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Polarization singularities in a sum-frequency light beam generated by a bichromatic singular beam
in the bulk of an isotropic nonlinear chiral medium
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Expressions for the electric field at a sum frequency generated by a collinear elliptically polarized Gaussian
beam and circularly polarized Laguerre-Gaussian beam in an isotropic chiral nonlinear medium are obtained in
quadratures. The amount and locations of C points in the cross section of a signal beam at a sum frequency are
shown to be dependent on frequency and diffraction lengths ratios of fundamental beams and on the ellipticity
degree of the Gaussian beam’s polarization ellipse. Possible values of total topological charges of the emergent
C points are determined by the topological charge of the Laguerre-Gaussian beam and remain constant while
the radiation propagates in nonlinear media. In case of nonzero total topological charge C lines form helical
structures, the parameters of which depend on the wave-vector mismatch. Otherwise, C lines form a loop. As the
wave-vector mismatch grows the loop undergoes deformation and breaks up, creating new C lines.
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I. INTRODUCTION

The space where an inhomogeneously polarized monochro-
matic light beam propagates can possess certain lines, along
which the polarization of the beam’s electric field is purely
circular. These lines are called C lines [1]. Their intersections
with the cross section of the propagating beam are points
of circular polarization singularity, or C points. Polarization
singularity is characterized by its topological charge, which is
equal to the total winding number of the polarization ellipse
during one full counter-clockwise loop around the point of
singularity. If the rotation of the ellipse is clockwise, the
charge is considered to be negative. C points of the least
possible absolute value of topological charge (1/2) are stable
under slight perturbations of the field, while singularities with
greater charges (n/2) split under the perturbations of the field
into |n| C points, each having the topological charge equal
to (1/2) sgn(n). While analyzing different cross sections of
the light beam, which correspond to increasing values of the
propagation coordinate, one can observe continuous motion
of C points. In places where the C line is tangential to the
cross-section plane the pairwise creation or annihilation of C
points with opposite topological charges takes place. Many
other interesting properties of polarization singularities are
well known at the present time [2], and C points’ emergence
and annihilation behavior have been studied in a great diversity
of problems in linear optics [3–6].

The features of emergence and evolution of polarization
singularities in nonlinear media remained unexplored for a
long time because the account of a polarization state’s changes
in a propagating wave leads to rather cumbersome calculations.
As a rule, authors consider interaction of linearly polarized
waves, thereby proceeding to the more simple case of scalar
field singularities—optical vortices. In [7], second-harmonic
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generation by superposition of optical vortices was studied,
and the authors pointed out characteristic doubling of the
topological charge of the singularities. A similar effect was
experimentally observed in [8]. Interesting features of the
birth and evolution of optical vortices in photorefractive crystal
were theoretically described and experimentally confirmed in
research [9]. Also the scenarios of parametric interaction of
noncoaxial optical vortices and the impact of incident radiation
parameters on the singular pattern of propagating waves
were thoroughly investigated in [10]. Meanwhile, taking into
account the vectorial nature of interacting fields allows one to
observe a rich palette of analogous polarization effects even in
media belonging to higher classes of symmetry. In particular, it
was shown [11–14] that polarization singularities may emerge
in the bulk and on the surface of nonlinear media with nonlocal
optical response in processes of sum-frequency and second-
harmonic generation even if the fundamental beams are
homogeneously polarized. Moreover, the results of numerical
modeling of the propagation of light beams initially containing
polarization singularities demonstrate interesting peculiarities
of their birth and annihilation processes in isotropic media
with nonlocality of its cubic nonlinear response [15].

The aim of the present paper is to analyze the creation,
evolution, and interaction of polarization singularities in a
sum-frequency beam generated in an isotropic chiral medium
by a regular elliptically polarized beam and circularly polar-
ized beam with phase singularity. We call their superposition
a bichromatic singular beam. Generally speaking, canonical
definition of polarization singularity becomes less applicable
in our case because the tip of the total oscillating electric-field
vector of the collinear signal and fundamental beams in a given
point of space draws out a Lissajous figure but not an ellipse.
Fundamental properties of polychromatic polarization states
and singularities were studied in original research [16,17].
However, we limit ourselves by considering only the canonical
polarization singularities of a signal beam, which is indeed
monochromatic. The tensor of local quadratic susceptibility of
isotropic chiral media χ̂2(ω1 + ω2; ω1,ω2) is proportional to a
Levi-Civita tensor, and the Fourier component of the field of
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nonlinear polarization vector PNL at a sum frequency has the
following form:

PNL(ω1 + ω2; ω1,ω2) = χ (2)[E1(ω1) × E2(ω2)]. (1)

Here E1(ω1) and E2(ω2) are Fourier components of electric
fields of the first and the second fundamental beams, and
χ (2) is a real parameter in the absence of absorption [18].
We emphasize that if both of the fundamental waves are plane
waves then the medium’s nonlinear polarization vector PNL

is parallel to their propagation direction. This forbids the
generation of a transversal wave at a sum frequency in the
bulk of a nonlinear medium. However, a real laser beam is a
superposition of transversal plane Fourier harmonics having
slightly noncollinear wave vectors, which form small angles
with the beam’s propagation direction. In order to satisfy the
Maxwell equation (div E = 0), each fundamental beam must
possess a small longitudinal component of the electric-field
vector. These components actually provide the generation of a
transversal signal beam at a sum frequency when fundamental
beams propagate collinearly. The problems related to the
efficiency of such processes and analysis of a polarization
state of a signal beam were discussed in detail in [12,13],
where, in particular, the sum-frequency field was obtained in
quadratures in the case of a nondepleted pump of two coaxial
Gaussian beams.

II. MAIN EQUATIONS

Let the first part of a bichromatic singular fundamental
beam be a regular elliptically polarized Gaussian beam,

E1(x,y,z,t) = E
(0)
1

[
e1 + ik−1

1 ez(e1 · ∇)
]
G1(x,y,z)

× exp[−iω1t + ik1(z − l0)], (2)

with maximum intensity on its axis Oz, having the major
axes of all polarization ellipses parallel to the Ox axis. The
second part of the bichromatic beam is a right-hand circularly
polarized Laguerre-Gaussian beam,

E2(x,y,z,t) = E
(0)
2

[
e+ + ik−1

2 ez(e+ · ∇)
]x + imy

w2β2(z)

× G2(x,y,z) exp[−iω2t + ik2(z − l0)], (3)

which has a zero amplitude of its transversal electric field on
the Oz axis. Here E

(0)
1,2 are constants, and

G1,2(x,y,z) = 1

β1,2(z)
exp

[
− (x2 + y2)

w2
1,2β1,2(z)

]
(4)

are solutions of the parabolic equation describing linear
diffraction of scalar Gaussian beams with waist sizes w1,2

and waist z coordinates z = l0 (Fig. 1).
Polarization unit vectors e± = (ex ∓ iey)/

√
2 describe the

right- and left-hand circularly polarized waves, respectively,
as defined from the point of view of the receiver. Here
ex,y,z are Cartesian unit vectors, β1,2(z) = 1 + i(z − l0)/l1,2,
l1,2 = k1,2w

2
1,2/2 are diffraction lengths, m = ±1 is known

as the charge of the Laguerre-Gaussian mode, and vector
∇ = {∂/∂x,∂/∂y}. The polarization unit vector in Eq. (2) is

e1 = (
√

1 + M0e+ +
√

1 − M0e−)/
√

2, (5)

z

y

w1

w2
l0x

FIG. 1. The geometry of the fundamental beams interaction.

where parameter M0 is an ellipticity degree of Gaussian
beam polarization ellipses (M0 = ±1 correspond to right-
and left-hand circularly polarized radiation, respectively, and
M0 = 0 corresponds to the linearly polarized wave). We notice
that the fundamental beams (2) and (3) have small longitudinal
components of the electric field. Their form is chosen in order
to satisfy the equations div E1,2 = 0 within the first-order
approximation on the parameters λ1,2/w1,2 � 1, where λ1,2

are the wavelengths of the fundamental beam parts.
One finds the nonlinear polarization vector PNL substituting

Eqs. (2) and (3) in Eq. (1). It is necessary to separate its
solenoidal part P(v), so div P(v) = 0. The procedure is carried
out within the first-order approximation on the parameter
1/k3w3 in the following way: P(v) = PNL + k−2

