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Precision measurement of a low-loss cylindrical dumbbell-shaped sapphire mechanical oscillator
using radiation pressure

J. Bourhill,* E. Ivanov, and M. E. Tobar
ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley,

Western Australia 6009, Australia
(Received 27 February 2015; published 11 August 2015)

We present first results from a number of experiments conducted on a 0.53-kg cylindrical dumbbell-shaped
sapphire crystal. Here we report on an optomechanical experiment utilizing a modification to the typical cylindrical
architecture. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain
changes the permittivity. These two effects result in parametric frequency modulation of resonant microwave
whispering gallery modes that are simultaneously excited within the crystal. A microwave readout system is
implemented, allowing extremely low noise measurements of this frequency modulation near our modes of
interest, having a phase noise floor of −165 dBc/Hz at 100 kHz. Fine tuning of the crystal’s suspension has
allowed for the optimization of mechanical quality factors in preparation for cryogenic experiments, with a
value of Q = 8 × 107 achieved at 127 kHz. This results in a Q × f product of 1013, equivalent to the best
measured values in a macroscopic sapphire mechanical system. Results are presented that demonstrate the
excitation of mechanical modes via radiation pressure force, allowing an experimental method of determining
the transducer’s displacement sensitivity df/dx and calibrating the system. Finally, we demonstrate parametric
backaction phenomenon within the system. These are all important steps towards the goal of achieving quantum
limited measurements of a kilogram-scale macroscopic device for the purpose of detecting deviations from
standard quantum theory resulting from quantum gravitational effects.
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I. INTRODUCTION

The field of optomechanics is producing many exciting
results, e.g., extremely precise sensors with applications in
a wide variety of fields, including sensitive detection of
previously immeasurable signals [1–7], quantum information
processing [8,9], and tests of fundamental quantum theories,
including potential tests of quantum gravity [10–15] and the
detection of gravity waves [16–18]. The majority of work in
this area is based on microscopic or mesoscopic resonators
[19–22], which have the advantage of extremely low mass
and therefore relatively large optomechanical coupling factors,
allowing for a plethora of interesting physics to be investigated.
In particular, the quantum regime of mechanical motion (the
so-called “standard quantum limit”) is far more accessible for
these extremely small resonators. Great challenges arise when
dealing with macroscopic resonators, and it has been shown
that state-of-the-art technologies are required to approach
observations of the quantum world in such resonators due
to their significantly larger masses [23,24].

Despite this fact, there are numerous motivations for
working in the “large-mass” regime. First and foremost, if one
were to succeed in making the laws of quantum mechanics
govern the behavior of human-scale objects, one would be
able to look at a very strange quantum world with objects of
far larger size, something that has never before been achieved
and would be a momentous confirmation of quantum theory.
In addition to this, proposed methods for beating the standard
quantum limit of displacement uncertainty require the use of
a squeezed state of light, placing all the uncertainty in the
amplitude quadrature, hence enhancing the precision in the
phase quadrature [25,26]. This becomes tenable only when
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the resulting increase in amplitude fluctuations and hence
backaction noise minimally “kick” a resonator, i.e., if one uses
low incident light power or the resonator has a large mass.

Finally, a recent proposal by Pikovski et al. [11] suggests
that the standard Heisenberg uncertainty relationship and as-
sociated commutation relation between an oscillator’s position
and momentum may be altered by quantum gravitational
effects, which could be detectable by macroscopic mechanical
oscillators. Marin et al. [12] set an upper limit for possible
Planck-scale modifications on the ground-state energy of
an oscillator with the ton-scale gravitational wave detector
AURIGA. The deformation of the standard uncertainty rela-
tionship is quantified by an expression β0, which will have
an upper limit set by the experimental parameters. For the
parameters of the resonator discussed here, if it were simply
cooled using standard dilution refrigeration technology to
20 mK (without the use of parametric cooling or active
feedback cooling [20,27,28]), the upper limit placed on this
modification is equal to that of the best reported results.

The essential requirement for the observation of
optomechanical effects is to generate coupling between
phonons and photons within a resonant structure. This
coupling can take many forms, including variations in
path length of a Fabry-Perot resonator via a movable
mirror (such as the LIGO experiment) [16,29], oscillations
of a cantilever capacitively coupled to two electrodes
[30], “membrane-in-the-middle”-type experiments [31,32],
or, as in the present work, crystalline resonators, which
can support both optical and microwave resonant fields
and mechanical modes [33,34]. All of these systems
function via mechanical effects causing a disturbance to
an optical field, which can be measured as a frequency shift.
In the case of a macroscopic whispering gallery mode (WGM)
resonator, its frequency is sensitive to changes in path length
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(i.e., the circumference and height of the cylinder) and strain
in the crystal lattice, both of which are induced by mechanical
motion. The latter effect is, in fact, the more dominant
mechanism [23,24]. These lattice vibrations can be caused by
thermal phonons within the resonator at room temperature.

The quantities one needs to minimize for achieving quan-
tum limited resolution of an optoacoustic device, given a fixed
mass and resonant frequency, are its temperature and phase
noise, while the quantities that need to be maximized are the
mechanical and optical Q factors and frequency sensitivity
to displacement (G). Electromagnetic sapphire oscillators
offer excellent phase noise performance, as evidenced by
their long-standing history in clock technology [35,36]. The
extremely high electromagnetic Q factors (∼108) are also
accompanied by an equally important large mechanical Q

factor (∼108–109). Therefore, sapphire optoacoustic devices
present as an excellent candidate for achieving a quantum
limited macroscopic mechanical oscillator.

