ μ, γ μ ≡ {γ 0,γ 1,γ 2,γ 3} are the Dirac matrices, ε(p) is given by the free-electron dispersion relation, and u(α)(p)
and v(α)(p) are the bispinor amplitudes of a free Dirac particle corresponding to the electron and positron, respectively.
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We consider a dilute system of Ps atoms when na3
t � 1,

and interaction between the Ps atoms is neglected. For the
considered process of γ -ray annihilation decay, this is justified
for a uniform system of Ps atoms and for the condensate
confined by a box with sufficiently (infinitely) hard walls (see
Sec. VI).

III. SPONTANEOUS TWO-PHOTON DECAY OF A
PARAPOSITRONIUM

Before considering collective annihilation decay of the p-
Ps, it will be useful to consider the spontaneous decay of
single p-Ps from the quantum dynamic point of view. For this
purpose, we need Hamiltonian (6), without the Ĥo→p and o-Ps
parts in Eq. (7):

Ĥ =
∫

d�pE�(p)�̂+
p �̂p + Ĥph + Ĥ2γ . (17)

For the spontaneous decay, we consider the initial condition
in which the photonic field begins in the vacuum state, while
the p-Ps field is prepared in a Fock state with one p-Ps in
the rest (p = 0). From Eq. (1), it follows that such state can
be represented as |�(0)〉 = |0ph〉 ⊗ �̂+

0 |0Ps〉. Then the state
vector for times t > 0 is just given by the expansion

|�〉 = C0(t)e−iE�(0)t |0ph〉 ⊗ �̂+
0 |0Ps〉 +

∑
α,α′

∫
d�kd�k′

×Ck,α;k′,α′ (t)e−i(ω+ω′)t ĉ+
k,αĉ+

k′,α′ |0ph〉 ⊗ |0Ps〉, (18)

where Ck1,α1;k2,α2 (t) is the probability amplitude for the
photonic field to be in the two-photon state, while the p-Ps
field is in the vacuum state. From the Schrödinger equation,
one can obtain evolution equations,

i
∂Ck,α;k′,α′

∂t
= Mα,α′ (k,0) + Mα′,α

(
k′,0

)
2

×C0e
i(2ω−E�(0))t (2π )3

V δ(k + k′), (19)

i
∂C0

∂t
= 2

∑
ζ,ζ ′

∫
d�kM∗

ζ,ζ ′ (k,0)ei[E�(0)−2ω]tCk,ζ ;−k,ζ ′ . (20)

Here we have taken into account the bosonic nature of photons:
Ck1,α1;k2,α2 = Ck2,α2;k1,α1 .

The calculation of the amplitudeMζ,ζ ′ (k,0) is substantially
simplified if one takes into account the nonrelativistic nature
of the Ps internal degrees of freedom. As follows from Eq. (2),
the wave function ϕ(p) takes sizable values for momenta
p � 1/a0 ∼ mα0 � m. Meanwhile, the momentum scale for
positronium annihilation is of the order of m. This corresponds
to the well-known fact that positronium decay is only sensitive
to the value of the wave function at zero separation of the
electron and positron,

φ(0) = 1

V

∫
d�p−ϕ(p−) =

√
m3α3

0

8π
. (21)

Hence, one can make an approximation for the amplitude
Mζ,ζ ′ (k,0) as follows:

Mζ,ζ ′ (k,0) = πα0√
2Vm2

[
1

V

∫
d�p−ϕ(p−)

]{
v̄(s+)(0)

[
/ε∗

(ζ ′)
1

/p− − /k − m
/ε∗

(ζ ) + /ε∗
(ζ )

1

/p− − /k′ − m
/ε∗

(ζ ′)

]
u(s−)(0) − (s+ ⇔ s−)

}
.