3 ∇(∇ · PNL).
Here w3 = (w−2

1 + w−2
2 )−1/2, and k3 = k1 + k2. It is conve-

nient for our research to decompose this beam into circularly
polarized components P

(v)
± = (P (v)

x ± iP (v)
y )/

√
2:

P
(v)
+ = P0

2

G3(x,y,z)

w2β2(z)

{
(x + imy)

× [d12μ+(x − iy) + d13μ−(x + iy)]

+ k−1
2 μ+(1 + m) + k−1

3 μ−(1 − m)
}
, (6a)

P
(v)
− = P0

2

G3(x,y,z)

w2β2(z)
μ−

{
(x + imy)(x − iy)d23

− (
k−1

2 − k−1
3

)
(1 + m)

}
. (6b)

Here μ± = √
1 ± M0, P0 = χ (2)E

(0)
1 E

(0)
2 , dij = β−1

i (z)/
li − β−1

j (z)/lj , β−1
3 (z) = w2

3[β−1
1 (z)w−2

1 + β−1
2 (z)w−2

2 ], l3 =
k3w

2
3/2, and G3(x,y,z) = G1(x,y,z)G2(x,y,z). The value of

l3 is always between two values of l1 and l2.
It was shown [12,13] that the following system of

differential equations for slowly varying envelopes E
(v)
± =

(E(v)
x ± iE(v)

y )/
√

2 of right- and left-hand circularly polarized
components can be written for the solenoidal part of the
sum-frequency beam:

(
∂

∂z
− i

2kSF

�⊥

)
E

(v)
± = 2πikSF

ε(ω3)
P

(v)
± (ω3) exp[i�k(z − l0)].

(7)
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Here the Oz axis is orthogonal to the plane surface of the
medium and is directed into its bulk, �⊥ = ∂2/∂x2 + ∂2/∂y2

is the transversal Laplace operator, ω3 = ω1 + ω2, ε is the
linear dielectric permittivity of the medium, kSF = ω3ε(ω3)/c,
k1 and k2 are wave vectors of signal and fundamental waves,
and �k = k1 + k2 − kSF is the wave-vector mismatch. If the
medium has normal frequency dispersion, then ε(ω1,2) <

ε(ω3) and �k < 0. In case of anomalous dispersion the
reversed inequalities are valid. We neglect the linear gyration
effects, as it was done in [12,13], and assume wave-vector
mismatch to be the same for both components E

(v)
± . The initial

conditions are trivial E
(v)
± (x,y,0) = 0, and in approximation

of small pump depletion Eq. (7) become linear heterogeneous
ones. This allows us to write their solutions using the Green’s
function.

III. DISCUSSION OF THE RESULTS

The expressions for circularly polarized components of a
sum-frequency beam can only be obtained in quadratures:

E
(v)
+ (x,y,z) = iα

{
(x + imy)

× [
J

(1)
12 μ+(x − iy) + J

(1)
13 μ−(x + iy)

]
+ (

J (2)k−1
2 + iJ

(3)
12 k−1

SF

)
μ+(1 + m)

+ (
J (2)k−1

3 + iJ
(3)
13 k−1

SF

)
μ−(1 − m)

}
, (8a)

E
(v)
− (x,y,z) = iαμ−

{
(x + imy)(x − iy)J (1)

23

− [
J (2)(k−1

2 − k−1
3 ) − iJ

(3)
23 k−1

SF

]
(1 + m)

}
. (8b)

It is readily seen that the distribution of polarization ellipses
in each transversal cross section of the signal beam does not
depend on the nonlinearity parameter α = πkSF l3P0/w2ε(ω3).
The expressions in braces in Eq. (8) contain the following
integrals:

J
(1)
12,13,23(x,y,z)

=
∫ (z−l0)/l3

−l0/l3

β̃2
1 (ζ ′)β̃2(ζ ′)
[B(ζ,ζ ′)]3

K(ζ,ζ ′)d̃12,13,23dζ ′, (9)

J
(3)
12,13,23(x,y,z)

=
∫ (z−l0)/l3

−l0/l3

(ζ − ζ ′)β̃1(ζ ′)
[B(ζ,ζ ′)]2

l3K(ζ,ζ ′)d̃12,13,23dζ ′, (10)