II. SAPPHIRE RESONATOR:
GEOMETRY AND MODES OF VIBRATION

The sapphire resonator studied takes the form of a
dumbbell-shaped cylinder and is herein referred to as the “split
bar” (SB) resonator, with its dimensions outlined in Fig. 1(a). It
is suspended via a wire loop around the central “neck,” which
is 14.9 mm long and has a radius of 7.5 mm. This shape was
chosen to isolate the point of suspension from the mechanical
motion in order to maximize mechanical Q factors. The crystal
is high-quality HEMEX-grade sapphire and was grown using
the heat exchange method by Crystal Systems, USA, cut to
dimensions, and then optically polished.

The SB is both an electromagnetic and mechanical res-
onator. Its cylindrical shape permits high-Q-factor WGMs to
be excited at microwave frequencies and, via the mechanism
explained above, the coupling between acoustic and electro-
magnetic modes required for the observation of optomechani-
cal effects is achieved.

FIG. 1. (Color online) (a) Graphical representation of the SB
resonator modeled using FEM. Lengths shown are in millimeters.
Normalized displacement field of the 95-kHz (b) and 127-kHz
(c) resonant mechanical modes.
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FIG. 2. (Color online) Three relevant mechanical-mode families’
resonant frequencies as functions of neck diameter. The SB resonator
has a neck diameter of 14.92 mm. By examining the two limiting
cases of the SB (i.e., neck diameter 0 mm, corresponding to two
separate cylinders, and neck diameter 27.4 mm, corresponding to one
large cylinder; the origin of each mode can be correctly identified).

The SB resonator was modeled using finite element model-
ing (FEM) software (COMSOL) to identify suitable mechanical
modes within the crystal. Given the nonuniformity of the
dimensions, the eigenfrequencies of the resonant modes were
solved for varying neck diameters, ranging from the limiting
cases of two separate cylinders of height 27.9 mm to a single
uniform cylinder of height 70.4 mm, in order to identify the
correct families of the modes.

In a majority of optomechanical experiments that deal
with a cylindrical architecture, it is the fundamental longi-
tudinal mode that couples most strongly to the optical field
[12,27,37–39]. This will be a relatively low-frequency mode
in comparison to others; for a full cylinder of the SB resonator’s
dimensions, the fundamental mode is shown by the right-hand
limit of the black curve in Fig. 2. By removing the central
ring of sapphire to form the dumbbell structure, we observe
that the mode that most closely mimics the motion of the
fundamental longitudinal mode is the 127-kHz mode, referred
to as the “breathing mode.” This originates from a higher-order
mode than the fundamental longitudinal mode. Therefore,
by removing a small portion of mass (the removed ring
weighs ∼120 g), we have increased the operating mechanical
frequency by ∼18 kHz, which is more than could be achieved
by reducing either the radius or the length (or both) of a full
cylinder to replicate the same loss of mass. Thus, by moving to
a dumbbell architecture, we have achieved a higher mechanical
frequency for a given mass of sapphire than otherwise possible.
This is a nontrivial result, as the resulting increase in phonon
energy (��m) results in a lower thermal phonon occupation
number for a given temperature.

From Fig. 2 one can see that the in-phase and out-of-phase
breathing modes (127- and 125-kHz modes, respectively) are
degenerate for the case of two separate crystals, but when they
become joined, their frequencies tune in opposite directions.
These modes become very different in the limiting case of a full
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cylinder. Each one of the modes in Fig. 2 has been detected
with frequencies in very good agreement with the modeled
values (<1%). This article will mainly deal with the 95-kHz
mode (black curve) and the 127-kHz mode (red curve), as they
have the two highest Q factors. The low Q factor observed
for the 125-kHz mode is predicted by the modeling due to a
large amount of displacement at the suspension point on the
neck of the dumbbell, resulting in larger suspension losses.
The modeling also allows for the calculation of the effective
masses of each mode, the 127-kHz mode being 0.306 kg, while
the 95-kHz mode is 0.260 kg.

From the FEM, it is possible to obtain deformation gradients
( dz

z
, dr

r
, dφ

φ
) and total displacement curves for each of the

modes, allowing an estimate of the WGM frequency sensitivity
to each different mechanical mode family. For simplicity, this
is done using a model of only one cylindrical end of the SB,
at the mode of interest’s corresponding eigenfrequency in this
limiting case, as depicted in Fig. 2.

To determine the magnitude of frequency variations due to
mechanical vibrations ( df

dx
) of any particular WGM, we expand

on the method used by Locke et al. [23]. The frequency of
WGMs in cylindrical sapphire, assuming that the crystal axis
(c axis) is aligned with the z axis, is dependent upon four
variables: the permittivities of the crystal perpendicular and
parallel to its c axis, ε⊥ and ε‖, respectively (sapphire is an
anisotropic crystal), and the crystal’s dimensions (diameter,
D, and length, L).