(22)

In Eq. (22), p− = {m,0,0,0}, k = {m,mk̂}, and k′ =
{m, − mk̂}. After long but straightforward calculations, we
arrive at

Mζ,ζ ′ (k,0) = i
4πα0φ(0)

m2
√

2V
k̂·[ε∗

(ζ ) × ε∗
(ζ ′)]. (23)

Then, taking into account Eqs. (11), (12), and (21), we have

Mζ,ζ ′ (k,0) = −
√

πα5
0

mV ζ δζ,ζ ′ . (24)

Then, according to perturbation theory, we take C0(t) � 1, and
for the amplitude Ck,α;k′,α′ (t → ∞) from Eq. (19), we obtain

Ck,α;k′,α′ = i

√
πα5

0

mV
(2π )4

V αδα,α′

× δ(k + k′)δ[2ω(k) − E�(0)]. (25)

Then, returning to expansion (18), one can write

|�〉 � C0e
−iE�(0)t |0ph〉 ⊗ �̂+

0 |0Ps〉 + i

√
Vm3α5

0

8π3/2
|0Ps〉

⊗
∫

dk̂e−2imt [̂c+
k,+ĉ+

−k,+|0ph〉 − ĉ+
k,−ĉ+

−k,−|0ph〉].
(26)

As is seen from Eq. (24), the two-photon annihilation ampli-
tude does not depend on k; as a result, the two-photon state (26)
resulting from the p-Ps decay is a maximally entangled (over
the helicity) state of the two oppositely propagating photons.

For the decay rate of the process, p-Ps → 2γ , one can write

� = 1

2

∑
α1,α2

∫
d�k1d�k2

∣∣Ck1,α1;k2,α2

∣∣2

T
,

where T is the interaction time and the symmetry factor 1/2!
takes into account that in the final state there are two identical
photons. With the help of Eq. (25), we obtain the well-known
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result [16]

� = mα5
0

2
. (27)

IV. COLLECTIVE TWO-PHOTON DECAY

For analysis of the collective two-photon decay, we will use
the Heisenberg representation, where the evolution operators
are given by the following equation:

i
∂L̂

∂t
= [L̂,Ĥ ], (28)

and the expectation values are determined by the initial wave
function �0,

〈L̂〉 = 〈�0|L̂|�0〉.
We will assume that the photonic field starts up in the vacuum
state, while the Ps field is in the Bose-Einstein condensate
state. Taking into account Hamiltonian (6) from Eq. (28), we
obtain a set of equations,

i
∂ĉk,ζ

∂t
= ω(k)̂ck,ζ +

∑
ζ1

∫
d�p

{
Mζ,ζ1 (k,p)

+Mζ1,ζ (p − k,p)
}̂
c+

p−k,ζ1
�̂yp, (29)

i
∂�̂p

∂t
= E�(p)�̂p + �(t)�̂p

+
∑
ζ1,ζ2

∫
d�kM∗

ζ1,ζ2
(k,p)̂cp−k,ζ2 ĉk,ζ1 , (30)

i
∂�̂p

∂t
= E�(p)�̂p + �∗(t)�̂p. (31)

These equations are a nonlinear set of equations with the
photonic and Ps fields’ operators defined self-consistently. As
we are interested in the quantum dynamics of the considered
system in the presence of instabilities, we can decouple the
photonic and Ps fields treating the dynamics of a photonic
field. Passing to the interaction picture,

�̂p = �̂pe
−iE�(p)t , �̂p = �̂pe

−i[E�(p)−ωf ]t ,

ĉk,ζ = âk,ζ e
−iω(k)t , (32)

for the new operators âk,ζ , �̂p, and �̂p, we obtain

i
∂âk,ζ

∂t
=

∑
ζ1

∫
d�p

{
Mζ,ζ1 (k,p) + Mζ1,ζ (p − k,p)

}
× â+

p−k,ζ1
�̂pe

i[ω(k)+ω(p−k)−E�(p)+ωf ]t , (33)

i
∂�̂p

∂t
+ �p�̂p = �0�̂p +

∑
ζ1,ζ2

∫
d�kM∗

ζ1,ζ2
(k,p)

× âp−k,ζ2 âk,ζ1e
−i[ω(k)+ω(p−k)−E�(p)+ωf ]t ,

(34)

i
∂�̂p

∂t
= �0�̂p, (35)

where

�p = E�(p) − ωf − E�(p)

is the resonance detuning for the triplet-to-singlet transition.
We assume that the Ps atoms are initially in the triplet state
(m = 1). For driving the triplet-to-singlet transition, we will
consider both resonant and nonresonant interactions. At the
resonant case |�p|2 � �2

