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Optical theorem for the conservation of electromagnetic helicity: Significance for molecular energy
transfer and enantiomeric discrimination by circular dichroism
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We put forward the physical meaning of the conservation equation for the helicity on scattering of an
electromagnetic field with a generally magnetodielectric bi-isotropic dipolar object. This is the optical theorem
for the helicity that, as we find, plays a role for this quantity analogous to that of the optical theorem for energy.
We discuss its consequences for helicity transfer between molecules and for new detection procedures of circular
dichroism based on ellipsometric measurements.
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I. INTRODUCTION

Several effects derived from the twisting of the polarization
and wavefronts of electromagnetic fields, specifically the spin
and orbital angular momenta, are a subject of increasing
study in recent years [1–7]. This is accompanied by a steady
improvement in particle manipulation techniques and theo-
ries [8–14], and by the use of spatially structured waves [15]
with enhanced helicity [16] to increase the signal in circular
dichroism [17,18] for enantiomeric discrimination [19–21].
In addition, recent studies [22] in fluorescence resonance
energy transfer (FRET) [23,24] (see also [25,26]) show an
electromagnetic force between excited molecules, different
from the van der Waals force when they are in their ground
state.

A consequence of this research was the derivation of a con-
servation law for the helicity of electromagnetic fields [27,28]
that appears as fundamental as that for the energy.

In this paper we discuss the physical significance of this
helicity conservation law. Dealing with quasimonochromatic
electromagnetic fields, we establish the optical theorem which
constitutes the main consequence of this law concerning
optical, or electromagnetic, scattering. In this way, we show
that this theorem provides an expression for the helicity
excitation rate of a particle, (dipolar in the wide sense, i.e., such
that its scattering may be fully described by its first electric
and magnetic partial waves), by extinction of the helicity
of the irradiating field. In particular for magnetodielectric
bi-isotropic objects, this leads to a relationship between
polarizabilities, complementary and compatible with that of
the optical theorem for energies. For circularly polarized
light this also establishes a necessary and sufficient condition
between their duality and scattering characteristics.

In this respect, we do not address here quadrupoles or
other multipolar excitations. Although extensions of dipolar
models have been carried out in studies of the energy conveyed
by those higher-order terms, showing the observable signal
due to the electric dipole-quadrupole polarizability for chiral
configurations [29] (see also [21] remarking the similarity
in magnitude of the electric quadrupole and magnetic dipole
moments according to quantum electrodynamical calculations
in [25,26]), as regards the purpose of our study which deals

*www.icmm.csic.es/mnv; mnieto@icmm.csic.es

with a different quantity, the helicity, we show that the (broad
sense) dipolar formulation already leads to physical phenom-
ena that should be observed in future experiments, even though
of course this theory is amenable of further generalizations to
account for effects due to higher-order excitations.

More importantly, this equation opens a landscape for the
following.

(1) The emission and absorption of helicity in complex
environments, also in particular at the nanoscale, e.g., in FRET
between molecules, or other nanoscructures, where rather
than analyzing the transference of energy, one establishes and
addresses the behavior of the helicity lifetimes, taking the
bi-isotropy, and chirality in particular, into account.

(2) Enantiomeric discrimination, where chiral molecules, or
other nanoparticles, are studied by circular dichroism. This is
done by means of a dissymmetry factor introduced in this work
stemming from this optical theorem. This factor has higher
sensitivity than the standard one [18] based on the extinction
of incident energy and its transfer to the object by measuring
its intensity excitation, since it involves an experimental
procedure which detects the total scattered helicity and its
flow by means of an ellipsometry setup [30].

II. HELICITY

We consider fields, currents, and potentials with a time-
harmonic dependence, so that the electric and magnetic
vectors are E(r,t) and B(r,t): E(r,t) = Re[E(r) exp(−iωt)]
and B(r,t) = Re[B(r) exp(−iωt)]. Re denotes real part.