J (2)(x,y,z) =
∫ (z−l0)/l3

−l0/l3

K(ζ,ζ ′)
β̃2(ζ ′)B(ζ,ζ ′)

dζ ′. (11)

In Eqs. (9)–(11) function B(ζ,ζ ′) = β̃1(ζ ′)β̃2(ζ ′) + ik3(ζ −
ζ ′)β̃A(ζ ′)/kSF , ζ = (z − l0)/l3, β̃1,2(ζ ) = 1 + iζ l3/l1,2,
β̃A(ζ ) = 1 + iζ l2

3/l1l2, the kernel

K(ζ,ζ ′) = exp

[
iνζ ′ − x2 + y2

w2
3

β̃A(ζ ′)
B(ζ,ζ ′)

]
, (12)

d̃ij = β̃−1
i (ζ )/li − β̃−1

j (ζ )/lj , and ν = l3�k is proportional
to the wave-vector mismatch. The solution (8) has an axial
symmetry E

(v)
± (x,y,z) = E

(v)
± (−x,−y,z), and, because of the

exponent inside the integrals, it is Gaussian asymptotic on

the transversal coordinates x and y. Each of the circularly
polarized components of the sum-frequency beam consists of
a “central core” with a Gaussian-like intensity profile and a
“frame,” similar to Laguerre-Gaussian modes of second order,
which depend quadratically on the transversal coordinates. If
the diffraction lengths of two fundamental beams are equal,
then the following equalities are valid: d12 = d13 = d23 = 0.
In this case the signal beam does not contain any polarization
singularities.

The search for C points in the signal beam’s cross section
and the reconstruction of C lines were done by the following
numerical algorithm. At first, the grid values of integrals in
Eqs. (9)–(11) were found numerically for the consequence of
the propagation coordinate values zk . After that the singularity
patterns were reconstructed using piecewise interpolation
methods. Near the medium’s border the problem is remarkably
simpler because the electric field (8) of the signal beam has
almost the same form as the vector field P(v). This similarity
takes place because for the small values of z the solution of
Eq. (7) can be written in the following form:

E
(v)
± (x,y,z)

= 2πikSF

ε(ω3)

∫ z

0
dz′ exp[i�k(z′ − l0)]

×
∫∫

dx ′dy ′ Gr(x − x ′,y − y ′,z − z′)P (v)
± (x ′,y ′,z′)

≈ 2πikSF z

ε(ω3)
P

(v)
± (x,y,0)e−i�kl0 , (13)

where Gr(x,y,z) = −ikSF /(2πz) exp[ikSF (x2 + y2)/(2z)] is
the Green’s function of Eq. (7). Polarization singularities
emerge in the signal beam if the vector field P(v) itself has
polarization singularities at the medium’s border. From now
on we will call the latter singularities the generators or G points
(their trajectories being G lines). Polarization singularities in
the signal beam have the same topological charges as the
corresponding generators and are located close to them in
the cross sections which are close enough to the medium’s
border. The positions of all G points at any z coordinate are
determined by the following systems:{

A1±x2 + 2C1±xy + B1±y2 + D± = 0

A2±x2 + 2C2±xy + B2±y2 = 0
. (14)

The first system [the top sign “+” in Eq. (14)] determines the
position of left-hand generators (which are zeros of P

(v)
+ ) and

the second one [the bottom sign “−” in Eq. (14)] determines
the position of right-hand generators (which are zeros of P

(v)
− ).

Real coefficients A–D are the following:

A1+ = (l1l2 − z′2)(μ+ + μ−k2/k3),

B1+ = m(l1l2 − z′2)(μ+ − μ−k2/k3),

C1+ = 0.5z′(l1 + l2)[(m − 1)μ+ + (m + 1)μ−k2/k3],

D+ = [
k−1

2 μ+(1 + m) + k−1
3 μ−(1 − m)

](
z′2 + l2

1

)(
z′2 + l2

2

)
l2 − l1

,

A2+ = z′(l1 + l2)(μ+ + μ−k2/k3),

B2+ = mz′(l1 + l2)(μ+ − μ−k2/k3),
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C2+ = 0.5(z′2 − l1l2)[(m − 1)μ+ + (m + 1)μ−k2/k3],