0 and in the ultrafast excitation
regime (smaller than the lifetime of the o-Ps) when relaxation
processes are not relevant, the Rabi oscillation provides a
direct control of the states’ populations. Thus, with the π

pulse
∫

�0dt = π , the population can be transferred from the
o-Ps to p-Ps state and, instead of Eqs. (34) and (35), one can
consider equation

i
∂�̂p

∂t
=

∑
ζ1,ζ2

∫
d�kM∗

ζ1,ζ2
(k,p)

× âp−k,ζ2 âk,ζ1e
i[E�(p)−ω(k)−ω(p−k)]t . (36)

At the nonresonant case |�p|2 � �2
0, the pump electromag-

netic field is sufficiently far detuned from the resonance for
the p-Ps state population to remain small at all times. The
intermediate level can then be eliminated in the standard way,

�̂p � �0

�p
�̂p,

and, from Eqs. (33)–(35), we get

i
∂âk,ζ

∂t
=

∑
ζ ′

∫
d�p[Mζ,ζ ′ (k,p) + Mζ ′,ζ (p − k,p)]

× â+
p−k,ζ ′�̂p

�0

�p
ei[ω(k)+ω(p−k)−E�(p)+ωf ]t , (37)

i
∂�̂p

∂t
= �0

�p

∑
ζ,ζ ′

∫
d�kM∗

ζ,ζ ′ (k,p)

× âp−k,ζ ′ âk,ζ e
i[E�(p)−ωf −ω(k)−ω(p−k)]t . (38)

To decouple the photonic and Ps fields, we just use the
Bogoliubov approximation. If a lowest-energy single-particle
state has a macroscopic occupation, we can separate the field
operators (�̂p,�̂p) into the condensate term and the noncon-
densate components, i.e., the operator �̂p in Eq. (33) or �̂p in
Eq. (37) is replaced by the c number as follows:

�̂p = √
n0

(2π )3

V1/2
δ(p), (39)

where n0 is the number density of atoms in the condensate.
Making the Bogoliubov approximation, we arrive at a finite
set of the Heisenberg equations,

i
∂âk,ζ

∂t
= χζ (k)̂a+

−k,ζ e
iδ(k)t , (40)

i
∂â+

−k,ζ

∂t
= −χζ (k)̂ak,ζ e

−iδ(k)t , (41)

which couples the modes âk,ζ to the modes â−k,ζ with the
coupling constant

χζ (k) = 2
√

neffV1/2Mζ,ζ (k,0). (42)
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Here,

δ(k) = 2ω − E�(0) � 2(ω − m∗) (43)

is the resonance detuning for the two-photon annihilation, m∗
is the half of the Ps mass, which is the electron (positron)
mass diminished by the Coulomb attraction: m∗ = m + ES0/2
(ES0 = −6.8 eV). For the joint consideration of resonant and
nonresonant cases, we have introduced the effective BEC
density neff = �n0, where the factor � = 1 for the resonant
triggering and � = �2

0/�
2
p for the off-resonant one.

Equations (40) and (41) are a set of linearly coupled
operator equations that can be solved by the method of charac-
teristics whose eigenfrequencies define the temporal dynamics
of the photonic field. The existence of an eigenfrequency
with an imaginary part would indicate the onset of instability
at which the initial spontaneously emitted entangled photon
pairs are amplified, leading to an exponential buildup of a
macroscopic mode population. Solving Eqs. (40) and (41), we
obtain

âk,ζ (t) = ei δ(k)
2 t

[̂
ak,ζ (0) cos λt

+ 1

iλ

{
χζ (k)̂a+

−k,ζ (0) + δ(k)

2
âk,ζ (0)

}
sin λt

]
, (44)

where

λ =
√

δ2(k)

4
− χ2

ζ (k). (45)

The condition for the exponential gain is therefore

|χζ (k)| > |ω − m∗|,
leading to the exponential growth of the modes in the narrow
interval of frequencies

m∗ − |χζ (k)| < ω < m∗ + |χζ (k)|. (46)

For the interval (46), we find that the expectation value of the
mode occupation grows exponentially,

Nk,ζ (t) = 〈0ph |̂a+
k,ζ (t )̂ak,ζ (t)|0ph〉 = χ2

ζ (k)

4χ2
ζ (k) − δ2(k)

× (
e

2
√

χ2
ζ (k)− δ2(k)