We introduce the helicity density H and the density of flow
of helicity F of this field in a nonabsorbing dielectric medium
of refractive index n = √

εμ (ε and μ represent the dielectric
permittivity and the magnetic permeability) as

H = 1

2

(
1

μ
A · B − εC · E

)
, (1)

F = c

2μ
(E × A + B × C). (2)

A and C are vector potentials such that B = ∇ × A and E =
−∇ × C [28], so that working in a Coulomb gauge, ∇ · A =
∇ · C = 0, and one has from Maxwell’s equations,

Ȧ = −cE, Ċ = − c

εμ
∇ × A + 4π

ε
K, J = ∇ × K. (3)
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The upper dot stands for ∂t , c is the light speed in vacuum,
and J denotes the electric current density which is transversal
since the existence of A and the law ∇ · εE = 4πρ imply that
the electric charge density ρ is zero. From the above equations
one obtains the conservation law [28]

Ḣ + ∇ · F = −P, (4)

where dissipation in the interaction of the fields with matter is
represented by P = 2π (E · K − J · C).

Since the fields and potentials are time harmonic, we
convert the quantities holding Eqs. (3) and (4) into

A = − i

k
E, C = − i

ε

[
B
kμ

− 4π

ω
K

]
(5)

and

H = 〈H 〉 = 1

2k

√
ε

μ
Im(E · B∗), (6)

F = 〈F 〉 = c

4nk
Im

(
εE∗ × E + 1

μ
B∗ × B

)
, (7)

where 〈·〉 denotes time average, Im means imagi-
nary part and k = nω/c, A = Re[A(r) exp(−iωt)], C =
Re[C(r) exp(−iωt)], J = Re[J(r) exp(−iωt)], and K =
Re[K(r) exp(−iωt)]. Now F coincides with the spin angular
momentum density. Equation (4) is then fulfilled by these
time-averaged quantities with P replaced by

〈P〉 = π

[
2

ck

√
μ

ε
∇ · Im(K × B∗)

− 1

kn
Im(J · B∗) + 4π

ck

√
μ

ε
Im(J · K∗) + Re(E · K∗)

]
.

(8)

For these monochromatic fields, Maxwell’s equations, and
the above relations, show that (6) and (7) are proportional
to Lipkin’s zilches [27,28], used in recent works as chirality
K and flow of chirality S [16,19]:

K = 〈K 〉 = k2H = k2〈H 〉, (9)

S = 〈S 〉 = k2F = k2〈F 〉. (10)

The dissipative terms are however different. We follow the
criterion of [28] according to which F is the quantity with
dimensions of angular momentum, so that we deal with the
helicity and its flow, although (9) and (10) show that both
pairs yield equivalent mesurements for monochromatic fields.

III. OPTICAL THEOREM FOR THE HELICITY

Let a monochromatic, elliptically polarized, plane wave be
incident on a scattering body, e.g., a polarizable particle (cf.
Fig. 1). The field at any point of the exterior medium may be
represented as the sum of the incident and the scattered vectors
as E(r) = Ei(r) + Es(r) and B(r) = Bi(r) + Bs(r).

The incident fields are Ei = eie
ik(si ·r) and Bi = bie

ik(si ·r),
whereas in the far zone the scattered fields are Es =
e(s) exp(ikr)/r and Bs = b(s) exp(ikr)/r . Also bi = nsi × ei ,
ei · si = bi · si = 0 and b = ns × e, e · s = b · s = 0.

FIG. 1. (Color online) Elliptically polarized plane wave incides
on a polarizable particle. The fields are evaluated at the point P:
r = Rs, of coordinates (R,θ,φ), of a sphere of integration of radius
R, centered at some point r0 of the particle. r0 acts as the framework
center 0. The point Q is the projection of P on the plane OXY , the
scattering plane being OPQ. We show the three orthonormal vectors:
s, ε‖ (in the plane OPQ and in the sense of rotation of θ ), and ε⊥
(normal to OPQ).

The flow (or time-averaged flow) density of helicity is
F = 〈F 〉 = F i + F s + F ′, where

F i = 〈F i〉 = c

4nk
Im

(
εE∗

i × Ei + 1

μ
B∗

i × Bi

)
. (10a)

F s = 〈F s〉 = c

4nk
Im

(
εE∗

s × Es + 1

μ
B∗

s × Bs

)
. (10b)

F ′ = 〈F ′〉 = c

4nk
Im

(
εE∗

i × Es + 1

μ
B∗

i × Bs

)
. (10c)

From Eq. (4) the rateWa
H at which the helicity is dissipated

on interaction with the body is given by the 	 integral that
gives the outward flow of helicity:

∫
	

d
R2F · s through the
surface of a large sphere 	 of radius R with center at some
point r0 of the object. d
 is the element of solid angle and s
denotes the outward normal, i.e., according to Eq. (4),