The frequency sensitivity of the WGM can be calculated
from

z

f

df

dz
= ν

[(
Mrpεr

+ Mφpεφ

)
Kε⊥ + pD

]
−Mzpεz

Kε‖ − pL, (1)

where pi are the normalized tuning coefficients of the WGM
frequency with respect to the variable i (i.e., pi = | δf res

δi
| i
f

),
ν is Poisson’s ratio, Kεi

represents the strain dependence of
permittivity (i.e., Kε‖ = dε‖

dz
L
ε‖

and Kε⊥ = dε⊥
dr

D
2ε⊥

), and Mi

is the displacement modification factor and represents the
overlap of electric field [Ei(r,z,φ)] and strain [Si(r,z,φ)] in
the i direction,

Mi =
∫
V

Si(r,z,φ)εiEi(r,z,φ)E∗
i (r,z,φ)drdzdφ

Ni

, (2)

where Ni is a normalization constant.
Frequency sensitivity to changes in permittivity only occurs

in the electrical component of the resonant microwave mode.
This is due to the dependence of the E field on ε compared
to a B field’s dependence on μ, a direct result of Maxwell’s
equations. WGMs have two main polarizations: WGH (trans-
verse magnetic whispering gallery) modes with dominant
Ez, Hr , and Hφ field components and WGE (transverse
electric whispering gallery) modes with dominant Hz, Er ,
and Eφ components. Therefore, transduction in the SB will
be primarily due to the strain induced in the direction of the
WGM’s E fields. Since ν = 0.3 for sapphire, WGH modes are
more strongly affected by mechanical motion.

Figure 3 depicts the method by which the Mz factors are
calculated for the 95- and 127-kHz mechanical modes. The
overlap of the electromagnetic and strain fields determines
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FIG. 3. (Color online) Overlap of WGH15,1,1 Ez field and de-
formation gradient dz

z
used to calculate Mz modification factors in

Eq. (1).

the magnitude of WGM frequency variations. It should be
noted that the 95-kHz mode’s deformation gradient is an
antisymmetric function about Z = 0, and hence the mean
strain is zero, compared to the symmetric 127-kHz mode.
This results in effectively zero strain contribution to df

dx
in

Eq. (1) for the 95-kHz mode; hence, the main component of
transductance for this mode is expected to be a result from the
physical change of boundary conditions.

Following the treatment used by Tobar and Mann [40,41],
a mode-matching technique is used to determine the pi

values and the E-field distributions in each of the cylindrical
coordinate directions. This can be done for both WGH and
WGE modes with any number of azimuthal maxima. Then,
taking the deformation gradients for the two mechanical modes
produced in FEM, Mi values are determined to finally produce
an estimate for df

dx
, as shown in Table I.

With the parameters derived in this section, we can briefly
make an assessment of the SB resonator’s effectiveness in
terms of its ability to compare various quantum gravity
models [11,13–15]. As discussed by Marin et al. [12], a
macroscopic oscillator could potentially detect modifications
to the Heisenberg uncertainty relation caused by quantum
gravitational effects [11] of the form

�x�p � �

2

[
1 + β0

(
�p

Mpc

)2]
, (3)

where Mp is the Planck mass (Mp = 2.2 × 10−8 kg) and c the
speed of light. The figure of merit for any such experiment is
the upper limit placed on β0, which quantifies the deformation,

β0 < 2
kBT

��m

Mp

m

Mpc2

��m

, (4)

where m is the mass of the resonator, T its temperature, kB

is Boltzmann’s constant, and �m is the mechanical resonant

TABLE I. Calculated values for the WGH15,1,1 mode and the
95- and 127-kHz mechanical modes.

�0/2π (kHz) Mz Mr Mφ |df/dz| (MHz/μm)

94.97 0a 0a 0a 0.085
127.07 0.38 0.0017 0.024 0.18

aA value of zero is due to the asymmetry of the 95-kHz mode strain
curves.

023817-3



J. BOURHILL, E. IVANOV, AND M. E. TOBAR PHYSICAL REVIEW A 92, 023817 (2015)

frequency; hence, the first fraction defines the thermal phonon
occupation number, nt . For the SB resonator, if it were only
cooled using conventional refrigeration technology to 20 mK,
we obtain β0 < 6 × 1033, equal in magnitude to the best
reported results (see the comparison in [12]).

III. EXCITING MECHANICAL MODES AND MEASURING
Q FACTORS

Initially, a piezoelectric actuator was used to excite the
SB and therefore locate the resonant mechanical modes. The
piezo was mounted to the SB’s copper housing on a lid at
one of the end faces and was not in direct contact with the
crystal. This setup is shown in Fig. 4. The piezo driving
frequency was chirped over a small frequency range (on the
order of 1 kHz) to conduct a relatively broadband search for
resonances around the predicted frequencies. However, under
vacuum the only path for the acoustic excitation of this form
is through the suspension wire and if the length of this wire is
optimally tuned such that the driving frequency is nonresonant
with the wire, the transmission of energy to the bar will be
minimal and the modes difficult to excite. In addition to this,
driving the piezo with a periodic chirp results in the reduced
contrast of the resonant peak viewed on a network analyzer
due to nonresonant excitation caused by shaking of the copper
housing.

An alternative method for mechanical excitation is applying
radiation pressure force (RPF) to the crystal by modulating
the power of the amplitude modulated (AM) microwave
signal at the mechanical resonance frequency (see Fig. 10).
Once the AM is switched off the SB will continue to
resonate mechanically, with its amplitude ringing down with a
characteristic time constant, τ , which can be used to calculate
the Q factor of the mode (Qm = πτfmech). The results of this
ringdown technique are shown in Fig. 5.