A1− = l1l2 − z′2,

B1− = m(l1l2 − z′2),

C1− = 0.5z′(l1 + l2)(m − 1),

D− = (1 + m)
(
k−1

2

)(
z′2 + l2

1

)(
z′2 + l2

2

)
l2 − l1

,

A2− = z′(l1 + l2),

B2− = mz′(l1 + l2),

C2− = 0.5(z′2 − l1l2)(m − 1), (15)

where z′ = z − l0. Generally, the second equations in Eq. (14)
determine two straight lines crossing in the origin at z = const,
and the first equations determine a second-order curve with its
center in the origin. Thus, the distribution of G points in the
transversal plane z = const has the center of symmetry, and
their amount cannot exceed 4 for each handedness of rotation
of the P(v) vector. Symmetrically positioned G points have
identical topological charges. The analysis of Eq. (6) shows
that the amount and characteristics of generators depend on
wave vectors and waist sizes ratios of two fundamental beams.
Varying the ellipticity degree M0 of the Gaussian fundamental
beam, one can control the position and amount of only left-
hand G points (zeros of P

(v)
+ ). The positions and amount of

right-hand generators (zeros of P
(v)
− ) do not depend on M0, as

this parameter affects only the absolute value of |P (v)
− |.

Consider the structure of the right-hand circularly polarized
component of the field P(v). The first of two systems (14)
becomes significantly simpler when z = l0: the coefficients
A2+ and B2+ become zero. The left-hand generators (zeros of
P

(v)
+ ) determined by this system lie on Ox and Oy axes and

their coordinates are determined by the following equalities:

x2 = −D+/A1+ , (16a)

y2 = −D+/B1+ , (16b)

in which A1+ , B1+ , and D+ are calculated at z = l0. Each
equality determines two symmetrically positioned generators,
if its right part is positive. If the inequality m(M0 − M∗) < 0
is valid, where M∗ = (k2

2 − k2
3)/(k2

2 + k2
3), then only Eq. (16a)

(if l1 > l2) or Eq. (16b) (if l1 < l2) has physical meaning.
In both of these cases two corresponding generators have
identical topological charges equal to m/2. In contrast, if
m(M0 − M∗) > 0, then both of the equalities (16) have
physical meaning (if l1 > l2) or do not have it (if l1 < l2)
simultaneously. In the first case two of four generators have
topological charges of 1/2, and the other two have the charge of
−1/2, so the total topological charge of all generators is zero.

The second of the systems, Eq. (14), becomes so simple
when z = l0 that the distribution of right-hand generators
(zeros of P

(v)
− ) has a degenerate form. When charge m = 1

the circularly polarized component P
(v)
− is zero in the points

(x,y) of the plane z = l0 satisfying the condition x2 + y2 =
−D−/(l1l2), where D− is calculated at z = l0. In other parallel
planes there are no right-hand G points. This means that if
l1 > l2 then vector field P(v) is characterized by one G line

having the shape of the circumference, the plane of which is
orthogonal to the propagation direction of the beam. Numerical
analysis of the solutions (8) allows us to conclude that such
a G line generates no right-hand polarization singularities in
the beam at the sum frequency. If the charge m = −1, then
P

(v)
− ∝ μ−(x − iy)2d23G3 and E

(v)
− ∝ μ−(x − iy)2J

(1)
23 , and at

any z there is a right-hand singularity with topological charge
equal to 1 on the signal beam’s axis. This case corresponds to
doubling of the topological charge, which is typical for non-
linear transformation of singularly polarized radiation. Both
of the described cases are not structurally stable and emerge
due to the assumption of the Laguerre-Gaussian fundamental
beam to be purely circularly polarized. A small variation of the
polarization unit vector in Eq. (3) will lead to the destruction of
the described structures. In the case of positive m = 1 instead
of the ring-shaped G line in the z = l0 plane there will be
retained only four generators with total topological charge
equal to zero lying symmetrically on Ox and Oy axes. If
m = −1, then instead of a sole G point with the charge of 1
on the beam’s axis there will be two G points each having the
charge of 1/2. These two points will lie symmetrically close
to the origin on the Ox (if l1 > l2) or Oy (if l1 < l2) axis.
We notice that both cases can be realized for the left-hand
component of the signal beam as well. For this reason we will
further discuss only left-hand polarization singularities.