−Wa
H = W i

H + Ws
H + W ′

H , (11)

where W i
H , Ws

H , and W ′
H are respectively the 	 integrals

of the projections on s of F i , F s , and F ′. On the other hand,
Wa

H = ∫
	

dR d
R2〈P〉.
From these equations we have that W i

H = 0, so that (11)
becomes

Wa
H + Ws

H = −W ′
H , (12)

whereas the integrals of F s · s and F ′ · s across 	 are

Ws
H =

∫
	

d
R2F s · s

= c

4nk
Im

∫
	

d
 s ·
[
εe∗(s) × e(s) + 1

μ
b∗(s) × b(s)

]

(13)
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and

W ′
H =

∫
	

d
R2F ′ · s
2πc

nk2

√
ε

μ
Re[B∗

i (r0) · e(si)]

− 2πc

nk2

√
ε

μ
Re[E∗

i (r0) · b(si)]. (14)

In deriving (14) we have used Jones’ lemma based on the
principle of the stationary phase [31,32]:

1

R

∫
d
R2F (s)e−ik(si ·s)R

∼ 2πi

k
[F (si)e

−ikR − F (−si)e
ikR]. (15)

Equations (13) and (14) together with (12) constitute the
optical theorem that represents the conservation of helicity
on scattering by an arbitrary body. They state that the rate
at which the helicity is dissipated from the incident wave, in
the form of losses in the obstacle, Wa

H , and of helicity of the
scattered field integrated in all directions,Ws

H , is proportional
to a certain helicity component of the scattered field, −W ′

H ,
on interference with the incident wave in the forward direction
si . This suggests to introduce a helicity extinction cross section
of the body QH dividing the terms of (12) by the rate |F i | =

c
2nk

√
ε
μ

Im[Ei(r0) · B∗
i (r0)] = c

2nk

√
ε
μ

Im[ei · b∗
i ] at which the

helicity is incident on a unit cross-sectional area of the object,
so that (12) and (14) give

QH = Wa
H + Ws

H

|F i |

= −4π

k

Re[B∗
i (r0) · e(si)]

Im[ei · b∗
i ]

= 4π

k

Re[E∗
i (r0) · b(si)]

Im[ei · b∗
i ]

,

(16)

where Im[Ei · B∗
i ] = Im[ei · b∗

i ] = 2k
√

μ/εH i . H i being
the helicity of the incident wave. For this field H i =
(n/c)F i · si .

Equation (16) is the optical theorem for the helicity cross
section. Likewise, the absorption and scattering helicity cross
sections Qa

H and Qs
H are introduced as

Qa
H = Wa

H

|F i | , Qs
H = Ws

H

|F i | , (17)

and of course QH = Qa
H + Qs

H .
These laws embody a close analogy with those of the optical

theorem for the energy [32], and suggest the determination of
these magnitudes in scattering experiments.

IV. MAGNETODIELECTRIC BI-ISOTROPIC
DIPOLAR PARTICLE

Let us consider a magnetodielectric bi-isotropic parti-
cle [33], dipolar in the wide sense, i.e., if for example
we consider it a sphere, its magnetodielectric response is
characterized by its electric, magnetic, and magnetoelectric
polarizabilities αe, αm, αem, and αme, given by the first-order
Mie coefficients as αe = i 3

2k3 a1, αm = i 3
2k3 b1, αem = i 3

2k3 c1,
and αme = i 3

2k3 d1 = −αem. a1, b1, and c1 = −d1 standing
for the electric, magnetic, and magnetoelectric first Mie

coefficients, respectively [34–36]. Notice that such sphere is
chiral since αem = −αme.