When used together, these two techniques provide an
effective and simple method for the excitation of mechanical
modes and Q factor measurements; the piezo is chirped to find
the exact location of the resonance (within one bandwidth, on
the order of mHz), and the input microwave signal is then
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FIG. 4. (Color online) A diagram of the SB suspended inside a
copper cavity. The length of wire from the point of contact with the
crystal neck to the position of the niobium clamp, labeled by a blue
double arrow, is the length that must be tuned.
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FIG. 5. (Color online) Mechanical Q factor can be obtained from
fitting the ringdown of the mechanical mode, measured by the output
of the frequency discriminator. The low-frequency modulation of the
output signal is caused by a low-frequency “rocking motion” of the
bar as it oscillates as a pendulum about its suspension point, both
along its central axis and rotating about it.

AM modulated at this resonant frequency for a period of
time longer than the ringdown time of the mode (to allow
full excitation). The AM modulation is then switched off, and
finally the amplitude of the resulting peak is tracked over a
time period of about 200 s. Figure 5 shows a measured value
of τ = 1/0.0052 s for the 127-kHz mode, corresponding to a
mechanical Q factor of 7.7 × 107.

By varying the amount of modulation on the incident power
and measuring the peak amplitude immediately after AM
modulation has been switched off (provided RPF has been
applied for a sufficiently long period of time that the resonator
is in a quasistatic regime), one can experimentally determine
a value for df/dx for each of the mechanical modes, and
compare with predicted values, as will be shown.

Treating the mechanical sapphire resonator as a standard
harmonic oscillator, we have

meff
d2x(t)

dt2
+ meff�m

dx(t)

dt
+ meff�

2
mx(t) = Fext(t), (5)

which has the standard solution for displacement:

δx(ω) = 1

meff

Fext(ω)

�2
m − ω2 − iω�m

. (6)

Here meff is the effective mass of the bar in its resonant
mechanical mode of frequency �m, �m = �m/Qm is the
mechanical decay rate, and Fext is some applied force. We can
relate this displacement to a physically observable quantity,
i.e., the voltage produced at the mixer output of the microwave
readout system:

δu(ω) = δx(ω)

(
du

df

)(
df

dx

)
. (7)
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We wish to solve this equation for the case of Fext originating
from applied RPF. The expression for this can be found by
differentiating the standard interaction Hamiltonian for an
optomechanical system with respect to position [42],

Ĥint = −�g0â
†â(b̂ + b̂†), (8)

where â† and â are the photon raising and lowering operators,
respectively, b̂† and b̂ are the phonon raising and lowering
operators, respectively, and g0 is the single photon optome-
chanical coupling:

g0 = GxZPF = dω

dx
xZPF, xZPF =

√
�

2meff�m

. (9)

We can define the position operator x̂ as

x̂ = xZPF(b̂ + b̂†), (10)

which will allow us to solve for Fext:

Fext(t) = −dĤint

dx̂
= �Gâ†â = �

dω

dx
ncav. (11)

Here ncav is the number of photons inside the cavity and can
be solved by dividing the total energy inside the cavity [43] by
the energy of a single photon, as

ncav = EWGM

Esingle photon
, Esingle photon = �ω,

EWGM = Pinc
Qe

ω

4β1

(1 + β1 + β2)2

1

1 + 4Q2
e

(
ω−ωe

ωe

)2 , (12)

where Pinc is the power of the incident microwave signal at
frequency ωe, Qe is the quality factor of the WGM, and β1

and β2 are the couplings between the WGM resonance and the
input and output microwave probes, respectively.

Assuming we are driving the microwave input at the WGM
resonance (ω = ωe), we finally arrive at an expression for the
RPF inside the sapphire:

Fext(t)|ω=ωe
= dω

dx

Pinc(t)Qe

ω2
e

4β1

(1 + β1 + β2)2 . (13)

As a side note, this equation is identical to that obtained by
Locke et al. [38] when modeling the optomechanical system
as an LCR circuit with a modulated capacitance.

Assuming the incident power is modulated at �m, we can
derive an equation for the voltage output by the microwave
readout system,

δu(�m) = π
√

2π

(
du

df

)(
df

dx

)2

χWGMχmechδP, (14)

where χWGM = 4β1

(1+β1+β2)2
Qe

ω2
e

and χmech = Qm

meff�2
m

.
From Eq. (14), we can observe that by measuring du/dP ,

one can determine a value for df/dx experimentally. The
results of this measurement are shown in Fig. 6, and every other
value in Eq. (14) can be directly measured from the system.
From the gradient of these two curves, df/dx127 = 0.19
MHz/μm and df/dx95 = 0.05 MHz/μm.

The value for the 127-kHz mode is in very good agreement
with the predicted value (∼6% error), while the 95-kHz mode
is measured to be 40% smaller than its estimated value (see
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FIG. 6. (Color online) Measurements of maximum peak ampli-
tude of readout system output (proportional to displacement) to
varying amounts of RPF.