Assuming the wave-vector ratio of the fundamental beams
to be constant, one can create one of the three possible types
of configurations of the medium’s nonlinear polarization field,
varying the waists of the beams w1,2 and ellipticity degree
M0. The first type is realized with m(M0 − M∗) < 0. The
beam of nonlinear polarization contains one pair of left-hand
G points in the z = l0 plane with total topological charge equal
to m. These generators also exist at any other z [Figs. 2(a)
and 2(b)]. This configuration of vector field P(v) generates
an analogous polarization structure of the electric field at the
sum frequency. However, unlike G lines each C line has a
helical structure if the dimensionless wave-vector mismatch
ν �= 0 and the mean “step” of the spiral decreases as the
absolute value |ν| grows. There also can be a more complicated
transformation resulting in such a curving of C lines that they
start to intersect some of the transversal planes more than once.
This transformation leads to the appearance of additional C
points’ birth and annihilation events. It is possible to create
the first type of configuration of the vector field P(v) for both
values of the charge m. In these two cases C points have
opposite topological charges and the helicity of each spiral
is also opposite. Finally, if we assume the Laguerre-Gaussian
fundamental beam to be left-hand circularly polarized (instead
of right-hand), it will be also possible to create vector
beams P(v) differing from previously discussed ones only in
the extent of the electric-field vector rotation. In this case
the change of the C points’ polarization state is followed
by the corresponding change of C lines’ helicity. Figure 3 illus-
trates C lines in the sum-frequency beam and G lines of vector
field P(v) (the latter being drawn thinner than C lines) for differ-
ent values of the wave-vector mismatch. White and black stars
designate the points of space where pairwise creation (white
stars) or annihilation (black stars) of C points takes place.
Red (solid) lines in (a, c) and markers in (b,d) designate the
singularities with positive (1/2) topological charge and blue
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(a) (b)

(c) (d)

FIG. 2. (Color online) Left-hand G lines (a, c) and transversal distributions of the nonlinear medium polarization field at the position of
the waist of the fundamental beams (b, d) for the first (a, b) and the second (c, d) types of vector field P(v) configurations. The charge m = 1,
and beams’ parameters are w2/w1 = 2, k2/k1 = 1.4, M0 = −0.7 (a, b) and w2/w1 = 0.3, k2/k1 = 2, M0 = 0 (c, d). The plane z = 0 in the
figure corresponds to the position of the fundamental beams’ waists. Red (full) and blue (dashed) lines correspond to C lines with positive and
negative topological charges, respectively. C points with positive and negative charges are marked by red (filled) and white circles. Blue (filled)
ellipses are left-hand polarized and empty ellipses are right-hand polarized.

(a) (b)

FIG. 3. (Color online) Left-hand C lines (bold) and G lines (thin) for ν = −5 (a), ν = 5 (b), and w2/w1 = 2, k2/k1 = 1.4, m = 1,
M0 = −0.7, l0 = 0. In figure (a) each C line forms a left-hand screw, and in figure (b) it forms a right-hand one. Red (full) and blue (dashed)
lines correspond to C lines with positive and negative topological charges, respectively. C points with positive and negative charges are marked
by red (filled) and white circles.
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(a) (b)

FIG. 4. (Color online) Left-hand C lines in the sum-frequency beam for ν = −4 (a), ν = −8 (b), and w2/w1 = 0.3, k2/k1 = 2, m = 1,
M0 = 0, l0 = l3. C lines form three separate loops in figure (a) and two loops in figure (b). Red (full) and blue (dashed) lines correspond to C
lines with positive and negative topological charges, respectively.

(dashed) lines and white markers designate ones with negative
(−1/2) charge. We notice that each star connects two cuts of
C lines with opposite topological charges.

The second type of the nonlinear medium’s polarization
field configuration is realized when both m(M0 − M∗) > 0
and l1 > l2 are valid. In this case there are two pairs of G
points in the z = l0 plane with zero total topological charge.
The generators exist only in the planes z = z1, if z1 is in
the interval [−zII,zII]. In the plane z = l0 − zII the birth of
two pairs of G points takes place, and in z = l0 + zII their
pairwise annihilation occurs [Figs. 2(c) and 2(d)]. The value
zII is readily obtained from the systems (14): zII = √

l1l2(1 +
λ − √

λ2 + 2λ)1/2. In this formula

λ =
{

(M0 − M∗)(l1 + l2)2[l1l2μ2
−(1 + M∗)]−1, if m = 1

(M∗ − M0)(l1 + l2)2[l1l2μ2
+(1 − M∗)]−1, if m = −1

.