The electric and magnetic dipole moments, p and m,
induced on the particle by the incident field are

p = αeEi + αemBi , m = αmeEi + αmBi , (18)

and the fields scattered by this particle in the far-zone read

e(s) = k2 eikr

r

[
ε−1(s × p) × s −

√
μ

ε
(s × m)

]
, (19)

b(s) = k2 eikr

r

[
μ(s × m) × s +

√
μ

ε
(s × p)

]
. (20)

Introducing (19) and (20) into (13) and (14), evaluating the
angular integrals, and substituting the results in (12) we obtain

Wa
H + 8πck3

3ε
Im[p · m∗]

= 2πc

n
{Re[(p × E∗

i ) · si] + Re[(m × B∗
i ) · si]}, (21)

which normalizing to |F i | becomes the optical theorem for
the helicity expressed as

Qa
H + 4π

3

k3

H i

√
μ

ε
Im[p · m∗]

= π

H i
{Re[(p × E∗

i ) · si] + Re[(m × B∗
i ) · si]}. (22)

The second term of the left side of (22) is the “total
scattered helicity cross section” or helicity scattering-cross
section defined above [cf. (17)],

Qs
H = 4π

3

k3

H i

√
μ

ε
Im[p · m∗], (23)

associated to the rate of helicity excitation; as such it accounts
for optical rotation effects like, e.g., circular dichroism [17,18].

On the other hand, the right side of (21) or (22) is
proportional to the projection on si of the extinction optical
torque � felt by the particle [14]:

� = 1
2 Re{[p × E∗

i ] + [m × B∗
i ]}, (24)

exerted by the spin of the incident wave. Notice also that
since (p × E∗

i ) · si = −(1/n)p · B∗
i and (m × B∗

i ) · si = nm ·
E∗

i , this term may also be expressed as 2πc
μ

Re{− 1
ε
p · B∗

i +
μm · E∗

i }; therefore, the conservation of helicity (21) may be
written as

Wa
H + 8πck3

3ε
Im[p · m∗]=2πc

μ
Re

{
−1

ε
p · B∗

i + μm · E∗
i

}
.

(25)

The condition (25) must be compatible with the optical
theorem for energies [32]

Wa + ck4

3n
[ε−1|p|2 + μ|m|2] = ω

2
Im[p · E∗

i + m · B∗
i ], (26)

Wa being the rate of energy absorption, the second term of the
left side constituting the total energy scattered by the dipolar
object, and the right side representing the energy rate dissipated
from the illuminating field. In this connection, notice the

023813-3



MANUEL NIETO-VESPERINAS PHYSICAL REVIEW A 92, 023813 (2015)

interesting formal analogy in the two conservation laws (25)
and (26) where we observe a duality of E and B. Also the
comparison between the second terms of their respective left
sides is intriguing. We shall discuss these points in the next
section.

Notwithstanding let us remark that for circularly polarized
light, when we add the two scattering cross sections, namely,
that of helicity,Qs

H given by Eq. (23), and that of energy, Q =
ck4

3n
[ε−1|p|2 + μ|m|2]/|〈Si〉| (the denominator is the incident

energy flow magnitude), then the product, [Qs
H + Q]Wi

(where Wi is the incident illuminating energy density),
represents the rate of excitation of a chiral molecule or particle.
An expression usually derived from quantum mechanics [25]
and that here we have obtained on the basis of Maxwell’s
equations.

The conservation of helicity is generalized to an arbitrary
illuminating wave field, which we express as a decomposition
of plane wave components [37,38]:

E(i)(r) =
∫
D

ei(s)eik(s·r)d
,

B(i)(r) =
∫
D

bi(s)eik(s·r)d
. (27)

The integration being done in the contour D that contains
both propagating and evanescent waves [37,38], and to
include them both, si in (21) and (22) must be replaced
by s∗

i , complex conjugated of si = (sx
i ,s

y

i ,sz
i ), where sz

i =√
1 − (sx2

i + s
y2
i ) if sx2

i + s
y2
i � 1 (propagating components),

and sz
i = i

√
(sx2

i + s
y2
i ) − 1 if sx2

i + s
y2
i > 1 (evanescent com-

ponents). Then by the same procedure as before and summing
up for all plane wave components, one sees that in Eqs. (21)–
(25) now Ei and Bi must replaced by E(i) and B(i); therefore,
instead of (25) we now obtain the fundamental conservation
relation for the helicity:

Wa
H + 8πck3

3ε
Im[p · m∗]

= 2πc Re

{
− 1

n2
p · B(i)∗ + m · E(i)∗

}
. (28)

We remark that in this general case the incident fields in the
right side of (26) should also be E(i) and B(i).