Table I). This can be attributed to the assumption that there
was no strain induced contribution to the 95-kHz transduction
in the simulation. As the WGM used has ∼95% of its E field
in the z direction, any strain contribution would arise mainly
in this axis, which would subtract from the value obtained
from purely dimensional changes [see Eq. (1)]. For example, a
strain contribution 1/10th the magnitude of the 127-kHz mode
would result in the predicted value being in good agreement
with the measured value. This arises in practice because the
strain curve of the 95-kHz mode is not a pure odd function, and
the WGM is not a pure even function about Z = 0 (see Fig. 3),
as was assumed when treating the interaction of the two modes
with Eq. (1), which, in addition, is only an approximation to
first order. Some small perturbations of these two symmetries
will result in a small strain contribution to df/dx95, which will
subtract from the purely dimensional contribution.

IV. OPTIMIZING MECHANICAL Q FACTORS

Energy dissipated through the suspension is generally the
dominant loss mechanism in optomechanical systems, as long
as they are held under vacuum.

The wire-loop suspension used to hold the SB is a method
traditionally used by the gravitational wave community, which
has been shown to achieve the highest mechanical Q factors
over other suspension schemes [44] (see the comparison of
suspension techniques depicted in Fig. 9). Braginsky et al.
[44] modeled the losses in such a suspension as

1

Qs

= 2ρwAwlw

meffQw

x2
ext

x2
0

×
[

1 + 1

2

(
ωmlw

vwQw

)2

− cos

(
2lwωm

vw

)]−1

, (15)
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FIG. 7. (Color online) Measured mechanical Q factors as the
length of the Nb suspension wire is altered. Lengths are measured
from the angle made by the suspension. A speed of sound in Nb of
2200 m/s produces the best fits, in agreement with quoted values for
the speed of transverse waves in a thin Nb rod at 20 ◦C.

where ρw, Aw, lw, Qw, and vw are the density, cross-sectional
area, length, mechanical Q factor, and velocity of sound of the
wire, respectively, and x0 and xext are the amplitude of vibration
of the resonator and the amplitude at the point of contact
with the wire, respectively. Equation (15) predicts a periodic
variation in Q factors as the length of the wire (shown in blue
in Fig. 4) is changed. However, Eq. (15) has only been shown
to provide qualitative agreement with experimental results, as
the loss mechanism is far more complicated than this simple
model.

Two different wires were trialled for the suspension system:
an 80-μm-diameter tungsten wire and a 125-μm-diameter
niobium wire, with better results being achieved with the latter
due to its higher intrinsic Qw. The niobium clamp (shown in
Fig. 4) is necessary to keep enough friction around the neck
of the SB to maintain balance, but can also be used to alter the
length of the wire by moving its position. The clamps are made
by cutting small lengths of 0.65-mm-diameter niobium tubing.
Tests were made with both clamped and unclamped pieces of
tubing, with the former producing higher Q factors due to the
boundary condition in the wire resonance being fixed.

Results of varying wire length are presented in Fig. 7.
Each experimental data point represents an entirely new
wire suspension, as the clamping technique used fixes the
wire’s length. As such, it is possible for surface conditions
and the loop’s position along the z axis to change between
measurements. Therefore, each of the data points in Fig. 7
represents a lower limit of Q factor for any given wire length.

Braginsky et al. [44] states that there is only a qualitative
agreement between Eq. (15) and the experimental data, with
measured Q factors being larger than the predicted values
by almost a full order of magnitude. This is mainly due to

resonator vibrations at the point of contact with the suspension
wire being only partially transmitted to the wire. As such, we
insert an additional term inside the square brackets of Eq. (15)
to represent coupling between the wire and the crystal. It takes
the form of 1/ξ . It should also be noted that the second term
inside the square brackets of Eq. (15) is much less than 1 and
can therefore be neglected. The experimental results are then
fitted with the equation

Qs = meffQw

2ρwAwlw

x2
0

x2
ext

[
1 + 1

ξ
− cos

(
2lwωm

vw

)]
, (16)

which is shown in black in Fig. 7 and provides a good bound
of the measured Q factors given the fitted values of Qw =
8.5 × 105 and ξ = 0.31.

Figure 8 shows the dependence of mechanical Q factors on
pressure, as predicted by the equation [45]

1

Qgas
≈ PA

Mω0

√
μ

kbT
, (17)

where P is pressure (in Pascals), A is the surface area of
the mechanical resonator, M is its mass, and μ is the mass of
molecule comprising majority of the gas in question. As can be
seen from Fig. 8, below a certain threshold pressure, residual
gas damping is no longer the dominant loss mechanism, with
Q factors of close to 108 demonstrated.

Throughout the literature regarding wire-loop suspensions,
it is often noted that by applying a small layer of lubrication
(most commonly animal fat is used) to the surface of the
mechanical resonator at the point of suspension, significant
improvements in Q factors can be achieved [24,37,44].
Previously, at room temperature, Q factors on the order of 108

and Qm × f � 6 × 1012 have only been achieved with some
form of lubrication, and this is therefore a strategy that could be
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95-kHz modes vs pressure. Residual gas damping limits as predicted
by Eq. (17).
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FIG. 9. (Color online) Reported mechanical quality factors and
resonant frequencies of published experiments with sapphire-bar
optomechanical systems at room temperature: 1, Ref. [37]; 2,
Ref. [24]; 3, Ref. [44]; 4, Ref. [46]; 5, Ref. [39]. The experiments are
differentiated by their suspension techniques. The black dashed line
represents the Q × f product of the SB.

implemented in the immediate future of this work. However,
even without lubrication, the present work corresponds to a
Qm × f product of 1013, equivalent to the best measured
values of sapphire acoustic systems, as depicted in Fig. 9. This
product is considered a figure of merit for acoustic resonant
systems, as it is a direct measure of the degree of decoupling
from the thermal environment. Specifically, Qm × f > kbT /h

is the condition for neglecting thermal decoherence over one
mechanical period and is considered the minimum requirement
for quantum optomechanics [42]. At room temperature, this
lower limit is equal to 6 × 1012, and is represented in Fig. 9
by the red dashed line.