4 t + e
−2

√
χ2

ζ (k)− δ2(k)
4 t − 2

)
. (47)

For the central frequency [δ(k) = 0], the exponential growth
rate is

G = 2|χζ (k)|. (48)

Taking into account Eq. (42) and derived expression (24) for
the decay amplitude, we obtain the compact expression for the
exponential growth rate,

G =
√

16πneffα
5
0

m
. (49)

We have solved the issue considering uniform BEC without
boundary conditions and, as a consequence, according to
Eqs. (49) and (47), we have isotropic exponential gain. Due to
the BEC coherence, here we have an absolute instability, i.e.,

10-6
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100

102
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G
ai

n 
(c

m
-1

)

neff (cm-3)

G 
G0

FIG. 3. Comparison of gains. In the logarithmic scale, we plot G

and G0 vs the effective density of p-Ps atoms in BEC.

the number of photons grows in every point within a BEC.
In the meantime, in earlier works [19,36], it was considered
γ -ray amplification due to the propagation through BEC. As
seen from Eq. (49), the gain is scaled as

√
neff , which means

that one might observe the startup of an annihilation γ -ray
laser at lower densities than would be the case for a gain
proportional to the density. Indeed, the Dirac rate from the
earlier works [19,36–38] can be written as

G0 = 2π

m2
neff . (50)

For the visualization in Fig. 3, we plot G and G0 as a function
of neff . As is seen from this figure, the gain G is larger than
Dirac rate G0 up to densities 4. 53 × 1020 cm−3. Besides, as is
seen from (47), the generation process starts without the initial
seed.

For laserlike action, i.e., for directional radiation, we should
take an elongated shape of the BEC. In this case, boundary
conditions can be incorporated into the derived equations (40)
and (41) by introducing mode damping. The latter is simply
due to the propagation of the photonic field, which escapes
from the active medium and is inversely proportional to the
transit time of a photon in the active medium. This transit
time strictly depends on the direction. The latter is equivalent
to the finite interaction time strictly depending on the shape of
the BEC. For concreteness, we consider a cigar-shaped BEC
of width Lw and length L (L � Lw). A feasible experimental
setup for the γ -ray laser is shown in Fig. 4. It is assumed that
initially we have a BEC of spin-polarized o-Ps atoms. Then the
applied electromagnetic field triggers collective annihilation
of the BEC. Due to the intrinsic instability of recoilless
two-photon decay and shape of the condensate, the initial
spontaneously emitted entangled photon pairs are amplified,
leading to an exponential buildup of a macroscopic population
into the end-fire modes. In this case, due to an azimuthal
symmetry for the effective interaction time, one can write

tint(ϑ,χ,L) = L√
cos2 ϑ + χ2 sin2 ϑ

, (51)
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FIG. 4. (Color online) Feasible experimental setup for a γ -ray
laser with a cigar-shaped BEC of initially spin-polarized o-Ps atoms.
The applied electromagnetic field initiates the transition from the
o-Ps BEC to the p-Ps one, triggering collective annihilation of the
condensate.

where χ = L/Lw � 1. In this case, for the photon number
density in the frequency interval (46),

nγ �
∑

ζ

∫
d3k

(2π )3 Nk,ζ [tint(ϑ,χ,L)], (52)

we have

nγ � G

2π2λ2
c

∫ 1

0
dx

∫ π

0
dϑ

sin ϑ

1 − x2

× sinh2

( √
1 − x2�

2
√

cos2 ϑ + χ2 sin2 ϑ

)
, (53)

where λc = �/mc is the electron Compton wavelength and
the dimensionless interaction parameter � = GL defines the
amplification regime. In Fig. 5, we show the density of
generated γ -ray photons nγ versus the effective density of
p-Ps atoms in a BEC for the given length L = 1.5 cm and
various widths. The ratio χ = L/Lw defines the angular width
of the end-fire modes. For the densities, when � > 1, we
have high gain regime and the radiation is concentrated in the
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neff (cm-3)
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FIG. 5. The density of generated γ -ray photons vs effective
density of p-Ps atoms in BEC for the given interaction length
L = 1.5 cm and various widths, Lw = L/χ , in the logarithmic scale.
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FIG. 6. Angular distribution of the density of generated γ -
ray photons for the given interaction length L = 1.5 cm, density
1021 cm−3, and various widths, Lw = L/χ . There is a similar peak
close to ϑ � π .