Equations (21), (22), or (25), as well as Eq. (28), express
the extinction of helicity from the incident field by interaction
with the dipolar particle. The right side is the helicity dissipated
by the dipole from the illuminating wave, and plays for this
magnitude a role analogous to that of ω

2 Im[p · E(i)∗ + m · B(i)∗]
for the dissipated energy. As such, the term 2πc Re{− 1

n2 p ·
B(i)∗ + m · E(i)∗} has a potential for determining both dis-
sipated and radiated, or scattered, helicity by a bi-isotropic
dipolar particle, (e.g., in particular a chiral one) in an arbitrary,
homogeneous or inhomogeneous, embedding medium. Also
in FRET observations on transmission of energy and helicity
between chiral molecules, and in its consequences for the
torque exerted on each other [14,22]. In addition we shall
see below that Eq. (28) constitutes the basis for introducing
a dissymmetry factor in circular dichroism and enantiomeric

discrimination. Hence this law gives rise to avenues worthy of
further research.

V. CONSEQUENCES FOR THE POLARIZABILITIES

It will be useful to consider a Cartesian framework
where the elliptically polarized incident plane wave
has si along OZ, expressing its electric vector in an
helicity basis ε± = (1/

√
2)(1, ± i,0) as the sum of a

left-hand (LCP) and a right-hand (RCP) circularly polarized
plane wave, so that ei = (eix,eiy,0) = e+

i ε+ + e−
i ε−

and bi = (bix,biy,0) = n(−eiy,eix,0) = b+
i ε+ + b−

i ε− =
−ni(e+

i ε+ − e−
i ε−). The upper and lower sign of ±

standing for LCP (+) and RCP (−), respectively. In this
representation, the incident helicity density reads H i =
(ε/k)Im[e∗

ixeiy] = (ε/2k)S3 = (ε/2k)[|e+
i |2 − |e−

i |2],
namely, it is the difference between the LCP and RCP
intensities of the field. S3 = 2 Im[e∗

ixeiy] = |e+
i |2 − |e−

i |2 is
the fourth Stokes parameter [30,32].

Using Eq. (18) in the above geometry, we obtain from the
helicity conservation theorem (21)

Wa
H + 8πck3

3ε

{
Im[α∗

e αme + n2αmα∗
em]|ei |2

− 2k

√
μ

ε
Re[α∗

e αm − αmeα
∗
em]H i

}

= 2πc

n

{
n
[
αR

em− αR
me

]|ei |2− 2
(
αI

e + n2αI
m

)k

ε
H i

}
. (29)

The superscripts R and I denote the real and imaginary parts
of the polarizabilities, respectively. |ei |2 = |eix |2 + |eiy |2 =
8π
c

√
μ

ε
〈S〉 = 8π

ε
〈w〉. 〈S〉 and 〈w〉 represent the incident field

time-averaged Poynting vector magnitude and electromag-
netic energy density, respectively. 〈w〉 = 〈we〉 + 〈wm〉. 〈we〉 =
(ε/16π )|Ei |2, and 〈wm〉 = (1/16πμ)|Bi |2.

In addition, in this reference frame, the extinction
torque (24) is � = (0,0,�) = �si so that the right side of
Eq. (21) obviously is (4πc/n)� which is given by the right
side of Eq. (29).

On the other hand, we should recall that the optical theorem
for energies, Eq. (26), leads to

Wa+ 2k3

3

{
[ε−1(|αe|2+ n2|αem|2)+ μ(|αme|2+ n2|αm|2)]|ei |2

−4k

√
μ

ε
Im[ε−1α∗

emαe + μαmeα
∗
m]H i

}

= 2k

√
μ

ε

(
αR

me − αR
em

)
H i + (

αI
e + n2αI

m

)|ei |2. (30)

Considering from now on absence of absorption from electric
currents, Wa

H = 0 and Wa = 0. The compatibility of the
new equation (29) with (30) implies that their combination

023813-4



OPTICAL THEOREM FOR THE CONSERVATION OF . . . PHYSICAL REVIEW A 92, 023813 (2015)

yields√
μ

ε

(
αR

me − αR
em

)(4k2

ε2
H i2 − |ei |4

)

= 4k3

3

{(
|ε−1αe − μαm|2 + μ

ε
|αem + αme|2

)
k

ε
H i |ei |2

−
√

μ

ε
Im

[
α∗

em

(
4k2

ε2
H i2 αe

ε
− |ei |4μαm

)

+α∗
me

(
|ei |4 αe

ε
− 4k2

ε2
H i2

μαm

)]}
. (31)

Equation (31) constitutes the constraint between the four po-
larizabilities αe, αm, αem, and αme imposed by the conservation
of the two quantities: energy and helicity.