Importantly, our results are consistent with the best reported
values measured at room temperature in sapphire, most likely
limited by the quality of the crystal [24,44]. Thus, this result
demonstrates that equivalent performance to state-of-the-art
sapphire acoustic systems can be achieved with a modified
cylindrical structure. All other results presented in Fig. 9 are
achieved using modes in full cylinders in the limiting case
shown on the right-hand side of Fig. 2. This is the first time
optomechanics in a sapphire bar has been attempted with a
modified architecture.

By cooling the SB, the coupling between the suspension
and crystal will decrease, resulting in the suspension losses
decreasing. Q factors on the order of 109 have been achieved
using wire suspended sapphire at liquid helium temperatures
[44]. So while a maximum value of ∼8 × 107 has been
achieved thus far, we are optimistic about improving this.

By following the analysis of Braginsky et al. [44], it can
be shown that a minimum temperature of 17 mK would be
required for the SB to achieve quantum limited measurements,

even if the Q factor were to show no improvement at lower
temperatures. This is not to be confused with achieving
ground-state cooling, as at this temperature kBT > �ω, but
would nonetheless allow the resolution of a single quantum of
acoustic energy: a phonon. Cooling the SB to the mechanical
ground state is an extremely ambitious goal and will require
the utilization of resolved side-band cooling [20,42], active
feedback damping [27,28], and backaction evasion techniques
[24,44]. A discussion of these techniques is outside the scope
of this article.

V. MICROWAVE READOUT SYSTEM

A. Detection of frequency fluctuations

As described in the previous sections, a freely suspended
sapphire bar is a unique physical object capable of supporting
very-high-quality resonances, both mechanical and electro-
magnetic. It offers an opportunity to conduct a detailed study
of the bar’s mechanical resonances via their influence on the
microwave resonances. In addition, one can investigate the
inverse effects of the microwave readout on the SB’s me-
chanical properties including the degeneration (cold damping)
and regeneration (parametric excitation) of elastic vibrations
[44,47].

This section describes a microwave readout system for
monitoring the vibration state of a freely suspended sapphire
bar. We expected that the sensitivity of the microwave
readout would be sufficiently high to permit the very first
observations of the bar’s mechanical resonances excited by
thermal fluctuations of the sapphire crystalline lattice.

There are at least two techniques, which can be employed
for the microwave-assisted detection of elastic vibrations of the
SB. Both techniques are widely used in the field of oscillator
frequency stabilization for high-resolution measurements of
fast frequency fluctuations [48,49]. In one case, the SB
can be configured as a dispersive element of a microwave
frequency discriminator. When driven from a fixed frequency
signal source, the SB acts as a frequency-to-voltage converter,
producing voltage varying synchronously with resonant fre-
quency of a given WGM excited by the source. As a result,
the task of analyzing a spectrum of a microwave signal is
reduced to computing the fast Fourier transform of a sampled
voltage at the discriminator output. Alternatively, the SB can
serve as a bandpass filter of a self-exciting microwave loop
oscillator [50]. This would “imprint” the spectrum of the SB
mechanical normal modes on to the spectrum of the microwave
signal. Once again, a frequency discriminator can be used to
convert frequency fluctuations of the microwave signal into
synchronous fluctuations of voltage. Performancewise, both of
the above-mentioned techniques are identical; in each case the
useful frequency fluctuations associated with elastic vibrations
of the SB must compete with the same spurious fluctuations of
the microwave readout electronics, and each technique, given
some optimization, could potentially lead to spectral resolution
close to the standard thermal noise limit [35].

B. Microwave sapphire-bar oscillator

Figure 10 shows a schematic diagram of a microwave loop
oscillator based on the SB. The oscillator is frequency locked
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FIG. 10. (Color online) Schematic diagram of a frequency-stabilized microwave oscillator based on a suspended sapphire SB resonator
excited in electromagnetic modes of a whispering gallery.

to a given WGM of the SB to facilitate detection of the useful
frequency fluctuations. The spectrum of the free-running
oscillator at Fourier frequencies of interest (∼100 kHz) is
completely dominated by 1/f phase noise of the microwave
loop amplifier. These spurious fluctuations are suppressed by
the frequency lock (or frequency control) system, as explained
below.