end-fire modes. In Fig. 6, the angular distribution of the density
of generated γ -ray photons dnγ /dϑ for the given interaction
length L = 1.5 cm and density 1021 cm−3 is shown. As is seen,
due to the intrinsic instability of the two-photon collective
decay of BEC and its shape, the initial spontaneously emitted
entangled photon pairs are amplified, leading to an exponential
buildup of a macroscopic population into the end-fire modes.
Since we have not considered BEC depletion, the obtained
solution (53) is applicable for the time scales when the number
of photons Nγ is much smaller than the total number of Ps
atoms (N ): Nγ � N .

Let us consider the parameters required for an efficient
γ -ray laser. The BEC occurs below a critical temperature,
which for a uniform gas of Ps atoms with the density n0 is
given by the formula

Tc � 1.66
�2

mkB

n
2/3
0 , (54)

where kB is the Boltzmann constant. The maximal ampli-
fication length is taken to be Lm � cτp � 3.75 cm. For an
exponential amplification, we need GLm > 1, which defines
minimal densities ∼2 × 1018 cm−3 for the realization of the
γ -ray laser. Figure 7 shows the temperature-density diagram
for the realization of BEC of Ps atoms. This diagram also
shows the range of parameters where such γ -ray laser may be
implemented. As a limiting density, we take n0 � 1/(4a3

s ) �
2.8 × 1021 cm−3. With the further increase of the density,
the deviation from the bosonic nature of Ps atoms becomes
considerable [see Eq. (4)]. At high densities, the bound states
of electron-positron pairs do not survive making electron-
positron plasma. It should be noted that for the BEC realized
in the trap with the potential that varies relatively smoothly in
the space, the critical temperature and the number of Ps atoms
in the condensate are strongly defined by the parameters of the
trap (see next section).
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FIG. 7. (Color online) Temperature-density diagram for the for-
mation of BEC of Ps atoms, in the logarithmic scale. With the
increase of the density, the deviation from the bosonic nature of
Ps atoms becomes considerable. At high densities, the bound states
of electron-positron pairs do not survive making electron-positron
plasma. The range of parameters where the γ -ray laser may be
implemented is also shown.

V. THE INFLUENCE OF THE CONFINEMENT AND
INTERACTION BETWEEN THE POSITRONIUM ATOMS

ON THE GAMMA-RAY GENERATION PROCESS

Although we consider dilute system of Ps atoms when
na3

t � 1, for the trapped atoms the interaction can have a
deep influence on the ground state of the BEC [13] and
on the critical temperature [41] of condensation. In this
case, the starting point is the Gross-Pitaevskii equation [13]
for the order parameter of an inhomogeneous BEC well below
the critical temperature. The Gross-Pitaevskii equation for the
order parameter �(r) of a BEC has the well-known form [13][

− �2

2ma

� + Vtr(r) + 4π�2at

ma

|�(r)|2
]
�(r) = μ�(r), (55)

where ma = 2m∗ is the Ps mass and Vtr(r) is the trap
confining potential. The nonlinear term takes into account the
interaction between the Ps atoms parametrized by the s-wave
scattering length at . The chemical potential μ is fixed by the
normalization condition,∫

n(r)dr = N ; n(r) = |�(r)|2, (56)

where n(r) is the density of the atoms with the total number
N . When the number of atoms is large and the interaction
is repulsive (at > 0), an accurate expression for the ground
state �(r) may be obtained within the Thomas-Fermi approx-
imation. The latter is valid when the dimensionless parameter
Nat/a is very large. Here, a is the characteristic length of the
confining potential. In this case, the kinetic-energy term ∼�

can be neglected in the Gross-Pitaevskii equation (55), and we
have

n(r) = ma

4π�2at

[μ − Vtr(r)] (57)

in the region where the right-hand side is positive and n(r) = 0
otherwise. The boundary of the BEC cloud is given by the
relation μ = Vtr(r). The Thomas-Fermi approach fails near
the edge of the cloud when the kinetic-energy term should
be taken into account. In this case, the characteristic length
is the healing length lh = 1/