In particular, if the particle is not bi-isotropic (αem = αme =
0) and H i 
= 0, the conservation of both helicity and energy,
Eq. (31), states that the particle is dual [6,7], i.e., ε−1αe =
μαm, and thus fulfills the well-known first Kerker condition
(K1) [39,40] according to which it produces zero angular dis-
tribution of scattered intensity in the backscattering direction.
However, as seen next, this also occurs for chiral particles.

Several other cases are in order, as shown next.

A. Circular polarization of the incident wave

In this case eix = e and eiy = ±ie, e being real, depending
on whether the incident wave is LCP or RCP. Then |ei |2 = 2e2,
and |ei |4 − 4k2

ε2 H i2 = 0, i.e., ±|ei |2 = 2k
ε
H i with the sign +

and − applying when the wave is LCP and RCP, respectively.
Then (31) becomes

±
{(

|ε−1αe − μαm|2 + μ

ε
|αem + αme|2

)}

= 2

√
μ

ε
Im

[(
α∗

em + α∗
me

)(αe

ε
− μαm

)]
, (32)

which yields

(ε−1αe − μαm) ± i
μ

ε
(αem + αme) = 0. (33)

If the particle is chiral, then [16] αem = −αme and either (32)
or (33) imply that ε−1αe = μαm, i.e., the particle is dual and
thus holds K1.

Reciprocally, if the particle is such that ε−1αe = μαm,
then (32) or (33) imply that αem = −αme; namely the particle
is chiral and hence dual.

In addition, in this case p = ±inm and b(s) = ∓nie(s)
[cf. Eqs. (18), (19), and (20)], i.e., the scattered field is
circularly polarized (CP) with respect to the Cartesian system
of orthogonal axes defined by the unit vectors: (ε⊥,ε‖,s) (see
Fig. 1), ε⊥ and ε‖ being respectively perpendicular and parallel
to the scattering plane OPQ, i.e., e(s) = (e(s) · ε⊥)(1, ±
i,0) and b(s) = (ne(s) · ε⊥)(∓i,1,0). The helicity density of
the scattered field is proportional to its intensity density,
H s = ± ε

2k
|e(s)|2, and the flow of helicity density (spin) is

proportional to that of energy density (Poynting vector). Then,
in this case the optical theorem for the helicity (21) and that for
the energy (26) are equivalent. In fact, it is known [28] that for
circularly polarized waves there is a mapping of the helicity to
the energy. Thus both conservation laws coincide when both

the incident wave and the scattered field (like under K1) have
circular polarization.

We then conclude that the necessary and sufficient condition
for a nonabsorbing bi-isotropic particle to be chiral, αem =
−αme, is that ε−1αe = μαm, i.e., it is dual. Its scattering
by a circularly polarized plane wave, which must satisfy
both energy and helicity conservation, produces a circularly
polarized scattered field with zero differential scattering cross
section in the backscattering direction. Namely, the particle
satisfies the first Kerker condition.

As stated before, if αem = αme = 0, the conservation of
helicity and energy also implies duality, namely K1 and
hence zero backscattering. Even though, of course, circular
polarization of the scattered field will occur when the incident
plane wave is circularly polarized.

VI. SIGNIFICANCE FOR HELICITY EMISSION
AND ABSORPTION FROM DIPOLAR OBJECTS.

HELICITY TRANSFER IN FRET

The new law (28) stating the conservation of electromag-
netic helicity shows us how to determine the rate of helicity
dissipation from a dipolar particle or molecule in an arbitrary
environment, whether homogeneous or inhomogeneous:

dWH

dt
= 2πc Re

{
− 1

n2
p · B∗(r0) + m · E∗(r0)

}
. (34)

r0 is a point of the particle (which is usually convenient to
consider its center if it is, e.g., a sphere). We write E(r0) =
Ei(r0) + Es(r0) and B(r0) = Bi(r0) + Bs(r0), where now the
index i denote the dipole field that the particle would emit in
isolation, whereas s stands for the field resulting from multiple
scattering with surrounding particles or near objects.