The key element of the oscillator frequency-control system
is an ultrasensitive frequency discriminator. It consists of a
microwave Mach-Zehnder interferometer with the suspended
sapphire-bar resonator and a phase-sensitive readout system
featuring low-noise amplifier (LNA) and a double-balanced
mixer (DBM1 in Fig. 10). The microwave signal reflected from
the SB interferes destructively with a fraction of the incident
signal at the interferometer “dark port.” This cancels the carrier
of the difference signal while preserving noise modulation
sidebands resulting from 1/f noise of the microwave loop
amplifier. The residual noise at the dark port is amplified
and demodulated to the baseband, producing an error voltage
proportional to oscillator frequency fluctuations. The error
voltage, after appropriate filtering, is applied to the electronic
phase shifter (VCP) in the microwave loop. This steers the
oscillator frequency to that of the resonator or, more precisely,
to the frequency at which the carrier was suppressed, which is
typically well within the resonator bandwidth. The frequency
discriminator, loop filter, and VCP form the frequency-control
loop. If the control loop gain is sufficiently high, the fidelity
with which oscillator frequency follows that of the resonator
is determined only by technical fluctuations in the electronics
of the frequency discriminator. In this respect, interferometric
frequency discriminators are far superior to their conventional
counterparts, as they exhibit effective noise temperature close

to the ambient temperature and are capable of handling much
higher power levels [35].

It is not difficult to understand why frequency discrimina-
tors with the highest sensitivity are based on spindle-shaped
sapphire crystals fixed rigidly inside the protective metal
shields. The main reason for this is the low vibration sensitivity
of such resonators, which makes the task of carrier suppression
fairly straightforward. The situation is different in the case
of the SB whose rocking motion upsets both amplitude and
phase balance of the interferometer. To cope with the SB
rocking motion, the oscillator in Fig. 10 features an additional
feedback-control system charged with the task of minimizing
amplitude mismatch between two signals interfering at the
dark port. The error voltage for this feedback system is
produced by the second mixer (DBM2) tuned in quadrature
relative to the mixer of the frequency-control loop. The
voltage-controlled attenuator (VCA) in the interferometer arm
completes the feedback loop acting as an actuator of the
amplitude mismatch control system.

The quadrature tuning of both DBMs is required to avoid
the cross talk between the frequency- and amplitude-control
loops. Yet the tolerances of such tuning proved to be not very
stringent. For each control system, it was sufficient to roughly
maximize the amplitude of the error signal (in response to
some deliberately introduced perturbation) before closing the
feedback loop.

An additional VCA in Fig. 10 is used to modulate the
amplitude of the microwave signal. When the modulation fre-
quency coincides with the frequency of mechanical resonance,
parametric excitation of the normal mode ensues. This VCA
was introduced when the refined suspension system made
piezoelectric excitation of mechanical resonances ineffective.
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C. Interferometric frequency discriminator

Approximately half of the power generated by the SB
oscillator (Fig. 10) is diverted to the external frequency
discriminator shown schematically in Fig. 11. It is practically
identical to the previously described built-in discriminator of
the SB oscillator; it also contains a microwave interferometer
with actively controlled balance to cope with frequency
variations of the input signal induced by the rocking motion
of the SB and changes of ambient temperature.

The dispersive element of the external frequency discrim-
inator is a cylindrical metal cavity with a Q factor of 15 000
and frequency tuning range of approximately 2 GHz. The wide
tuning range of the cavity enables easy switching from one
WGM of the sapphire bar to another, if one needs to investigate
how a WGM of different polarization and azimuthal number
responds to vibration.

Figure 12 shows spectra of phase fluctuations of var-
ious signal sources measured with the external frequency
discriminator. The measurements were made at 9.774 GHz,
corresponding to the excitation of the WGH15,1,1 mode of the
SB.

The power spectral density of phase fluctuations Sφ was
inferred from that of the voltage noise Su via the relationship

Sφ(F ) = Su(F )

K2
FD

(
1

�f 2
L

+ 1

F 2

)
, (18)

where F is the Fourier frequency, �fL is the half-loaded
bandwidth of the cavity resonator, and KFD is the frequency
discriminator “dc sensitivity” measured at F 	 �fL.

The bottom trace in Fig. 12 shows the fit to the noise
floor of the frequency discriminator expressed in the single
sideband (SSB) units of dBc/Hz. The noise floor was measured
with the cavity resonator replaced by a 50 � termination.
Next we measured phase noise of a commercial frequency
synthesizer (Agilent E8257C). The idea was to verify that
the voltage-to-phase conversion procedure we followed was
correct (our results proved to be consistent with the specs
of the Agilent instrument). Finally, we characterized the
phase noise of the SB oscillator, in both the free-running
and the frequency-locked regimes. At Fourier frequencies

50 kHz < F < 500 kHz, we observed more than 20 dB of
phase noise suppression when the frequency lock was engaged.

As follows from Fig. 12, the SSB power spectral density of
spurious phase fluctuations is −165 dBc/Hz at F = 100 kHz.
The corresponding level of rms frequency fluctuations is

δf = F
√

Sφ(F ) ∼ 8 × 10−4 Hz/
√

Hz. (19)

Recalling the frequency-displacement sensitivity of the
sapphire bar (fz ∼ 0.18 MHz/μm) yields the displacement
noise floor: δz ∼ δf/fz ∼ 4 × 10−15 m/

√
Hz. This corre-

sponds to the highest displacement sensitivity ever reported
in experiments with sapphire-bar resonators as displacement
transducers. Yet the level achieved is still approximately
twice as large as the 127-kHz mode’s elastic vibrations

FIG. 12. (Color online) SSB phase noise spectra of various mi-
crowave signal sources measured with interferometric frequency
discriminator with automatic carrier suppression. Power of the input
signal is 19 dBm.
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driven by thermal noise; hence, Brownian motion is currently
unobservable with the present configuration.