(17)

Four corresponding cuts of G lines start and end in places
of birth and annihilation of G points (z = l0 ∓ zII), forming
a closed loop. If l0 > zII, then the fundamental beams are
focused in such a way that the whole loop is located inside
the medium, where z > 0. As in the configuration of the
first type, when k3 = kSF , C lines in the sum-frequency
beam have almost the same structure as the G lines do. The
presence of wave-vector mismatch in this case leads to the
deformation of the C lines loop, and the growth of ν causes the
formation of additional pairs of C points and appearance of new
loops of C lines which are not connected with the primal
loop. Further increasing of the absolute value of ν leads to the
splitting of the primal loop into two new loops, and the cuts
of C lines become helical. The loops of left-hand C lines for
different values of ν and fixed parameters of the fundamental
beams are shown in Fig. 4.

Finally, the third type of configuration of nonlinear po-
larization field P(v) is realized when both m(M0 − M∗) > 0
and l1 < l2 are valid. The beam of this type does not contain
singularities in the waist plane z = l0, although two pairs of
G points exist in the planes z = z1, where z1 satisfies the
following relations: z1 < l0 − zIII or z1 > l0 + zIII. In this
case total topological charge of G points is zero as in the
second type of P(v) field configuration. In the z = l0 + zIII

plane birth of G points takes place, and in z = l0 − zIII

their pairwise annihilation does. The characteristic coordinate
zIII = {l1l2[1 + λ + (λ2 + 2λ)1/2]}1/2 is found in a similar way
as zII. Here λ is still determined by Eq. (17). The value of zIII

cannot be less than the minimum of two diffraction lengths
l1,2 of the fundamental beams. Despite the fact that C points’
formation induced by G points is still possible in this type
of configuration, it is not of practical interest, because P(v)

tends to zero as |z − l0| increases and the efficiency of the
sum-frequency generation is relatively small.

IV. CONCLUSION

Analytical expressions of the electric field at a sum fre-
quency generated in an isotropic chiral medium by a collinear
elliptically polarized Gaussian beam and circularly polarized
Laguerre-Gaussian beam were obtained. It was shown that the
amount and positions of C points in the cross section of a signal
beam are governed by the ratio of fundamental frequencies and
the ellipticity degree of the Gaussian beam. The topological
charge of a Laguerre-Gaussian beam determines possible val-
ues of topological charges of generated C points. The configu-
rations of the signal beam polarization structure were classified
based on the value of total topological charge of all singulari-
ties, which remains constant for each configuration as the beam
propagates in the nonlinear medium. Numerical investigations
of the solution demonstrated strong impact of the wave-vector
mismatch on the form of C lines. In one of the configurations
they have a helical structure; the greater is the absolute value of
the wave-vector mismatch the shorter is the mean step of each
spiral. If the wave-vector mismatch tends to zero, then the
mean step is sufficiently greater than the diffraction lengths
of the two fundamental beams. The helicity of each spiral
changes to opposite when changing the sign of the wave-vector
mismatch. In the other configuration C lines of the signal beam
form a loop, which undergoes deformation, if the wave-vector
mismatch increases in absolute value. As it reaches sufficiently
large values the topological features of the signal beam change:
the primal loop breaks up and new loops are formed.

In the present work only the circular polarization singular-
ities are considered. There are also lines of linear polarization
in the transversal section of the beam, which correspond to
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surfaces in three-dimensional space (so-called L surfaces).
Such singularities separate the regions with opposite hand-
edness of polarization rotation. As it can be seen in Fig. 2(b),
these regions are present in the medium’s nonlinear po-
larization field P(v). Following the introduced “generator-
singularity” concept, one can show that L surfaces appear in
the signal beam as well. However, detailed analysis of these
singularities is more complicated compared to C lines, because
L surfaces are objects of higher dimension and they are harder
to be captured by numerical methods. Thus, we do not include

the discussion on L surfaces in the present paper, and we aim
to consider them in the future.
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