Equation (34) constitutes the starting point for future studies
on the helicity decay rate γH , either between the dipole and
arbitrary near bodies, or between dipolar objects; in particular
in the phenomenon of fluorescence resonant energy transfer
(FRET) between molecules. For the latter, one does not have
to be limited to the transfer of energy, but likewise it is possible
to analyze the flow of helicity between nearby particles with
interesting effects to disclose from the additional degrees of
freedom introduced by the helicity and its flow. Such technique
based on Eq. (34) [recall also (21)], that we shall call resonant
helicity transfer (RHELT), or fluorescence resonant helicity
transfer (FRHELT) when fluorescence is involved, will use
the concept that we herewith coin as helicity transfer rate γ DA

H
between donor D and acceptor A, also taking their possible
bi-isotropy (and chirality, in particular) into account, which in
analogy with energy transfer (see, e.g. [41]), we express by

γ DA
H

γ 0
H

= WDA
H

W0
H

. (35)

γ 0
H andW0

H = 4π
3

k3

H i

√
μ

ε
Im[p · m∗] [cf. Eq.(23)], represent-

ing the helicity decay rate and helicity yield from the donor in
absence of acceptor, respectively, and

WDA
H = 2πc Re

{
− 1

n2
pA · B∗

D(rA) + mA · E∗
D(rA)

}
. (36)

The subindex D in the fields means that they are gen-
erated by the donor, whereas the subindices A stand for
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the excited dipole moments and position points in the
acceptor.

Increasingly investigated structures with electric and
magnetic dipoles [35,42–44], and their mutual interaction
[34,40,44,45], make (34) of appealing and intriguing conse-
quences in such future studies. The details on these quantities
will be the subject of a future study.

VII. EFFECTS ON HELICITY ENANTIOMERIC
DISCRIMINATION BY CIRCULAR DICHROISM

The weakness of the signal in enantiomeric discrimination
is well known [16,19–21]. Proposals to enhance it by acting on
the helicity of the illuminating wave have been studied [16,19].
Such enhancement comes from the use of the right side of
the optical theorem of energy conservation, Eq. (26), which
for a chiral molecule or dipolar object leads to the so-called
dissymmetry factor [16–18]:

g = 2
W+ − W−

W+ + W− , (37)

where W± is the energy excitation of the object (i.e.,
the molecule or particle), which equals the dissipated
energy from the illuminating wave: ω

2 Im[p · E∗
i + m · B∗

i ].
Considering for example the pair of fields, ±Ei(r,t)
and Hi(r,t), Ei(r,t) = Re[Ei(r) exp(−iωt)] and Hi(r,t) =
Re[Hi(r) exp(−iωt)], whose respective helicites are H + and
H −, with H + = H = −H −, this leads to

g = −2kn

π

αR
em

αI
e + n2αI

m

H

〈w〉 . (38)

The term n2αI
m is negligible in cases in which |αm| �

|αe| [16,17]. It should be remarked, however, that this is not
always the case; see [21,35]. Also, if the illumination is with
a CP plane wave, we have seen above that if the particle is
dipolar in the wide sense and chiral then αe = n2αm, which
would pose a difficulty to neglect αm while retaining αe. Thus
in this case one should replace the denominator of (38) by
2παe〈w〉.

It is known that the quantity g may be small for the
usually employed circularly polarized illumination, for which
±Ei represents the two polarization states: LCP and RCP,
respectively. Then H ± = ±(4πn/k)〈w〉 and, if one can
neglect the αI

m term, g becomes the classical dissymmetry
factor, −8n2αR

em/αI
e , which may be as small as 10−2 or

10−6, depending on whether there is electronic or vibrational
excitation. By contrast the factor H /〈w〉 may be large enough
to overcome the above limitation of g by devising differently
spatially structured illumination [16].

Now on account of the optical theorem of helicity estab-
lished here, Eq. (28), we suggest using the rate of helicity
excitation of the object [cf. the right side of (28)]:

− W ′
H = 2πc Re

{
− 1

n2
p · B∗

i + m · E∗
i

}

= −32π2cαR
em〈w〉 + 2πc

{(
αR

m − αR
e

n2

)
L

+ 2k

√
μ

ε

(
αI

m + αI
e

n2

)
H

}
, (39)

where ±L = Re(±Ei · B∗
i ).