√
8πnat , which describes the

distance over which the density tends to its bulk value from the
boundary. For the considered densities n = 1018–1021 cm−3,
the healing length lh � 10−6 − 5 × 10−8 cm � L,Lw. As a
consequence, the boundary effects can be neglected. Thus, for
the condensate confined by a box with sufficiently (infinitely)
hard walls, the above consideration is valid and one can
consider a homogeneous condensate with the density

n(r) = ma

4π�2at

μ = n0. (58)

For a confining potential that varies relatively smoothly in
the space, the inhomogeneous nature of BEC should be taken
into account. For an anisotropic three-dimensional harmonic-
oscillator potential Vtr(r) given by

Vtr(r) = 1

2
maω

2
0

(
x2 + y2 + z2

χ2

)
, (59)

the solution (57) becomes

n(x,y,z) = nmax

[
1 − 1

R2
0

(
x2 + y2 + z2

χ2

)]
, (60)

with

nmax = 152/5

8πa2at

(
Nat

a

)2/5

; R0 = 151/5

χ1/3

(
Nat

a

)1/5

a, (61)

where a = √
�/maω and ω = ω0χ

−1/3 is the geometrical
mean frequency of an anisotropic oscillator. As far as the γ -ray
wavelength ∼λc � L,Lw, we can use the expression (49) for
the exponential growth rate with the density defined through
Eq. (60),

G(x,y,z) =
√

16π�n(x,y,z)α5
0

m
. (62)

Then, the dimensionless interaction parameter in the exponent
of Eq. (53) for the end-fire modes can be written as

� =
∫ χR0

−χR0

G(0,0,z)dz = χπR0

2

√
16π�nmaxα

5
0

m
. (63)

As is seen from Eq. (63), the effective interaction length is
χπR0/2. Taking into account the interaction of Ps atoms, the
critical temperature for BEC in the trap (59) is defined as [41]

Tc � 0.94
�ω

kB

N1/3

(
1 − 1.33

at

a
N1/6

)
. (64)

Thus, for a system of 1012 Ps atoms, interacting with a
scattering length at � 1.6 × 10−8 cm, which is trapped in
an anisotropic harmonic potential fixed by a � 10−5 cm
with the anisotropy parameter χ = 2000, the dimensionless
interaction parameter at � = 1 will be � � 1.12. There the
critical temperature (64) will be Tc � 330 K.
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Note that considering two-wave instability has been proven
for an infinite and nondamping medium. Meanwhile, due to
the finite interaction length with sufficient loss, the system
may become stable [42,43]. In our scheme, damping effects
are negligible since the annihilation proceeds in vacuum. The
γ -ray line broadening due to the uncertainty in the momentum
of Ps atoms confined in a trap δω ∼ �/(2maR

2
0) is considerably

smaller than the rate G. Hence, for instability, G should be
larger than the γ -ray line broadening due to finite interaction
length: G > 2δk ∼ 1/L. The latter is just the condition for the
high gain regime.

VI. CONCLUSION

We have presented a theoretical treatment of the collective
annihilation decay of Ps atoms from a BEC state. We
have considered coherent γ -ray generation at the collective
annihilation of Ps atoms in a BEC state in the self-amplified
spontaneous-emission regime arising from the second quan-
tized formalism. We have considered the stimulated o-Ps to
p-Ps transition, which modifies the exponential growth rate
through the effective BEC density neff that depends on the
pumping scheme. The exponential growth rate has nonlinear
dependence on the BEC density, in contrast to the rate

equations where the corresponding gain is proportional to the
number density. It has been shown that one might observe the
startup of an annihilation γ -ray laser at lower densities than
would be the case for a gain proportional to the density. For an
elongated shape of the BEC, we show the laserlike action,
i.e., directional radiation when the spontaneously emitted
entangled and oppositely directed photon pairs are amplified,
leading to an exponential buildup of a macroscopic population
into the end-fire modes. In addition, these photon beams are
entangled, i.e., we have a so-called Schrödinger cat state
with a macroscopic number of γ -ray photons. The parameters
required for an efficient γ -ray laser have been specified. The
influence of the external potential and interaction between the
Ps atoms on the γ -ray self-amplification process has also been
investigated. While the parameters required for an efficient
γ -ray laser are certainly very challenging, the ongoing and
future progress in the creation, trapping, and cooling of Ps
atoms promise clear prospects to reach them.
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