At this stage, two questions can be posed: “What limits
spectral resolution of the current experimental setup and how
can it be improved?” In answering these questions, we, first
of all, can single out two factors, which are almost equally
responsible for the present level of displacement sensitivity.
One of them is the relatively high level of phase noise of
the frequency-locked microwave oscillator at F ∼ 100 kHz.
This is because the current frequency-control system starts
losing gain at Fourier frequencies above 10 kHz. Solving this
problem will involve the design of a new low-pass filter of the
frequency feedback loop based on operational amplifiers with
gain-bandwidth product exceeding 1 GHz.

The second limitation arises from the comparatively low
electrical Q factor of the hollow metal cavity. We believe that
at least an order of magnitude improvement in displacement
sensitivity can be gained by replacing the hollow metal cavity
with a sapphire loaded cavity resonator.

One “side effect” of resonator substitution is the loss of
the wide frequency tunability. Yet some residual tunability
would remain owing to the relatively high sensitivity of sap-
phire resonators to temperature (df/dT ∼ 0.5−0.7 MHz/K,
depending on the type of WGM used). Another complication
of resonator substitution is related to the narrow bandwidths
of sapphire resonators. An additional control system would
be required to keep the sapphire resonator “in sync” with the
incoming signal. We plan to address this issue by controlling
microwave power dissipated in the sapphire crystal as in
[36,51], where such a technique was used to enable the phase
referencing of a “slave” sapphire oscillator to the “master.”
It should be remembered that the measurement sensitivity
improves as a square root of the power of the SB oscillator.

A major advantage of the SB’s dumbbell-shaped architec-
ture is that it is, in fact, two electromagnetic oscillators, which
are both undergoing the same mechanical fluctuations. One
can easily imagine a cross-correlation scheme in which two
readout systems as described above were constructed around
either end of the SB. The primary mixer outputs of these
readouts could then be cross correlated to eliminate uncor-
related electronic noise and boost the correlated mechanical
signal, which would potentially allow never-before-seen levels
of displacement sensitivity in such a system.

VI. PARAMETRIC EFFECTS

Parametric behavior will always arise when a driven
resonant system is coupled to a second resonant system.
A phase difference between the mechanical oscillator and
the microwave resonance will produce either a damped or
a driven system. As such, one can expect changes in the
mechanical quality factor of a resonant optomechanical system
as the “pump” signal is detuned from resonance. These effects
have been well described in the past with various types of
transducers [33,38,42,52,53]. The phenomenon, referred to as
the “optical spring” effect, results from a Stokes/anti-Stokes
process, whereby pumping above the optical resonance pro-
duces additional phonons; increasing the mechanical mode’s
effective temperature and Q factor, while pumping below
resonance removes phonons from the system, effectively

increasing losses and cooling the system [20]. There should
also be a corresponding mechanical frequency shift associated
with microwave pump detuning; however, it is predicted that it
would be on the order of mHz, far below the resolution of the
measurement technique used here, which relies upon a vector
signal analyzer’s “peak trace” function to record amplitude vs
time.

Figure 13(a) demonstrates the optical spring effect for the
127-kHz mode of the SB resonator. These measurements were
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taken using a method depicted in Fig. 13(b), in which while the
mechanical resonance rings down, the microwave detuning is
changed from zero, and the resulting change in time constant
is measured. Positive detuning results were also taken and
the trials repeated. The transient response that can be seen
immediately after a frequency shift in Fig. 13(b) is a result of
the readout system requiring a rebalance.

Within the explored detuning range, �ωe < �m; hence,
one expects an approximately linear relationship between Q

factor and detuning. The reason for this limited range is the
restrictions placed by the bandwidth of the frequency-control
system acting on the loop oscillator (see Sec. V). The loop
oscillator and control system used to read out the mechanics
of the SB complicate the microwave system beyond a simple
LCR model.

The presence of parametric effects is a promising result for
the system, as it is only through resolved sideband cooling [20]
that a system such as the SB resonator could overcome thermal
noise to reach quantum limited measurements and potentially
the quantum ground state [20,42].

To date, we have achieved excellent agreement between
modeled and measured frequencies of a variety of mechanical
modes of the SB resonator and developed a robust method
of mechanically exciting it via a piezoelectric shaker and
via radiation pressure. The later method has also provided
a method of calibrating the transducer’s frequency sensitivity

to displacement, df/dx, which has been measured to good
agreement with predicted results. The mechanical Q factors
have been optimized to a point at which they agree with
maximum reported values at room temperature within limi-
tations set by the quality of the sapphire, as does the Qm × f

product. In addition to this, if the SB resonator were cooled
cryogenically, it would be equivalent to the best reported
results for setting a limit on proposed quantum gravitational
modifications to the standard Heisenberg uncertainty principle,
potentially allowing a comparison of the consequences of
various approaches to quantum gravity. Parametric backaction
resulting in mechanical damping and excitation have also
been observed. Finally, a microwave readout system has
been constructed, which provides extremely low phase noise
performance. This work provides an important enabling step
for the next generation of kilogram-scale mechanical oscillator
experiments designed to measure and test the standard quan-
tum limit and potentially investigate the nature of quantum
gravity by proving that novel architectures of sapphire systems
can still produce state-of-the-art results.
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