Hence we propose a method with measurements based on
a dissymmetry factor gH that we introduce as

gH = 2
(−W ′+

H ) − (−W ′−
H )

(−W ′+
H ) + (−W ′−

H )
, (40)

which, rather than (38), yields [cf. (39)]

gH = −
(
αR

m − αR
e

n2

)
L + 2k

√
μ

ε

(
αI

m + αI
e

n2

)
H

8παR
em〈w〉 . (41)

In contrast with g, Eq. (38), that has the usually small factor
αR

em/(αI
e + n2αI

m), gH is a large quantity since it contains a
term with the inverse factor: (αI

e + n2αI
m)/αR

em.
In common situations in which L = 0, Eq. (41) becomes

gH = − k

4πnε

αI
e + n2αI

m

αR
em

H

〈w〉 . (42)

(Again the term n2αI
m may be negligible only in cases in which

|αm| � |αe|.)
In fact for a circularly polarized plane wave, L = 0, and

Eq. (41) becomes

gH = − k

4πn

αI
e + n2αI

m

αR
em

H

〈w〉 = −αI
e + n2αI

m

αR
em

, (43)

thus being of the order of the inverse of the usual dissymmetry
factor, i.e., of g−1. In addition, the helicity factor H

〈w〉 common
to Eqs. (38) and (43) enhances not only g with “superchiral
light” as shown in [16], but then also gH .

Because of Eqs. (11), (21), and (28) one may equally
determine a helicity dissymmetry factor on using in (40) the
quantityWs

H = (8πck3/3ε)Im[p · m∗] instead of −W ′
H . For

particles with small imaginary parts of the polarizabilities,
both dissymmetry factors are equivalent, and specially when
one employs CP illumination, both −W ′

H and Ws
H lead to

gH = 2
n

αI
e

αR
em

.
To take advantage of gH , detection should be carried out by

measuring the total scattered or radiated helicity, rather than
the energy excitation, through an experiment that involves
determination of Stokes parameters, including S3, when LCP
is used. This, according to the above helicity optical theorem,
equals the helicity dissipated from the incident field. In the
case of an incident LCP plane wave, one may also perform the
measurement by determining the projection of the extinction
optical torque on the particle according to [cf. Eqs. (21), (22),
and (24)]

− W ′
H = 2πc

n
{Re[(p × e∗

i ) · si] + Re[(m × b∗
i ) · si]}

= 4πc

n

{
nαR

em|e|2 − (
αI

e + n2αI
m

)k

ε
H

}
, (44)

either directly through an optical force experiment, or equiva-
lently again by the optical theorem (22), to measure it through
a determination of the total scattered helicity.

One should remark that determining gH is an ap-
proach different to ellipsometric chiroptical spectroscopy,
(see, e.g. [21]), in which one does not exclusively employ
helicity flows WH as proposed here, but instead one uses
the ratio Ws

H /Ws ∼ Qs
H /Qs of the scattering helicity cross

023813-6



OPTICAL THEOREM FOR THE CONSERVATION OF . . . PHYSICAL REVIEW A 92, 023813 (2015)

section, Eq. (23), to the total scattering cross section [or
scattered energy flow (16), normalized to the incident one:

|〈Si〉| =
√

ε
μ

(c|ei |2/8π )], for two LCP and RCP waves:

Qs =
√

ε

μ
(c‖ei |2/8π )

ck4

3n
[ε−1|p|2 + μ|m|2]. (45)

However, the signal obtained by this latter procedure is weaker
than the one proposed here based on the factor of Eq. (40).

VIII. CONCLUSIONS

The optical theorem that expresses the conservation of
electromagnetic helicity has been put forward, from which one
can define a helicity cross section for extinction, scattering, and
absorption. This equation suggests intriguing consequences
both for FRET and circular dichroism. As for the former a
new technique: RHELT (or FRHELT if emission is due to

fluorescence), based on the helicity transfer rate, is proposed,
whereas for the latter we suggest a procedure employing
ellipsometric measurements, from which a dissymmetry factor
based on the emitted helicity rate, here introduced and larger
than the standard one, yields greater sensitivity.

In the emerging field of silicon photonics with magne-
todielectric structures, the behavior of g and gH drastically
changes since then the resonant αI

m associated to the excitation
of the magnetic dipole [35,40,42–45] would dominate αI

e and
αR

em; thus g may diminish while gH would be enhanced.
Further advances in the study of magnetodielectric chiral
objects should manifest such effects.
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